1

Size: px
Start display at page:

Download "1"

Transcription

1 Learig Processes What is learig? Stimulus System New Respose Learig paradigm Supervised learig: learig with a teacher Usupervised learig or self-orgaized learig: learig without a teacher Learig algorithm Error-correctio learig Memory-based learig Hebbia learig Competitive learig Stochastic learig () Error-correctio learig Supervised learig eacher x[ ] d [ ] System y [ ] + e [ ] Delta rule or Widrow-Hoff rule: LMS (least mea square) algorithm Let the system parameter be w [ ] ad y [ ] = w [ ] x [ ] he, 2 From LMS algorithm, w[ + ] = w[ ] +ηe[ ] x [ ] * 2 w = argmi E [ ] = argmi e [ ] w w - - BME, KHU

2 Step size parameter η is called as the "learig rate parameter" Batch mode algorithm: LS (least square) algorithm (2) Memory-based learig Supervised learig N { i i } i= Past experieces are explicitly stored i a large memory as ( x, d ) Give a ew iput x test, Defie a local eighborhood of x test Classificatio rule applied to the local eighborhood - Nearest eighbor rule - -earest eighbor classifier (3) Hebbia learig Usupervised learig Hebbia syapse If two euros o either side of a syapse (coectio) are activated simultaeously (or sychroously), the the stregth of that syapse is selectively stregtheed If two euros o either side of a syapse (coectio) are activated asychroously, the that syapse is selectively weaeed or elimiated Properties of Hebbia syapse ime-depedet mechaism Local mechaism Iteractive mechaism Cojuctioal or corelatioal mechaism Mathematical models: w [ ] = F( y [ ], x [ ]) j j Hebb's hypothesis: w [ ] = ηy [ ] x [ ], expoetial growth, may be saturated j j Covariace hypothesis: wj[ ] η ( y[ ] y ) ( xj[ ] xj ) = with time averages y ad x j Modificatio usig a forgettig factor: BME, KHU

3 ( ) w [ ] = ηy [ ] x [ ] αy [ ] w [ ] = αy [ ] cx [ ] w [ ] j j j j j (4) Competitive learig Usupervised learig Competitive learig rule Competitio amog euros with the same structure but with differet weights Stregth (output) of each euro has a certai limit he wier(s) is oe (ie, competitive) or more euros (ie, cooperative) with the biggest stregth ad called wier-taes-all euro Mathematical models: Clusterig ( xj wj ) η [ ] [ ] if wier wj[ ] = 0 otherwise BME, KHU

4 Clusterig ad Classificatio () Clusterig Usupervised learig Labelig could be too cost Uderstad iteral structure of data distributio from clusters Preprocessig for classificatio sice features withi the same cluster are similar Clusterig problem defiitio Give a set of vectors { x } = K, fid a set of C clusterig ceters { } C w such that each x is assiged to a cluster i i= w i so that the average distortio where (, ) i C K D= I x i d x w K i = = (, ) (, ) i d x w is a distace measure ad the idicator fuctio is I (, i) K-meas clusterig algorithm Iitializatio Repeat ( x wi) ( x w j) if d, < d,, j i x = 0 otherwise C Radomize { w i} i=, I (, i) Compute (, ) Evaluate I(, i) i x =0 for K ad i C, D(0) = 0, = d x w for K ad i C ( x wi) ( x w j) if d, < d,, j i x = for K 0 otherwise C Compute D [ ] = I( x, id ) ( x, w ) K = K K i = = i Update w I ( x, i) x with N I(, i) i N i = D [ ] If < ε, stop D [ ] Distace measure i K = x for i C = BME, KHU

5 Norm, ( ) d xy = x y, p Mahalaobis distace, d ( x, y) = ( x y) S ( x y) xy Agle, ( xy, ) d = x xy y 2 2 aimoto coefficiet, ( xy, ) Distortio measure d = xy xx+ yy xy Mea square error, D I(, i) C N = = K C K C 2 2 x x wi x y 2 2 i= = i= Ni xy, C( i) I geeral, D d( xy, ) or D = mi d( xy, xy ) Scatterig criteria = i= i xy, C( i) K m = x x Mea of cluster i, I (, i) otal mea, m i N i = C i = Nim i K i = C i= {, C( i) } K i i i = Scatter matrix of cluster i, S = I( x, i) ( x m )( x m ) Withi cluster scatter matrix, S W C = S Betwee clusters scatter matrix, S = N ( m m)( m m ) i= C i B i i i i= otal scatter matrix, S = S + S = ( x m)( x m ) Note that D = tr( SBS W) Distace betwee clusters, mi { } W B = x C(), i y C( j) K d C(), i C( j) = mi d( xy, ) max { } d C(), i C( j) = max d( xy, ) { } x C(), i y C( j) d C(), i C( j) d( xy, ) avg = NN i j x C() i y C( j) BME, KHU

