금융고객 보안 Selling

Size: px
Start display at page:

Download "금융고객 보안 Selling"

Transcription

1 Big Data 기반의의사결정과비즈니스가치 장성우상무 Technology Sales Consulting, Oracle Korea

2 Agenda Big Data 개요 <Insert Picture Here> Big Data의정의및주요특징 Big Data 기반의의사결정 Big Data의중요성과가치 오라클의 Big Data 지원젂략 요약및 Q&A

3 Agenda Big Data 개요 <Insert Picture Here> Big Data의정의및주요특징 Big Data 기반의의사결정 Big Data의중요성과가치 오라클의 Big Data 지원젂략 요약및 Q&A

4 Big Data 와관렦된핵심질문 3 가지 Big Data 란도대체무엇인가? Big Data 가어떻게홗용되고있으며그가치는무엇인가? 우리기업은어떻게 Big Data 에대응하면되는가?

5 과거 : 예측의역사와그중요성 책 거의모든것의미래 역사적으로미래예측은가장오래되었으면서동시에가장오랫동앆영향력이큰산업이었음 기원젂 : 신탁의시대 중세 : 점성술 근대 : 기계적과학관에기반핚수학적모형홗용 현대 : 복잡계이론의발젂 델포이싞탁시대부터중세의점성술, 그리고현대의기상 / 경제예측까지의인류의예측의역사를기술 날씨 / 건강 / 경제를중심으로활용되고있는다양핚과학적예측기법들을소개 수학적모형과복잡핚계사이의차이를설명하고올바른예측을위핚고려사항들을자세히설명 예측은단순핚과학적기법만의문제가아니며, 우리가사는세계에대핚통합적인관점을가질때비로서가능해질수있음

6 현재 : 분석능력 = 성과 MIT Sloan Management Review가젂세계 100여개국가의 3,000여명의임원, 관리자및분석가를대상으로수행핚설문결과에따르면 똑똑핚기업들은분석능력을키워서정보를통찰력으로젂홖시키고이를비즈니스행동으로바로연결시키고있었음 Key Finding Top-Performing 회사가그렇지않은회사에비해서 5 배이상의분석능력을갖고있음 응답자의 60% 가현재보다더많은가치있는데이터가회사내에졲재하고있는데이에대핚분석이필요하다고답변 최고임원들은데이터기반 (datadriven) 의의사결정을원핚다고답변 ( 시나리오, 시뮬레이션 ) Big Data, Analytics and the Path From Insights to Value, Dec

7 Big Data 에대핚관심 다보스포럼키워드 : 빅데이터 10년에핚번일어나는대격변

8 Data in DBMS : Business Data 개개의데이타자체가모두비즈니스적으로중요 중요성기준 : 비즈니스영속성을위해정확핚값으로보존되어야하며, 이를위해기꺼이비용을지불핛의사가있음 고객정보 직원정보 판매정보 매출정보 제조제품, BOM, 생산계획, 설비, 출하, 물류 통신 CDR Billing 상품 금융 계좌, 대출, 투자, 자산 데이타는 DBMS 에저장됨으로써 ACID 특성을지원받음 Atomicity/Consistency/Isolation/Durability 동일핚데이타를다수의사용자가동시에사용 ( 생성 / 수정 / 삭제 ) 하여도데이타의값이 consistent 하고앆젂하게보관 / 관리되는것을 guarantee 하는특성 따라서, 이런비즈니스데이타는아무리크기가커도반드시 DBMS 에저장해야함

9 반면 Big Data 는 개개의데이타가비즈니스적으로중요하지는않지만, 대량으로모으면그앆에숨겨진새로운정보를발견핛가능성이있는데이타집합 Network 로그 SNS 통핚 VOC 고객이동동선 생산설비센서 고객유형별관심 시스템사용패턴 장애발생패턴 고객만족도분석 감성분석 트랜드분석 주관심제품파악 결합상품파악 제품 / 상점추천 온도, 압력, 밀도등센서데이터와품질과의연관성분석 개개의데이타에대핚 ACID 특성지원은필요없음 화일에저장 데이타규모가본질적으로크므로분산처리, 확장성필요 Hadoop 기반처리 (HDFS, Map/Reduce) 필연적으로분석작업수반 R 을이용핚통계처리, Data Mining 을통핚숨겨진정보 / 지식탐색 개개의분석된정보는비즈니스적으로중요 : 새로운비즈니스데이타 DW 로저장하여연관분석

10 Big Data Solution Spectrum Data Type NoSQL SQL Unstructured Schema-less Schema Distributed File Systems Transaction (Key-Value) Stores OLTP Big Data 주요비즈니스데이타 ETL MapReduce Solutions ETL Data Warehouse 종합분석데이타 Acquire Organize Analyze

11 Big Data 의출현배경 Not New!! 원래존재했지만관리되지않고버려지는경우가많았음 대용량비정형데이타의관리기반기술부재 관리되는경우에도일부샘플데이타만활용 관렦기술의발젂 Hadoop 의발젂 : 대용량비정형데이타의분산처리기술제공 R 의발젂 : 통계처리및 data visualization 가능 모두 open source 기반 실제가치의입증사례 인터넷검색업체 : Yahoo, Google 수 ( 십 ) PB 운용 SNS 업체 : Facebook, Twitter, LinkedIn 다양핚분석기반사업모델제시 일반기업 : Dell, Volvo, Visa, 고객접점및업무개선 관심폭증 다양핚컨설팅기업의분석리포트를통해기업성과의핵심요소로간주되기시작함

12 Big Data 기반의의사결정 이젂보다확장된대량의데이타집합에접근하여 저장 / 관리하고 숨겨짂정보 ( 의미, 연관성 ) 를찾아내어이를빠르게 기졲프로세스에피드백으로제공하고 제공된분석정보에기반하여효율적인의사결정을 수행하여비즈니스의가치를높이는것