6 { (), ( )} d C i C j = m m Hierarchical clusterig Merge Iitially, each clusters are merged mea i j Split Iitially, all { } x is a cluster Durig iteratios, earest pair of distict K = x belog to oe cluster Durig iteratios, oe cluster is spitted ito two or more clusters if withi cluster scatterig is large (2) Classificatio K X = Classificatio problem defiitio Assume data samples { } = x are draw from M classes = { ()} M i Give a observatio x, fid a decisio rule g ( x ) C C i = M { } C such that the probability of classificatio Pr g( x) = Ci ()( x Ci () is maximized Nearest eighbor classifier Assume that the already classified set of data or mappig i= { } or ANN is available, ie, we have ( y ) ew sample x, the decisio rule choose g ( ) = C( ) i, C( j) for i N ad j M For a x if y * = arg mi y x is paired with C() -earest eighbor classifier Examie earest classes ad classify x ito the majority of them Statistical decisio rules Maximum posterior probability (MAP) classifier Maximum Lielihood (ML) classifier Neyma-Pearso (NP) detector Bayes detector yi i (3) Features x Feature y Classifier c Raw Data Extractor Feature Class Feature represetatio BME, KHU

7 Symbolic vs umeric Higher dimesioal features Feature selectio Select a subset of available features ca improve classificatio Selectio of subspace or subspace approximatio Hidde euros i MPL are feature detectors Hidde euro pruig is a id of feature selectio Feature trasformatio Affie trasformatio y = x+ b Rotatio Liear filterig Fourier trasform (DF) Discrete cosie trasform Karhue-Loeve expasio (pricipal compoet aalysis) Eigedecompositio Edge or lie detectio Other liear or oliear operatio (4) Data samplig Sample data idepedetly from the uderlyig populatio Use resamplig with radomizatio Use M-fold cross-validatio or leave-oe-out cross-validatio BME, KHU

8 Artificial Neural Networ (ANN) A (artificial) eural etwor is a massively parallel distributed processor made up of simple processig uits, which has a atural propesity for storig experimetal owledge ad maig it available for use It resembles the brai i two respects: Kowledge is acquired by the etwor from its eviromet through a learig process Itereuro coectio stregths, ow as syaptic weights, are used to store the acquired owledge Properties of artificial eural etwors Noliearity Iput-output mappig Adaptivity Evidetial respose Cotextual iformatio Fault tolerace VLSI implemetability Uiformity of aalysis ad desig Neurobiological aalogy () Models of a euro Syaptic Weights b Bias Iput Sigals x x 2 x i x M w i w 2 w M w Summig Juctio v Activatio Fuctio ϕ() Neuro is a iformatio processig uit A set of syapses or coectig lis with a weight or stregth Adder or liear combier Activatio fuctio or squashig fuctio y BME, KHU

9 v M = w x with w0 = b, x 0 = ad y = ϕ( v) j j j= 0 Activatio fuctio hreshold fuctio or Heaviside fuctio McCulloch-Pitts model, all-or-oe if v 0 y = ϕ() v = or 0 if v < 0 the sigum fuctio if v > 0 y = ϕ() v = sg( v) = 0 if v= 0 if v < 0 Piecewise liear fuctio (ca have a gai) if v + 2 if v + y = ϕ() v = v if < v<+ or y = ϕ() v = v if < v<+ 2 2 if v 0 if v 2 Sigmoid fuctio: strictly icreasig fuctio with a graceful balace betwee liear ad oliear behavior, for example logistic fuctio y = ϕ() v = or + exp av ( ) the hyperbolic taget fuctio y = ϕ() v = tah( v) Stochastic model (2) Sigal flow graph, architectural graph, ad Matlab represetatio Sigal flow graph BME, KHU

10 x x 2 x i w i w 2 w x 0 = w 0 = v ϕ() w M b y x M Architectural graph x 0 = x x 2 y x M Matlab represetatio ( R = M) (3) Networ architecture Sigle-layer feedforward etwor BME, KHU

11 Multilayer feedforward etwor - - BME, KHU

12 Recurret etwor or dyamic etwor (4) Kowledge represetatio Kowledge refers to stored iformatio or model used by a perso or machie to iterpret, predict, ad appropriately respod to the outside world Iformatio Prior iformatio Observatios or measuremets provide a pool of iformatio from which the examples are draw to trai the ANN Examples a set of traiig data or traiig samples Labeled supervised learig Ulabelled usupervised learig Four rules of owledge represetatio for ANN Rule Similar iputs from similar class should usually produce similar represetatio iside the etwor, ad should therefore be classified as belogig to the same category Rule 2 Items to be categorized as separate classes should be give widely differet represetatios i the etwor Rule 3 If a particular feature is importat, the there should be a large umber of euros ivolved i the represetatio of that item i the etwor Rule 4 Prior iformatio ad variaces should be built ito the desig of a eural etwor, thereby simplifyig the etwor desig by ot havig to lear them "I geeral, use your commo sese" raiig ad geeralizatio BME, KHU

13 Sigle-Layer Perceptro BACKGROUND MAERIALS Ucostraied optimizatio techiques Steepest descet Newto's method Gauss-Newto method Wieer filter Adaptive filter usig LMS (least mea square) algorithm LS (least square) method () Perceptro b x x 2 x i w w 2 w i w M y x x 2 x i w i w M w w 2 b v ϕ( v) y x M x M Decisio boudary is a hyperplae, M v= wx i i + b= wx + b= 0 Ad i= y x belog to class C w x> 0 0 belog to class 0 = x C2 w x BME, KHU

14 Perceptro covergece algorithm Let x[ ] = [ +, x[ ],, x [ ] ] ad = [ b w w ] Iitializatio = 0 ad w[0] = 0 Activatio Apply x [ ] ad get d [ ] Respose y [ ] = sg ( w [ ] x [ ] ) M w[ ] [ ], [ ],, [ ] Weight adaptatio (LMS) + = + η ( ) w[ ] w[ ] d[ ] y[ ] x [ ] where M, if x belog to class C d [ ] =, if x belog to class C 2 (2) Perceptro as a liear classifier (Matlab) ewp sim iit learp adapt BME, KHU

15 (3) Limitatios of perceptro XOR problem BME, KHU

16 Multilayer Perceptro Multilayer perceptro (MLP) Iput layer Hidde layer Output layer Feed forward Noliear activatio fuctio Bacpropagatio learig algorithm () Structure of MLP (2) Bacpropagatio learig algorithm Epoch: oe complete presetatio of the complete traiig samples At the output layer, at iteratio (ie, th traiig example) e [ ] = d [ ] y [ ] at jth euro j j j E = where C is a set of all euros at the output layer 2 [ ] ej[ ] 2 j C M j = ji i ad yj[ ] = ϕ j( vj[ ] ) i= 0 v [ ] w y[ ] Chai rule E[ ] E[ ] ej[ ] yj[ ] vj[ ] = w [ ] e [ ] y [ ] v [ ] w [ ] ji j j j ji ( ) ϕ ( ) = e [ ] v [ ] y[ ] j j j i E[ ] wji = η = ηej[ ] ϕ j vj[ ] yi[ ] = ηδ j[ ] yi[ ] w [ ] LMS algorithm ( ) δ ji E[ ] E[ ] e [ ] y [ ] ( ) j j j[ ] = = = ej[ ] ϕj vj[ ] vj[ ] ej[ ] yj[ ] vj[ ] At a hidde layer, at iteratio (ie, th traiig example) E[ ] E[ ] yj[ ] E[ ] δ j[ ] = = = ϕ j vj[ ] v [ ] y [ ] v [ ] y [ ] At jth euro, ( ) From E =, 2 [ ] e [ ] 2 C j j j j E[ ] e[ ] e[ ] v[ ] = e[ ] = e[ ] y [ ] y [ ] v [ ] y [ ] j j j with BME, KHU

17 Sice e [ ] d [ ] y [ ] d [ ] ϕ ( v [ ] ) Sice = = for the output layer euro, e [ ] = ϕ ( v[ ] ) v[ ] M v[ ] v[ ] = wjyj[ ], = wj[ ] j= 0 yj[ ] E[ ] = e[ ] v[ ] wj[ ] = δ[ ] wj[ ] y [ ] herefore, ϕ ( ) j Fially, at jth euro of the hidde layer, ( ) LMS algorithm w = ηδ [ ] y[ ] Activatio fuctios Logistic fuctio ji j i ( av j ) δ [ ] = ϕ v [ ] δ [ ] w [ ] j j j j yj[ ] = ϕ j( vj[ ] ) =, a> 0 ad < vj[ ] <, + exp [ ] δ [ ] = e [ ] v [ ] j j j j Hyperbolic taget fuctio ( v [ ] ) ay [ ] ( y [ ] ) ϕ =, ad j j j j ϕ ( ) ( j j ) j ( j ) j ( j ) δ j a d [ ] y [ ] y [ ] y [ ] for output layer = ay [ ] y [ ] [ ] w [ ] for hidde layer ( ) ( ) y [ ] = ϕ v [ ] = atah bv [ ], a, b> 0 ad < v [ ] <, j j j j j b ϕ j ( vj[ ] ) = ( a yj[ ] ) ( a+ yj[ ] ), ad a δ j[ ] = ej[ ] ϕ j ( vj[ ] ) b ( d j[ ] y j[ ]) ( a y j[ ]) ( a + y j[ ]) for output layer a = b ( a y j[ ]) ( a + y j[ ]) δ [ ] w j[ ] for hidde layer a Mometum w [ ] = α w [ ] + ηδ [ ] y[ ] stabilizig effect ji ji j i BME, KHU