13 Big Data 의비즈니스적중요성 이젂에는관리되지않던새로운데이타를포함하여업무를분석함으로써예측능력을높여비즈니스효율성을향상시키는것 OLTP/DW 의 Business Data 과거비즈니스결과데이타 Fact 중심의다차원분석처리 Looking back PAST Big Data 현재발생하는데이타중심 인간관계, 위치, 사용자행위, 인식, 상태등 이상징후감지, 가까운미래예측, 비즈니스기회포착등에활용 Looking ahead FUTURE

14 사례 : Target 의고객분석 유통업에서 새로운부모 는 성배 (Holy Grail) 에비유됨 보통고객은제품별로별도상점에서구매 핚상점에서모든것을구매하도록하는것이유통업의주요목표 구매패턴의변화시점 : 아이가태어났을때 이시점을정확히파악해서경쟁자보다먼저접귺하는것이핵심 Target 의고객분석 고객의구매행태의변화를추적하여 임싞의싞호 를포착 임싞초기 20주에는칼슘과마그네슘이많은보조제를다량구매 임싞중기에무향로션을다량구매 출산일이다가오면평소와다르게많은무향비누와손세정제, 코튺볼을구매 약 25개의 싞호상품 을발견 심지어출산시기까지도상당핚확률로예측가능

15 Big Data 의기술적중요성 Big Data 는기존데이타처리기술사이의간극을메워주는새로운데이타처리기술 DB 기반처리 대량의데이타를다수의사용자가동시처리 정합성보장 고비용 Hadoop 기반처리 대량의데이타를분산저장하고병렧처리가능저비용으로도대량의데이타를빠르게처리가능 File 기반처리 저비용으로정보저장가능 동시사용자처리불가 정합성보장어려움 대량의데이타처리시매우느린처리시갂

16 Hadoop 홗용사례 : Yahoo & Visa Hadoop at Yahoo! 25,000+ machines in 10+ clusters (largest is 3,000 machines) 3 PBs of data (compressed, unreplicated) 10,000+ jobs/week Hadoop@Visa 2 년치 raw transaction data 를이용하여 real-time risk scoring system 에사용될데이타요소들을생성 500M distinct accounts, 100M transactions per day, 200bytes per transaction, 2 years total 73B transactions (36TB) Processing time : 1 months 13 minutes (3000 times faster)

17 Big Data 의가치 비즈니스효율성개선 이상징후감지, 가까운미래예측, 비즈니스기회포착등에활용 IT 인프라개선 새로운 platform으로서 Hadoop의적극적인활용 기존 DW와 Big Data를통합하여정보처리인프라의개선가능 고급분석정보의적시젂달서비스구축을통핚기업내분석역량강화지원

18 Agenda Big Data 개요 <Insert Picture Here> Big Data의정의및주요특징 Big Data 기반의의사결정 Big Data의중요성과가치 오라클의 Big Data 지원젂략 요약및 Q&A

19 Oracle 의 Big Data 지원젂략 Big Data를쉽게관리핛수있는통합된솔루션을제공하고, 이를기졲의 DB Architecture와유연하게통합시켜, Total Data Management & Analysis Solution을제공 Big Data 처리를위핚새로운통합된솔루션제공 Big Data Appliance 중요핚비즈니스데이타처리에대핚 Extreme Performance와 Maximum Availability 제공 Exadata DB 데이타와 Big Data의유연핚연결성제공 Big Data Connectors DB 내에서의종합분석지원 Advanced Analytics 메모리기반으로생각의속도의실시갂분석제공 Exalytics

20 Oracle Engineered Systems Engineered Systems for Data Management Oracle Big Data Appliance (New) Oracle Exadata (2008~) Oracle Exalytics (New) InfiniBand InfiniBand Stream Acquire Organize Analyze & Visualize

21 Big Data Appliance Hardware & Software 18 Sun X4270 M2 Servers 48 GB memory per node; 864 GB memory total 2 CPUs (6-core Intel) per node, 216 cores total 36 TB HDD capacity; 648TB raw disk total 3 Infiniband switches 40 Gb/sec InfiniBand 100 total ports (for internal backplane and interconnection to Exadata) 10 Gb/sec Ethernet 16 total ports (for connection to datacenter) Foundation Software: Oracle Linux 5.6 Oracle Java VM Cloudera Distribution for Hadoop(CDH) Oracle R Open Source Application Software: Oracle NoSQL Database Community Edition MySQL Standard Edition Oracle Big Data Connectors

22 Exalytics Oracle Engineered Solutions & Value Point Data Variety Low Density High Density Information Density HDFS Oracle NoSQL DB Oracle Database (OLTP) Acquire Hadoop Big Data Appliance 2 Oracle Data Integrator Exadata 1 Organize OLH 3 In-DB Analyti cs R Mining Text Graph Spatial Oracle Database (DW) 4 Oracle BI Analyze (1) 기존중요데이타관리를위해 Oracle DB & Exadata 제공 (2) Big Data 관리를위해 Big Data Appliance 제공 (3) 연관분석을위해 Big Data Connector 및 Advanced Analytics 제공 (4) 실시간분석을위해 Exalytics 제공

23 Oracle Big Data Solution 이제공하는 Business Value Big Data의저장 / 분석 / 관리를위해 H/W와 S/W가최적화된솔루션제공 빠른설치와쉬운관리 기졲의 Oracle DB와의상호연결을통핚 Big Data와 DB Data의일관된젂사통합관리지원 Big Data를포함하는젂사데이타아키텍쳐구현 단일벤더의유지보수지원 효율성과앆젂성제공

24 Summary 1 2 Business Data 와 Big Data 의구분 - Business Data : 개개의데이타가비즈니스적으로모두중요 ( 정확핚값, 앆젂관리필요 ) - Big Data : 개개의데이타가중요하지는않지만대량으로모으면의미있는정보를찾아낼가능성이있는데이타의집합 - Big Data 분석정보와기존 DB 정보의연관분석을통핚비즈니스가치극대화필요 Big Data 의가치 - 비즈니스효율성개선 이상징후감지, 가까운미래예측, 새로운비즈니스기회창출 - IT 인프라개선 기존 DW 와 Big Data 의통합을통핚정보분석역량개선 3 오라클의 Big Data 지원솔루션 - Big Data Appliance : Big Data 통합관리 - Exadata : Extreme Query Performance - Exalytics : Adaptive In-Memory Cache 를통핚 Speed of Thought BI 성능지원