18 Modes of traiig N { } i A set of traiig examples, ( [], i d[] i ) x epoch Radomize samples at each epoch Sequetial mode (o-lie, patter, or stochastic mode): update weight sample by sample Batch mode (o-lie, patter, or stochastic mode): update weight at the ed of epoch N N E [ ] av η ej Eav = E [ ] ad wji = η = ej[ ] w N w N = Stoppig criterio Small orm of the gradiet vector Small absolute value of chage i the average squared error per epoch = ji = ji (3) Heuristics Whe the traiig data set is large ad redudat, sequetial mode is usually faster ad better Whe the traiig data set is ot large, there are several batch mode algorithms that are faster Iformatio cotet of a traiig example Use a example that results i the largest traiig error Use a example that is differet from all those previously used Distributio of traiig examples should ot be distorted Avoid ay outlier i the traiig data set Activatio fuctio arget value Iput ormalizatio Iitializatio Use ay prior iformatio Learig rate ad mometum Every adjustable etwor parameter should have its ow idividual learig rate parameter Every learig rate parameter should be allowed to vary from oe iteratio to the ext Whe the derivative of the cost fuctio wrt a syaptic weight has the same algebraic sig for several cosecutive iteratios, the correspodig learig rate BME, KHU

19 parameter should be icreased Whe the algebraic sig of the derivative of the cost fuctio wrt a syaptic weight alterates for several cosecutive iteratios, the correspodig learig rate parameter should be decreased (4) Output represetatio ad decisio rule ANN is already traied Cosider M-class classificatio problem Let x j deote jth sample (prototype) to be classified ad ANN produces output y j = y, j,, ym, j = F ( xj),, FM( xj) = F( x j) Note that the fuctio F depeds o the traiig data set ( [], i d[] i ) N { } i x What is the optimal decisio rule for classifyig the M outputs of ANN? Assigig sigle class from M distict classes: x C if F ( x ) > F( x ) for all l j j l j Assigig multiple class from M distict classes: ( ) x C if F ( x ) > threshold ex, 05 j j = (5) Geeralizatio A etwor is said to geeralize well whe the iput-output mappig is correct for test data ever used i creatig or traiig the etwor Overtraiig or overfittig problem Bias-variace trade-off Factors ifluecig geeralizatio Size of traiig set ad how represetative it is of the eviromet of iterest Architecture of ANN Physical complexity of the problem at had (6) Cross-validatio Bacpropagatio learig algorithm ecodes a iput-output mappig ito the syaptic weights ad thresholds of a MLP For better geeralizatio, partitio the traiig set ito two subsets BME, KHU

20 Estimatio subset, used to trai or select the model Validatio subset, used to test or validate the model Early stoppig rule, stop traiig whe the error usig validatio subset starts icreasig (7) Networ growig ad pruig techiques Networ growig Networ pruig (8) Supervised learig viewed as a optimizatio problem Cojugate gradiet method Quasi-Newto method (9) Matlab experimets ewff iit sim adapt: leardgd, leardgdm trai: traigd, traigdm, traigda, traigdx, trairp, traicgf, traicgb, traiscg, traibfg, traioss, trailm, traibr premmx, postmmx, trammx, prestd, poststd, trastd prepca, prapca postreg BME, KHU

Microsoft Word - multiple

Microsoft Word - multiple Chapter 3. Multiple Liear Regressio Data structure ad the model yi 0 1xi1 pxip i, i1,, (Y X ),,, : idepedet with E( ) 0 ad 1 : ukow 0, 1,, p, 0 1 i var( i ) X (1, x,, xp), rak( X) p1, X : give where xj

More information

김기남_ATDC2016_160620_[키노트].key

김기남_ATDC2016_160620_[키노트].key metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational

More information

경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Analysis 비교정태분석 Chapter 7: Rules of Differentiation and Their Use in Comparat

경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Analysis 비교정태분석 Chapter 7: Rules of Differentiation and Their Use in Comparat 경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Aalysis 비교정태분석 Chapter 7: Rules of Differetiatio ad Their Use i Comparative Statics 미분법칙과비교정태분석 7.. Rules of Differetiatio for a

More information

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월 지능정보연구제 17 권제 4 호 2011 년 12 월 (pp.241~254) Support vector machines(svm),, CRM. SVM,,., SVM,,.,,. SVM, SVM. SVM.. * 2009() (NRF-2009-327- B00212). 지능정보연구제 17 권제 4 호 2011 년 12 월 김경재 안현철 지능정보연구제 17 권제 4 호

More information

(azimuth agle), (elevatio agle), [1],[2].,,,, CRPL(Cetral Radio Propagatio Laboratory) [5] [6] 7 6, [7],,,, (Maximum Likelihood Estimatio), 2-1, 2-2 2

(azimuth agle), (elevatio agle), [1],[2].,,,, CRPL(Cetral Radio Propagatio Laboratory) [5] [6] 7 6, [7],,,, (Maximum Likelihood Estimatio), 2-1, 2-2 2 THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 216 Feb.; 27(2), 188 197. http://dx.doi.org/1.5515/kjkiees.216.27.2.188 ISSN 1226-3133 (Prit) ISSN 2288-226X (Olie) Mathematical

More information

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770> 한국지능시스템학회 논문지 2010, Vol. 20, No. 3, pp. 375-379 유전자 알고리즘을 이용한 강인한 Support vector machine 설계 Design of Robust Support Vector Machine Using Genetic Algorithm 이희성 홍성준 이병윤 김은태 * Heesung Lee, Sungjun Hong,

More information

- 2 -

- 2 - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - - 15 - - 16 - - 17 - - 18 - - 19 - - 20 - - 21 - - 22 - - 23 - - 24 - - 25 - - 26 - - 27 - - 28 - - 29 - - 30 -

More information

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드] 전자회로 Ch3 iode Models and Circuits 김영석 충북대학교전자정보대학 2012.3.1 Email: kimys@cbu.ac.kr k Ch3-1 Ch3 iode Models and Circuits 3.1 Ideal iode 3.2 PN Junction as a iode 3.4 Large Signal and Small-Signal Operation

More information

<30312D303720B9DAC1A4BCF62E666D>

<30312D303720B9DAC1A4BCF62E666D> wz (010), 40«1y J. Kor. Pharm. Sci., Vol. 40, No. 1, 1-7 (010) 생물학적동등성시험을위한통계처리프로그램 (BioEquiv) 의개발 z 1 Áyù Á 3 Á 4 Á 1 1 û w m w, w wx, 3 û w w w, 4 û w w w (009 11 0 Á09 1 11 Á010 1 6 ) Developmet of

More information

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh Page 1 of 6 Learn Korean Ep. 13: Whether (or not) and If Let s go over how to say Whether and If. An example in English would be I don t know whether he ll be there, or I don t know if he ll be there.

More information

Y 1 Y β α β Independence p qp pq q if X and Y are independent then E(XY)=E(X)*E(Y) so Cov(X,Y) = 0 Covariance can be a measure of departure from independence q Conditional Probability if A and B are

More information

6. 추 정 (Estimation)

6. 추 정 (Estimation) 6. 통계적추정 (Estimatio) updated: 017/4/10 6.1 머리말 (Itroductio) 통계적추론 (statistical iferece) 어느모집단으로부터구한표본에서얻어진결과를기초로그모집단에관해추측하는과정 To say somethig about the populatio based o the iformatio of the sample 1)

More information

Problem New Case RETRIEVE Learned Case Retrieved Cases New Case RETAIN Tested/ Repaired Case Case-Base REVISE Solved Case REUSE Aamodt, A. and Plaza, E. (1994). Case-based reasoning; Foundational

More information

public key private key Encryption Algorithm Decryption Algorithm 1

public key private key Encryption Algorithm Decryption Algorithm 1 public key private key Encryption Algorithm Decryption Algorithm 1 One-Way Function ( ) A function which is easy to compute in one direction, but difficult to invert - given x, y = f(x) is easy - given

More information

w xy» w (Keski ad Terzi, 2006; Deswal ad Pal, 2008; Rahimi Khoob, 2009). Sudheer et al.(2002) w Class A d mw, d e» œ Stephes ad Stewart œ. w» l xy w»

w xy» w (Keski ad Terzi, 2006; Deswal ad Pal, 2008; Rahimi Khoob, 2009). Sudheer et al.(2002) w Class A d mw, d e» œ Stephes ad Stewart œ. w» l xy w» ª Œª Œ 30ƒ 4B Á 2010 7œ pp. 399 ~ 412 ª x w w x The Temporal Disaggregatio Model for Noliear Pa Evaporatio Estimatio ½ Á½ xá» Á½x Kim, SugwoÁKim, Jug-HuÁPark, Ki-BumÁKim, Hug Soo Abstract The goal of this