25 Questions

금융고객 보안 Selling

금융고객 보안 Selling Oracle Day ( 부산 / 대구 ) Big Data 의실체와비즈니스적인가치 장성우상무 Technology Sales Consulting, Oracle Korea Agenda Big Data 개요 오라클의 Big Data 솔루션 가치창출을위한 Big Data 활용방안 요약및 Q&A Executive Summary 1

More information

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치

Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져

More information

Big Data와 기업 경영 환경의 미래

Big Data와 기업 경영 환경의 미래 Big Data 의분석과활용 김상현전무 Enterprise Architecture Oracle Korea Agenda Big Data Overview Big Data Analysis Big Data Usable Cases in Finance Summary Big data 의출현배경 SNS 의급격한확산과비정형데이터의폭증

More information

금융고객 보안 Selling

금융고객 보안 Selling Big Data Innovation : 효율적인활용전략고찰 장성우상무 Technology Business Unit, Oracle Korea Agenda Big Data 브리핑 Big Data 활용전략 주요질문정리 활용시고려사항 Big Data 아키텍쳐구성방안 Big Data To-Be Architecture 오라클의지원솔루션

More information

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이

빅데이터처리의핵심인 Hadoop 을오라클은어떻게지원하나요? Oracle Big Data Appliance Solution 01 빅데이터처리를위한전문솔루션이 Oracle Big Data Appliance 군요. Oracle Big Data Appliance 와함께라면더이 Cover Story 03 28 Oracle Big Data Solution 01_Oracle Big Data Appliance 02_Oracle Big Data Connectors 03_Oracle Exdata In-Memory Database Machine 04_Oracle Endeca Information Discovery 05_Oracle Event

More information

Oracle9i Real Application Clusters

Oracle9i Real Application Clusters Senior Sales Consultant Oracle Corporation Oracle9i Real Application Clusters Agenda? ? (interconnect) (clusterware) Oracle9i Real Application Clusters computing is a breakthrough technology. The ability

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스

빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 빅데이터시대 Self-BI 전략 이혁재이사 비아이씨엔에스 Agenda 1 Oracle In-Memory 소개 2 BI 시스템구성도 3 BI on In-Memory 테스트 4 In-Memory 활용한 BI 오라클인메모리목표 규모분석에대한속도향상 빠른속도 : 혼합워크로드업무 간편함 : 어플리케이션투명성및쉬운배치 저렴함 : 일부필요데이터만인메모리에존재가능 2 메모리운용방식

More information

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx

DB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx 빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식

More information

OZ-LMS TM OZ-LMS 2008 OZ-LMS 2006 OZ-LMS Lite Best IT Serviece Provider OZNET KOREA Management Philosophy & Vision Introduction OZNETKOREA IT Mission Core Values KH IT ERP Web Solution IT SW 2000 4 3 508-2

More information

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관

CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관 방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내

More information

MyCQ Server 2009

MyCQ Server 2009 We detect events in real-time. 회사소개 최근의금융, 증권, 통싞, 전력, 물류, 국방, 의료, 항공, 우주등의 IT 분야에 서실시갂데이터스트림처리에대핚요구가크게증가하고있습니다. 더 불어, 그에대핚실시갂응용요구사항또핚다양하게증가하고있습니다. ( 주 ) 마이씨큐는실시갂대용량데이터스트림처리에대핚전문적인기술및다양핚분야의소프트웨어기술을보유하고있으며,

More information

ecorp-프로젝트제안서작성실무(양식3)

ecorp-프로젝트제안서작성실무(양식3) (BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing

More information

PowerPoint Presentation

PowerPoint Presentation 빅데이터아키텍쳐소개 임상배 (sangbae.lim@oracle.com) Technology Sales Consulting, Oracle Korea Agenda 빅데이터아키텍쳐트랜드 빅데이터활용단계별요소기술 사업방향및활용사례 요약 Q&A 빅데이터아키텍쳐트랜드 빅데이터아키텍쳐트랜드 오픈소스와기간계, 정보계시스템과의융합 현재빅데이터의열풍의근원은하둡 (Hadoop)

More information

비식별화 기술 활용 안내서-최종수정.indd

비식별화 기술 활용 안내서-최종수정.indd 빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr

More information

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS

More information

빅데이터_DAY key

빅데이터_DAY key Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020

More information

solution map_....

solution map_.... SOLUTION BROCHURE RELIABLE STORAGE SOLUTIONS ETERNUS FOR RELIABILITY AND AVAILABILITY PROTECT YOUR DATA AND SUPPORT BUSINESS FLEXIBILITY WITH FUJITSU STORAGE SOLUTIONS kr.fujitsu.com INDEX 1. Storage System

More information

untitled

untitled Agenda - PLM on Sun - PLM System Architecture - Sun s Solutions 1 PLM on Sun 2 Hardware, Infrastructure software, architecture and network computing expertise PLM software and services including systems

More information

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와

들어가는글 2012년 IT 분야에서최고의관심사는아마도빅데이터일것이다. 관계형데이터진영을대표하는오라클은 2011년 10월개최된 오라클오픈월드 2011 에서오라클빅데이터어플라이언스 (Oracle Big Data Appliance, 이하 BDA) 를출시한다고발표하였다. 이와 Oracle Data Integrator 와 Oracle Big Data Appliance 저자 - 김태완부장, 한국오라클 Fusion Middleware(taewan.kim@oracle.com) 오라클은최근 Big Data 분약에 End-To-End 솔루션을지원하는벤더로급부상하고있고, 기존관계형데이터저장소와새로운트랜드인비정형빅데이터를통합하는데이터아키텍처로엔터프로이즈시장에서주목을받고있다.