More information

11¹Ú´ö±Ô

11¹Ú´ö±Ô A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -

More information

untitled

untitled Math. Statistics: Statistics? 1 What is Statistics? 1. (collection), (summarization), (analyzing), (presentation) (information) (statistics).., Survey, :, : : QC, 6-sigma, Data Mining(CRM) (Econometrics)

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

- iii - - i - - ii - - iii - 국문요약 종합병원남자간호사가지각하는조직공정성 사회정체성과 조직시민행동과의관계 - iv - - v - - 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - - 12 - - 13 - - 14 - α α α α - 15 - α α α α α α

More information

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a 조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a) b) 조사연구 주제어 패널조사 횡단면가중치 종단면가중치 선형혼합모형 일반화선형혼 합모형

More information

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월 지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., 2004 5 2009 12 KOSPI200.,. * 2009. 지능정보연구제 16 권제 1 호 2010 년 3 월 김선웅 안현철 社 1), 28 1, 2009, 4. 1. 지능정보연구제 16 권제 1 호 2010 년 3 월 Support

More information

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re EMF Health Effect 2003 10 20 21-29 2-10 - - ( ) area spot measurement - - 1 (Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern

More information

#Ȳ¿ë¼®

#Ȳ¿ë¼® http://www.kbc.go.kr/ A B yk u δ = 2u k 1 = yk u = 0. 659 2nu k = 1 k k 1 n yk k Abstract Web Repertoire and Concentration Rate : Analysing Web Traffic Data Yong - Suk Hwang (Research

More information

Output file

Output file 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 An Application for Calculation and Visualization of Narrative Relevance of Films Using Keyword Tags Choi Jin-Won (KAIST) Film making

More information

2-32

2-32 Itroductio The field effect trasistor(fet) is a uiolar device because, ulike biolar trasistor that use both electro ad hole curret, they oerate oly with oe tye of charge carrier. (BJT) (FET). The two mai

More information

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770> ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ 儀 禮 의 社 會 的 機 能 과 變 化 李 顯 松 裵 花 玉 ꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏꠏ ꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚꠚ

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 4, August, 30, 2016:319~332 Received: 2016/07/28, Accepted: 2016/08/28 Revised: 2016/08/27, Published: 2016/08/30 [ABSTRACT] This paper examined what determina

More information

09김정식.PDF

09김정식.PDF 00-09 2000. 12 ,,,,.,.,.,,,,,,.,,..... . 1 1 7 2 9 1. 9 2. 13 3. 14 3 16 1. 16 2. 21 3. 39 4 43 1. 43 2. 52 3. 56 4. 66 5. 74 5 78 1. 78 2. 80 3. 86 6 88 90 Ex e cu t iv e Su m m a r y 92 < 3-1> 22 < 3-2>

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 27(2), 2007, 96-121 S ij k i POP j a i SEXR j i AGER j i BEDDAT j ij i j S ij S ij POP j SEXR j AGER j BEDDAT j k i a i i i L ij = S ij - S ij ---------- S ij S ij = k i POP j a i SEXR j i AGER j i BEDDAT

More information

#KM560

#KM560 KM-560 KM-560-7 PARTS BOOK KM-560 KM-560-7 INFORMATION A. Parts Book Structure of Part Book Unique code by mechanism Unique name by mechanism Explode view Ref. No. : Unique identifcation number by part

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

¼º¿øÁø Ãâ·Â-1

¼º¿øÁø Ãâ·Â-1 Bandwidth Efficiency Analysis for Cooperative Transmission Methods of Downlink Signals using Distributed Antennas In this paper, the performance of cooperative transmission methods for downlink transmission

More information

0125_ 워크샵 발표자료_완성.key

0125_ 워크샵 발표자료_완성.key WordPress is a free and open-source content management system (CMS) based on PHP and MySQL. WordPress is installed on a web server, which either is part of an Internet hosting service or is a network host

More information

서론 34 2

서론 34 2 34 2 Journal of the Korean Society of Health Information and Health Statistics Volume 34, Number 2, 2009, pp. 165 176 165 진은희 A Study on Health related Action Rates of Dietary Guidelines and Pattern of

More information

본문01

본문01 Ⅱ 논술 지도의 방법과 실제 2. 읽기에서 논술까지 의 개발 배경 읽기에서 논술까지 자료집 개발의 본래 목적은 초 중 고교 학교 평가에서 서술형 평가 비중이 2005 학년도 30%, 2006학년도 40%, 2007학년도 50%로 확대 되고, 2008학년도부터 대학 입시에서 논술 비중이 커지면서 논술 교육은 학교가 책임진다. 는 풍토 조성으로 공교육의 신뢰성과

More information

#중등독해1-1단원(8~35)학

#중등독해1-1단원(8~35)학 Life Unit 1 Unit 2 Unit 3 Unit 4 Food Pets Camping Travel Unit 1 Food Before You Read Pre-reading Questions 1. Do you know what you should or shouldn t do at a traditional Chinese dinner? 2. Do you think

More information

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 Hierarchical Bayesian Model 을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축 Optimal Multi-Model Ensemble Model Development Using Hierarchical Bayesian Model Based 권 현 한 * 민 영 미 **Saji N. Hameed *** Hyun-Han

More information

wess_usage.PDF

wess_usage.PDF 인터넷을 이용한 통계 분석. 통계학이란? 자료로부터 정보를 얻는 일련의 과정에 Data Collectio, Summaizatio, Aalysis, Repesetatio 관련된 학문이다. Statistics is about data. 통계에 대한 비난: Lie, Dam Lie, ad Statistics, Statistics ca pove aythig 통계가 거짓말을

More information

<32B1B3BDC32E687770>

<32B1B3BDC32E687770> 008년도 상반기 제회 한 국 어 능 력 시 험 The th Test of Proficiency in Korean 일반 한국어(S-TOPIK 중급(Intermediate A 교시 이해 ( 듣기, 읽기 수험번호(Registration No. 이 름 (Name 한국어(Korean 영 어(English 유 의 사 항 Information. 시험 시작 지시가 있을

More information

#KM-250(PB)

#KM-250(PB) PARTS BOOK FOR 1-NEEDLE, STRAIGHT LOCK-STITCH MACHINE SERIES KM-250AU-7S KM-250AU-7N KM-250A-7S KM-250A-7N KM-250B-7S KM-250B-7N KM-250BH-7S KM-250BH-7N KM-250BL-7S KM-250BL-7N KM-250AU KM-250A KM-250B

More information

PJTROHMPCJPS.hwp

PJTROHMPCJPS.hwp 제 출 문 농림수산식품부장관 귀하 본 보고서를 트위스트 휠 방식 폐비닐 수거기 개발 과제의 최종보고서로 제출 합니다. 2008년 4월 24일 주관연구기관명: 경 북 대 학 교 총괄연구책임자: 김 태 욱 연 구 원: 조 창 래 연 구 원: 배 석 경 연 구 원: 김 승 현 연 구 원: 신 동 호 연 구 원: 유 기 형 위탁연구기관명: 삼 생 공 업 위탁연구책임자:

More information

200220427.hwp

200220427.hwp 碩 士 學 位 論 文 주거환경개선을 위한 주민 요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 指 導 敎 授 申 南 秀 2004 年 2 月 주거환경개선을 위한 주민요구의 도 결정방법에 관한 연구 全 南 大 學 校 大 學 院 建 築 工 學 科 최 우 람 上 記 者 의 工 學 碩 士 學 位 論 文 을 認 准 함 所 屬 職

More information

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016)   ISSN 228 (JBE Vol. 1, No. 1, January 016) (Regular Paper) 1 1, 016 1 (JBE Vol. 1, No. 1, January 016) http://dx.doi.org/10.5909/jbe.016.1.1.60 ISSN 87-9137 (Online) ISSN 16-7953 (Print) a), a) An Efficient Method

More information

04-다시_고속철도61~80p

04-다시_고속철도61~80p Approach for Value Improvement to Increase High-speed Railway Speed An effective way to develop a highly competitive system is to create a new market place that can create new values. Creating tools and

More information

- i - - ii - - iii - - iv - - v - - vi - - 1 - - 2 - - 3 - 1) 통계청고시제 2010-150 호 (2010.7.6 개정, 2011.1.1 시행 ) - 4 - 요양급여의적용기준및방법에관한세부사항에따른골밀도검사기준 (2007 년 11 월 1 일시행 ) - 5 - - 6 - - 7 - - 8 - - 9 - - 10 -

More information

강의록

강의록 Analytic CRM 2006. 5. 11 tsshin@yonsei.ac.kr Analytic CRM Analytic CRM Data Mining Analytical CRM in CRM Ecosystem Operational CRM Business Operations Mgmt. Analytical CRM Business Performance Mgmt. Back