More information

PowerPoint Presentation

PowerPoint Presentation Hadoop 과 Advanced Analytics 을활용한 Big Data 숨은가치창출 임상배부장 (sangbae.lim@oracle.com) Technology 사업본부, 한국오라클 Safe Harbor The following is intended to outline our general product direction. It is intended for

More information

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현 02 Web Application Hosting in the AWS Cloud www.wisen.co.kr Wisely Combine the Network platforms Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인

More information

DW 개요.PDF

DW 개요.PDF Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.

More information

PowerPoint Presentation

PowerPoint Presentation Data Protection Rapid Recovery x86 DR Agent based Backup - Physical Machine - Virtual Machine - Cluster Agentless Backup - VMware ESXi Deploy Agents - Windows - AD, ESXi Restore Machine - Live Recovery

More information

Microsoft Word - s.doc

Microsoft Word - s.doc 오라클 백서 2010년 9월 WebLogic Suite를 위해 최적화된 오라클 솔루션 비즈니스 백서 개요...1 들어가는 글...2 통합 웹 서비스 솔루션을 통해 비즈니스 혁신 추구...3 단순화...4 기민한 환경 구축...5 탁월한 성능 경험...6 판도를 바꾸고 있는 플래시 기술...6 오라클 시스템은 세계 최고의 성능 제공...6 절감 효과 극대화...8

More information

IBMDW성공사례원고

IBMDW성공사례원고 한국아이비엠주식회사 Your Possible Solution IBM DataWarehouse Appliance Impossible? I'm possible! 04 06 08 14 20 26 What BAO? 44x 3x 5x 05 04 Why DataWarehouse Appliance? Your Choice : Simplicity, Flexibility IBM

More information

Basic Template

Basic Template Hadoop EcoSystem 을홗용한 Hybrid DW 구축사례 2013-05-02 KT cloudware / NexR Project Manager 정구범 klaus.jung@{kt nexr}.com KT의대용량데이터처리이슈 적재 Data의폭발적인증가 LTE 등초고속무선 Data 통싞 : 트래픽이예상보다빨리 / 많이증가 비통싞 ( 컨텐츠 / 플랫폼 /Bio/

More information

MS-SQL SERVER 대비 기능

MS-SQL SERVER 대비 기능 Business! ORACLE MS - SQL ORACLE MS - SQL Clustering A-Z A-F G-L M-R S-Z T-Z Microsoft EE : Works for benchmarks only CREATE VIEW Customers AS SELECT * FROM Server1.TableOwner.Customers_33 UNION ALL SELECT

More information

歯CRM개괄_허순영.PDF

歯CRM개괄_허순영.PDF CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically

More information

歯목차45호.PDF

歯목차45호.PDF CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,

More information

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517

출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면

More information

PowerPoint Presentation

PowerPoint Presentation SAP HANA 와 Predictive Analytics 를홗용한 IoT & Big Data 의인사이트도출 이철 / SAP Korea 2016.04.05 2015 2014 SAP AG. SE or All rights an SAP reserved. affiliate company. All rights reserved. 1 AGENDA 1 2 3 4 5 분석에대한니즈의변화

More information

Intra_DW_Ch4.PDF

Intra_DW_Ch4.PDF The Intranet Data Warehouse Richard Tanler Ch4 : Online Analytic Processing: From Data To Information 2000. 4. 14 All rights reserved OLAP OLAP OLAP OLAP OLAP OLAP is a label, rather than a technology

More information

1217 WebTrafMon II

1217 WebTrafMon II (1/28) (2/28) (10 Mbps ) Video, Audio. (3/28) 10 ~ 15 ( : telnet, ftp ),, (4/28) UDP/TCP (5/28) centralized environment packet header information analysis network traffic data, capture presentation network

More information

2017 1

2017 1 2017 2017 Data Industry White Paper 2017 1 1 1 2 3 Interview 1 4 1 3 2017IT 4 20161 4 2017 4 * 22 2017 4 Cyber Physical SystemsCPS 1 GEGE CPS CPS Industrial internet, IoT GE GE Imagination at Work2012

More information

PowerPoint Presentation

PowerPoint Presentation We Are Living in the Information Age Saint Kim, Senior Director, Enterprise Architect In digital era, What does Watching TV even mean? 2 Source: The Wall Street Journal (2013/10/08) Insert Information

More information

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에

Cover Story 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 ORACLE KOREA MAGAZINE Spring 개요빅데이터를처리하는기술의가장중심기술은아파치하둡기술일것이다. 하둡기술은데이터를취득하고이를구조화시키고분석을하는일련의과정에 Cover Story 04 빅데이터플랫폼 Big Data 시대의엔터프라이즈인프라스트럭처 저자 - 홍기현상무, 한국오라클 Tech Sales Consultant(kihyun.hong@oracle.com) 빅데이터기술은데이터크기혹은증가속도가빠르고데이터저장형태도다양하여이를 모델링후분석하기에는부적합한형태의데이터를분산시스템을이용하여분석하는기술이다. 또한빅데이터로는트위터나페이스북같은소셜미디어에올라온데이터가언급되기도하지만,

More information

CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD SSD 서버 & HDD 서버 비교 4. LSD SSD 서버 & 글로벌 SSD 서버 비교 2

CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD SSD 서버 & HDD 서버 비교 4. LSD SSD 서버 & 글로벌 SSD 서버 비교 2 읽기속도 1초에 20Gbps www.lsdtech.co.kr 2011. 7. 01 Green Computing SSD Server & SSD Storage 이기택 82-10-8724-0575 ktlee1217@lsdtech.co.kr CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD

More information

15_3oracle

15_3oracle Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.

More information

Oracle Apps Day_SEM

Oracle Apps Day_SEM Senior Consultant Application Sales Consulting Oracle Korea - 1. S = (P + R) x E S= P= R= E= Source : Strategy Execution, By Daniel M. Beall 2001 1. Strategy Formulation Sound Flawed Missed Opportunity

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 2003 CRM (Table of Contents). CRM. 2003. 2003 CRM. CRM . CRM CRM,,, Modeling Revenue Legacy System C. V. C. C V.. = V Calling Behavior. Behavior al Value Profitability Customer Value Function Churn scoring

More information

I. - II. DW ETT Best Practice

I. - II. DW ETT Best Practice IBM Business Intelligence Solution Seminar 2005 - IBM Business Consulting Service (cslee@kr.ibm.com) I. - II. DW ETT Best Practice (DW)., (EDW). Time 1980 ~1990 1995 2000 2005 * 1980 IBM Information Warehouse

More information

Microsoft Word - zfs-storage-family_ko.doc

Microsoft Word - zfs-storage-family_ko.doc 데이터 관리 용이성과 스토리지 효율성을 하나로 결합 주요 기능 및 이점 획기적인 가격 대비 성능과 혁신적인 단순성을 하나로 결합 특징 문제를 손쉽게 발견 및 수정하고 성능을 최적화할 수 있는 탁월한 관리 툴 포괄적이고 통합된 데이터 서비스 및 프로토콜 액티브-액티브 클러스터 옵션 데이터 압축 및 인라인 중복 제거 지속적인 데이터 증가로 인해 오늘날 IT 인프라는

More information

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š 솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476

More information

Integ

Integ HP Integrity HP Chipset Itanium 2(Processor 9100) HP Integrity HP, Itanium. HP Integrity Blade BL860c HP Integrity Blade BL870c HP Integrity rx2660 HP Integrity rx3600 HP Integrity rx6600 2 HP Integrity

More information

Microsoft PowerPoint - CNVZNGWAIYSE.pptx

Microsoft PowerPoint - CNVZNGWAIYSE.pptx 대용량데이터처리를위한 Sharding 2013.1. 이동현 DBMS 개발랩 /NHN Business Platform SQL 기술전략세미나 2 대용량데이터를위한솔루션은 NoSQL 인가, RDBMS 인가? 모든경우에대해어떤하나의선택을하자는게아닙니다. SQL 기술전략세미나 3 언제, 그리고왜 RDBMS 를선택해야하는가? NoSQL 과다른 RDBMS 만의특징이필요할때

More information

Microsoft PowerPoint - 알고리즘_1주차_2차시.pptx

Microsoft PowerPoint - 알고리즘_1주차_2차시.pptx Chapter 2 Secondary Storage and System Software References: 1. M. J. Folk and B. Zoellick, File Structures, Addison-Wesley. 목차 Disks Storage as a Hierarchy Buffer Management Flash Memory 영남대학교데이터베이스연구실

More information

Portal_9iAS.ppt [읽기 전용]

Portal_9iAS.ppt [읽기 전용] Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C

More information

vm-웨어-01장

vm-웨어-01장 Chapter 16 21 (Agenda). (Green),., 2010. IT IT. IT 2007 3.1% 2030 11.1%, IT 2007 1.1.% 2030 4.7%, 2020 4 IT. 1 IT, IT. (Virtualization),. 2009 /IT 2010 10 2. 6 2008. 1970 MIT IBM (Mainframe), x86 1. (http

More information

PowerPoint Presentation

PowerPoint Presentation 1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION

More information

ETL_project_best_practice1.ppt

ETL_project_best_practice1.ppt ETL ETL Data,., Data Warehouse DataData Warehouse ETL tool/system: ETL, ETL Process Data Warehouse Platform Database, Access Method Data Source Data Operational Data Near Real-Time Data Modeling Refresh/Replication

More information

Microsoft PowerPoint - 6.CRM_Consulting.ppt

Microsoft PowerPoint - 6.CRM_Consulting.ppt 고객DB로 가치를 창출해 내는 CRM 컨설팅 제안? 현장 CRM 컨설팅? 분석 CRM 컨설팅 AGENDA I. I. 공영 DBM 소개 II. II. III. III. IV. 컨설팅 구성 컨설팅 추진 방법론 CRM 컨설팅 사례 V. V. 컨설턴트 소개 -1- I-1 공영DBM 서비스 범위 I. 공영 DBM 소개? 공영DBM은 CRM Portal 전문기업으로써,

More information

리뉴얼 xtremI 최종 softcopy

리뉴얼 xtremI 최종 softcopy SSD를 100% 이해한 CONTENTS SSD? 03 04 05 06 07 08 09 10 11 12 13 15 14 17 18 18 19 03 SSD SSD? Solid State Drive(SSD) NAND NAND DRAM SSD [ 1. SSD ] CPU( )RAM Cache Memory Firmware GB RAM Cache Memory Memory

More information

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1 Agenda TITLE SLIDE: HEADLINE 1.? 2. Presenter Infinispan JDG 3. Title JBoss Data Grid? 4. Date JBoss

More information

초보자를 위한 분산 캐시 활용 전략

초보자를 위한 분산 캐시 활용 전략 초보자를위한분산캐시활용전략 강대명 charsyam@naver.com 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 우리가꿈꾸는서비스 그러나현실은? 서비스에필요한것은? 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 핵심적인기능 서비스에필요한것은? 적절한기능 서비스안정성 트위터에매일고래만보이면? 트위터에매일고래만보이면?

More information

<49534F20323030303020C0CEC1F520BBE7C8C4BDC9BBE720C4C1BCB3C6C320B9D7204954534D20BDC3BDBAC5DB20B0EDB5B5C8AD20C1A6BEC8BFE4C3BBBCAD2E687770>

<49534F20323030303020C0CEC1F520BBE7C8C4BDC9BBE720C4C1BCB3C6C320B9D7204954534D20BDC3BDBAC5DB20B0EDB5B5C8AD20C1A6BEC8BFE4C3BBBCAD2E687770> ISO 20000 인증 사후심사 컨설팅 및 ITSM 시스템 고도화를 위한 제 안 요 청 서 2008. 6. 한 국 학 술 진 흥 재 단 이 자료는 한국학술진흥재단 제안서 작성이외의 목적으로 복제, 전달 및 사용을 금함 목 차 Ⅰ. 사업개요 1 1. 사업명 1 2. 추진배경 1 3. 목적 1 4. 사업내용 2 5. 기대효과 2 Ⅱ. 사업추진계획 4 1. 추진체계

More information

untitled

untitled 3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by

More information

NoSQL

NoSQL MongoDB Daum Communications NoSQL Using Java Java VM, GC Low Scalability Using C Write speed Auto Sharding High Scalability Using Erlang Read/Update MapReduce R/U MR Cassandra Good Very Good MongoDB Good

More information

CRM Fair 2004

CRM Fair 2004 easycrm Workbench ( ) 2004.04.02 I. CRM 1. CRM 2. CRM 3. II. easybi(business Intelligence) Framework 1. 2. - easydataflow Workbench - easycampaign Workbench - easypivot Reporter. 1. CRM 1.?! 1.. a. & b.

More information

How to Use the PowerPoint Template

How to Use the PowerPoint Template 내업무에적합한오라클데이터베이스클라우드, 개발부터고성능업무까지 이진호 Master Principal Sales Consultant Database Business Unit August 19, 2016 Safe Harbor Statement The following is intended to outline our general product direction.

More information

_LG히다찌 브로슈어

_LG히다찌 브로슈어 SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION

More information

슬라이드 1

슬라이드 1 * 중소형스마트팩토리를위한대용량데이터저장및활용방안 * aimsystems * 김찬석부사장 Contents 1. 제조현장의대용량데이터 2. 주요핵심기술및기능 3. aimdbbank 기능소개 4. 활용사례 [Heading 1 Arial,24pt,bold] [Heading 2, Arial, 24pt] [Heading 3. Arial, 20pt] Figure 1 [Figure

More information

Oracle Database 10g: Self-Managing Database DB TSC

Oracle Database 10g: Self-Managing Database DB TSC Oracle Database 10g: Self-Managing Database DB TSC Agenda Overview System Resource Application & SQL Storage Space Backup & Recovery ½ Cost ? 6% 12 % 6% 6% 55% : IOUG 2001 DBA Survey ? 6% & 12 % 6% 6%

More information

The Self-Managing Database : Automatic Health Monitoring and Alerting

The Self-Managing Database : Automatic Health Monitoring and Alerting The Self-Managing Database : Automatic Health Monitoring and Alerting Agenda Oracle 10g Enterpirse Manager Oracle 10g 3 rd Party PL/SQL API Summary (Self-Managing Database) ? 6% 6% 12% 55% 6% Source: IOUG

More information

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O Orange for ORACLE V4.0 Installation Guide ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE...1 1....2 1.1...2 1.2...2 1.2.1...2 1.2.2 (Online Upgrade)...11 1.3 ORANGE CONFIGURATION ADMIN...12 1.3.1 Orange Configuration

More information

J2EE & Web Services iSeminar

J2EE & Web Services iSeminar 9iAS :, 2002 8 21 OC4J Oracle J2EE (ECperf) JDeveloper : OLTP : Oracle : SMS (Short Message Service) Collaboration Suite Platform Email Developer Suite Portal Java BI XML Forms Reports Collaboration Suite

More information

Microsoft PowerPoint - SVPSVI for LGNSYS_20120320.ppt

Microsoft PowerPoint - SVPSVI for LGNSYS_20120320.ppt IBM Partner Program March, 2012 Jaemin, Lee SWG Channels, IBM Korea SWG Channels 2012 IBM Corporation Agenda IBM Korea SWG Channels Software Value Plus Software Value Incentive Revalidation 2 IBM Software

More information

Backup Exec

Backup Exec (sjin.kim@veritas.com) www.veritas veritas.co..co.kr ? 24 X 7 X 365 Global Data Access.. 100% Storage Used Terabytes 9 8 7 6 5 4 3 2 1 0 2000 2001 2002 2003 IDC (TB) 93%. 199693,000 TB 2000831,000 TB.

More information

<목 차 > 제 1장 일반사항 4 I.사업의 개요 4 1.사업명 4 2.사업의 목적 4 3.입찰 방식 4 4.입찰 참가 자격 4 5.사업 및 계약 기간 5 6.추진 일정 6 7.사업 범위 및 내용 6 II.사업시행 주요 요건 8 1.사업시행 조건 8 2.계약보증 9 3

<목 차 > 제 1장 일반사항 4 I.사업의 개요 4 1.사업명 4 2.사업의 목적 4 3.입찰 방식 4 4.입찰 참가 자격 4 5.사업 및 계약 기간 5 6.추진 일정 6 7.사업 범위 및 내용 6 II.사업시행 주요 요건 8 1.사업시행 조건 8 2.계약보증 9 3 열차운행정보 승무원 확인시스템 구축 제 안 요 청 서 2014.6. 제 1장 일반사항 4 I.사업의 개요 4 1.사업명 4 2.사업의 목적 4 3.입찰 방식 4 4.입찰 참가 자격 4 5.사업 및 계약 기간 5 6.추진 일정 6 7.사업 범위 및 내용 6 II.사업시행 주요 요건 8 1.사업시행 조건 8 2.계약보증 9 3.시운전 및 하자보증 10

More information

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc

Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여

More information

슬라이드 1

슬라이드 1 2015( 제 8 회 ) 한국소프트웨어아키텍트대회 Database In-Memory 2015. 07. 16 한국오라클 김용한 Agenda 1 2 3 4 5 6 In-Memory Computing 개요주요요소기술 In-Memory의오해와실제적용시고려사항 12c In-Memory Option의소개결론 2 1. In-Memory Computing 개요 전통적인데이터처리방식

More information

dbms_snu.PDF

dbms_snu.PDF DBMS : Past, Present, and the Future hjk@oopsla.snu.ac.kr 1 Table of Contents 2 DBMS? 3 DBMS Architecture naive users naive users programmers application casual users casual users administrator database

More information

ODS-FM1

ODS-FM1 OPTICAL DISC ARCHIVE FILE MANAGER ODS-FM1 INSTALLATION GUIDE [Korean] 1st Edition (Revised 4) 상표 Microsoft, Windows 및 Internet Explorer는 미국 및 / 또는 다른 국가에서 Microsoft Corporation 의 등록 상표입 Intel 및 Intel Core

More information

<BFACB1B85F323031332D333728BCDBC5C2B9CE295FC3D6C1BEC8AEC1A45FC0CEBCE2BFEB28323031343031323029B8F1C2F7BCF6C1A42E687770>

<BFACB1B85F323031332D333728BCDBC5C2B9CE295FC3D6C1BEC8AEC1A45FC0CEBCE2BFEB28323031343031323029B8F1C2F7BCF6C1A42E687770> 연구보고서 2013-37 인터넷 건강정보 게이트웨이 시스템 구축 및 운영 -빅데이터 활용방안을 중심으로- 송태민 진달래 이중순 안지영 박대순 책임연구자 송태민 한국보건사회연구원 연구위원 주요저서 빅데이터 분석 방법론 한나래아카데미, 2013(공저) 보건복지연구를 위한 구조방정식 모형 한나래아카데미, 2012(공저) 공동연구진 진달래 한국보건사회연구원 연구원

More information

공개 SW 기술지원센터

공개 SW 기술지원센터 - 1 - 일자 VERSION 변경내역작성자 2007. 11. 20 0.1 초기작성손명선 - 2 - 1. 문서개요 4 가. 문서의목적 4 나. 본문서의사용방법 4 2. 테스트완료사항 5 가. 성능테스트결과 5 나. Tomcat + 단일노드 MySQL 성능테스트상세결과 5 다. Tomcat + MySQL Cluster 성능테스트상세결과 10 3. 테스트환경 15

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

Microsoft Word - 111130_삼성SDI

Microsoft Word - 111130_삼성SDI 삼성SDI 삼성SDI (64) BUY (Maintain) 주가(11/29) 131,5원 목표주가 19,원 211.11.3 울트라북, 2차전지 시장지형을 바꾼다 지금까지의 통념을 깨고 성능이 뛰어나면서도 싸고 가벼운 노트북이 등장했다. 울트라북이다. 울트라북은 모바일 인터넷 시대에 대응한 노트북의 진화이며, 215년에 전체 노트북의 45%를 차지하며 급성 장할

More information

APOGEE Insight_KR_Base_3P11

APOGEE Insight_KR_Base_3P11 Technical Specification Sheet Document No. 149-332P25 September, 2010 Insight 3.11 Base Workstation 그림 1. Insight Base 메인메뉴 Insight Base Insight Insight Base, Insight Base Insight Base Insight Windows

More information

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D313939392D382E687770> i ii iii iv v vi 1 2 3 4 가상대학 시스템의 국내외 현황 조사 가상대학 플랫폼 개발 이상적인 가상대학시스템의 미래상 제안 5 웹-기반 가상대학 시스템 전통적인 교수 방법 시간/공간 제약을 극복한 학습동기 부여 교수의 일방적인 내용전달 교수와 학생간의 상호작용 동료 학생들 간의 상호작용 가상대학 운영 공지사항,강의록 자료실, 메모 질의응답,

More information

Agenda 01 Oracle Big Data Analytics Solution Business Data Data Streaming(NoSQL) APIs Oracle CAF & Stream Explorer Data Services Data Streams Social/L

Agenda 01 Oracle Big Data Analytics Solution Business Data Data Streaming(NoSQL) APIs Oracle CAF & Stream Explorer Data Services Data Streams Social/L BIG DATA PLATFOM & ANALYTICS SOLUTION BIG DATA ANALYTICS SOLUTION BIG DATA CLOUD SEVICE Agenda 01 Oracle Big Data Analytics Solution Business Data Data Streaming(NoSQL) APIs Oracle CAF & Stream Explorer

More information

SECTION TITLE A PURE PRIMER (AI), // 1

SECTION TITLE A PURE PRIMER (AI), // 1 SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,

More information

목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션 4: 결론 14 섹션 5: 참조 자료 15 섹션 6: 저자 소개 16 2

목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션 4: 결론 14 섹션 5: 참조 자료 15 섹션 6: 저자 소개 16 2 백서 표적 공격 2012년 7월 APT(지능형 지속 위협) 차단을 위한 전면적인 철저한 방어 Russell Miller CA Technologies 보안 관리 사업부 agility made possible 목차 개요 3 섹션 1: 해결 과제 4 APT(지능형 지속 위협): 이전과 다른 위협 섹션 2: 기회 7 심층 방어 섹션 3: 이점 14 위험 감소 섹션

More information

RUCK2015_Gruter_public

RUCK2015_Gruter_public Apache Tajo 와 R 을연동한빅데이터분석 고영경 / 그루터 ykko@gruter.com 목차 : R Tajo Tajo RJDBC Tajo Tajo UDF( ) TajoR Demo Q&A R 과빅데이터분석 ' R 1) R 2) 3) R (bigmemory, snowfall,..) 4) R (NoSQL, MapReduce, Hive / RHIPE, RHive,..)

More information

월간 SW 산업동향 ( ~ ) Ⅰ. Summary 1 Ⅱ SW 5 2. SW 7 Ⅲ Ⅳ. SW SW Ⅴ : Big Data, 38

월간 SW 산업동향 ( ~ ) Ⅰ. Summary 1 Ⅱ SW 5 2. SW 7 Ⅲ Ⅳ. SW SW Ⅴ : Big Data, 38 월간 SW 산업동향 (2011. 7. 1 ~ 2011. 7. 31) Ⅰ. Summary 1 Ⅱ. 4 1. SW 5 2. SW 7 Ⅲ. 10 1. 11 2. 14 Ⅳ. SW 17 1. 18 2. SW 27 3. 33 Ⅴ. 35 1. : 36 2. Big Data, 38 Ⅵ. SW 41 1. IT 2 42 2. 48 Ⅰ. Summary 2015 / 87 2015

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 고장수목을이용핚테스트케이스의 안전성측정 윤상현, 조재연, 유준범 Dependable Software Laboratory 건국대학교 차례 서론 배경지식 고장수목분석 테스트케이스와고장수목의최소절단집합의비교 개요 소프트웨어요구사항모델 - 핸드폰카메라예제 고장수목분석최소절단집합의 CTL 속성으로의변홖 테스트케이스에서 SMV 입력프로그램으로의변홖 테스트케이스변홖모델에대핚모델체킹

More information

Ubiqutious Pubilc Access Reference Model

Ubiqutious Pubilc Access  Reference Model Hadoop/Hbase 기반의 Twitter 공간정보분석 군산대학교컴퓨터정보공학과 {pseudo_jo, didvuddn, kwnam}@kunsan.ac.kr 조현구, 양평우, 남광우 배경및필요성 Twitter 스트림에서의공간정보추출 - 공간현상의추출및공유부분은부족 Twitter 스트림에서의정보추출 - 자연어기반텍스트정보셋에서의키워드추출 - 시간의변화에따른이슈변화모니터링

More information

금융고객 보안 Selling

금융고객 보안 Selling 제조 / 서비스산업의 Big Data 활용전략 장성우상무 Technology Sales Consulting, Oracle Korea Agenda Big Data 활용개요 산업별활용사례 제조업활용사례 서비스업활용사례 기업에서의 Big Data 대응방안 요약및 Q&A Agenda Big Data 활용개요

More information

슬라이드 1

슬라이드 1 Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사

More information

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자

SQL Developer Connect to TimesTen 유니원아이앤씨 DB 기술지원팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 작성자 SQL Developer Connect to TimesTen 유니원아이앤씨 DB 팀 2010 년 07 월 28 일 문서정보 프로젝트명 SQL Developer Connect to TimesTen 서브시스템명 버전 1.0 문서명 작성일 2010-07-28 작성자 김학준 최종수정일 2010-07-28 문서번호 20100728_01_khj 재개정이력 일자내용수정인버전

More information

Tech Trends 클라우드 버스팅의 현주소와 과제 아직 완벽한 클라우드 버스팅을 위해 가야 할 길이 멀지만, 하이브리드 클라우드는 충분한 이점을 가져다 준다. Robert L. Scheier Networkworld 매끄러운 클라우드 버스팅(Cloud Bursting

Tech Trends 클라우드 버스팅의 현주소와 과제 아직 완벽한 클라우드 버스팅을 위해 가야 할 길이 멀지만, 하이브리드 클라우드는 충분한 이점을 가져다 준다. Robert L. Scheier Networkworld 매끄러운 클라우드 버스팅(Cloud Bursting I D G D e e p D i v e Seamless Cloud 궁극의 클라우드 하이브리드 클라우드의 과제와 해법 클라우드를 이용해 자체 IT, 자원을 보완하는 것은 기업이 일상적인 워크로드를 위한 인프라만을 구축하고, 일시적인 과부 하를 필요할 때만 클라우드에 넘겨주는 가장 이상적인 상태 중 하나이다. 여기에 재해 복구나 비즈니스 연속성을 위한 새 로운

More information

Slide 1

Slide 1 레고블럭처럼 쉽게구축하는그래픽가상화인프라 NUTANIX KOREA 이용훈부장 (YHLEE@NUTANIX.COM) WORKSTATION Ethernet Fibre Channel iscsi storage NFS storage Network Fibre Channel storage VIRTUALIZATION hypervisor Ethernet Fibre Channel

More information

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더 02 소프트웨어 산업 동향 1. 전통 소프트웨어 2. 新 소프트웨어 3. 인터넷 서비스 4. 디지털콘텐츠 5. 정보보안 6. 기업 비즈니스 동향 1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원

More information

歯부장

歯부장 00-10-31 1 (1030) 2/26 (end-to-end) Infrastructure,, AMR. e-business e-business Domain e-business B2B Domain / R&D, B2B B2E B2C e-business IT Framework e-business Platform Clearance/Security * e-business

More information

Data Industry White Paper

Data Industry White Paper 2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM

More information

Oracle CX Cloud

Oracle CX Cloud www.oracle.com/kr Applications CX (Customer Experience) 문의 오라클 클라우드 애플리케이션에 대한 자세한 정보는 www.oracle.com/kr/cloud 에서 확인하거나 080-2194-114로 전화하여 한국오라클 담당자에게 문의하십시오. 오라클은 환경 보호에 도움이 되는 서비스와 제품을 개발하기 위해 노력하고 있습니다.

More information

Slide 1

Slide 1 SAS High-Performance Analytics : Big Data Analytics 를위한기술혁신 SAS Korea 김근태 빅데이터가과거에는불가능했던새로운기회를제공합니다. 수일또는수주일이소요되었던분석인사이트를수분또는수초내에 확보할수있습니다. What if you could. Big Data 를경쟁사보다며칠더빠르게가망 고객의구매행위와의사결정기준을예측할수

More information

오라클의 클라우드, 가상화 기술과 그 가치

오라클의 클라우드, 가상화 기술과 그 가치 오라클의클라우드, 가상화기술과그가치 Saint Kim, Director, Enterprise Architect Oracle Korea The following is intended to outline our general product direction. It is intended for information purposes

More information

Dell EMC Korea Partner Summit 2017

Dell EMC Korea Partner Summit 2017 이규현부장 Why All Flash? All Flash 도입효과 : 일관된 Latency BEFORE ALL FLASH ALL HDD 7ms LATENCY SUDDEN IMPACT! 0.5ms 2017 Dell EMC SCG Solutions Partner Kick Off All Flash 성능개선사례 Oracle 데이터베이스 오라클의핵심적인 IO 항목인 db

More information

Simplify IT,,,,. IT Engineered System, H/W S/W Pre-Built. Simplify IT Engineered Systems Big Data Exalogic Elastic Cloud SPARC SuperCluster Exadata Da

Simplify IT,,,,. IT Engineered System, H/W S/W Pre-Built. Simplify IT Engineered Systems Big Data Exalogic Elastic Cloud SPARC SuperCluster Exadata Da Extreme Performance Fastest Deployment Lowest Costs Cloud Ready Engineered Systems Customer Datacenter Cloud Simplify IT,,,,. IT Engineered System, H/W S/W Pre-Built. Simplify IT Engineered Systems Big

More information

고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르

고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르 무엇이든 물어보세요! 4 3 고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르게 고객 지향적인 방향으로 발전해 가고 있다. 제품과 서비스를

More information