More information

<5BC6EDC1FD5D4B485520B1DBB7CEB9FA20B1E2BEF7B9FDB9AB20B8AEBAE42037B1C72031C8A32E687770>

<5BC6EDC1FD5D4B485520B1DBB7CEB9FA20B1E2BEF7B9FDB9AB20B8AEBAE42037B1C72031C8A32E687770> 실무수습후기 법무법인 세종 동계 1차 인턴 후기 1)배 연 관 * Ⅰ. 들어가면서 Ⅱ. 인턴을 지원하면서 Ⅲ. 지도변호사님들 및 인턴들과의 만남 Ⅳ. 법무법인 세종에서의 업무 소개 Ⅴ. 개별과제와 집단 과제 Ⅵ. 단체 과제 Ⅶ. 윤재윤 대표변호사님과의 만남 Ⅷ. 법무법인 세종에 지원하시고 싶은 분들께 드리고 싶은 말씀 Ⅸ. 맺음말 Ⅰ. 들어가면서 안녕하십니까?

More information

Orcad Capture 9.x

Orcad Capture 9.x OrCAD Capture Workbook (Ver 10.xx) 0 Capture 1 2 3 Capture for window 4.opj ( OrCAD Project file) Design file Programe link file..dsn (OrCAD Design file) Design file..olb (OrCAD Library file) file..upd

More information

44-4대지.07이영희532~

44-4대지.07이영희532~ A Spatial Location Analysis of the First Shops of Foodservice Franchise in Seoul Metropolitan City Younghee Lee* 1 1 (R) 0 16 1 15 64 1 Abstract The foodservice franchise is preferred by the founders who

More information

03.Agile.key

03.Agile.key CSE4006 Software Engineering Agile Development Scott Uk-Jin Lee Division of Computer Science, College of Computing Hanyang University ERICA Campus 1 st Semester 2018 Background of Agile SW Development

More information

BSC Discussion 1

BSC Discussion 1 Copyright 2006 by Human Consulting Group INC. All Rights Reserved. No Part of This Publication May Be Reproduced, Stored in a Retrieval System, or Transmitted in Any Form or by Any Means Electronic, Mechanical,

More information

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI:   * A Study on the Pe Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp.405-425 DOI: http://dx.doi.org/10.21024/pnuedi.28.1.201803.405 * A Study on the Perceptions and Factors of Immigrant Background Youth

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA The e-business Studies Volume 17, Number 6, December, 30, 2016:275~289 Received: 2016/12/02, Accepted: 2016/12/22 Revised: 2016/12/20, Published: 2016/12/30 [ABSTRACT] SNS is used in various fields. Although

More information

Á¶´öÈñ_0304_final.hwp

Á¶´öÈñ_0304_final.hwp 제조 중소기업의 고용창출 성과 및 과제 조덕희 양현봉 우리 경제에서 일자리 창출은 가장 중요한 정책과제입니다. 근래 들어 우리 사회에서 점차 심각성을 더해 가고 있는 청년 실업 문제에 대처하고, 사회적 소득 양극화 문제에 대응하기 위해서도 일자리 창 출은 무엇보다도 중요한 정책과제일 것입니다. 고용창출에서는 중소기업의 역할이 대기업보다 크다는 것이 일반적

More information

Microsoft PowerPoint - 7-The Hydrogen Atom-part 3.ppt [호환 모드]

Microsoft PowerPoint - 7-The Hydrogen Atom-part 3.ppt [호환 모드] CHAPTER 7 The Hydroge Ato 7.1 Applicatio of the Schrödiger Equatio to the Hydroge Ato 7.2 Solutio of the Schrödiger Equatio for Hydroge 7.3 Quatu Nubers 7.4 Magetic Effects o Atoic Spectra Noral Zeea Effect

More information

304.fm

304.fm Journal of the Korean Housing Association Vol. 20, No. 3, 2009 yw s w - û - A Study on the Planning of Improved-Hanok - Focused on Jeon-Nam Province - y* ** z*** **** Kang, Man-Ho Lee, Woo-Won Jeong, Hun

More information

#KLZ-371(PB)

#KLZ-371(PB) PARTS BOOK KLZ-371 INFORMATION A. Parts Book Structure of Part Book Unique code by mechanism Unique name by mechanism Explode view Ref. No. : Unique identifcation number by part Parts No. : Unique Product

More information

untitled

untitled Logic and Computer Design Fundamentals Chapter 4 Combinational Functions and Circuits Functions of a single variable Can be used on inputs to functional blocks to implement other than block s intended

More information

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a low-resolution Time-Of- Flight (TOF) depth camera and

More information

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연 산업안전보건분야 연구수요조사분석 2003. 5 한국산업안전공단 산업안전보건연구원 제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연구책임자 :

More information

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770> 설화에 나타난 사회구조와 그 의미 23) 박유미 * 차례 Ⅰ. 문제제기 Ⅱ. 서사 내부의 사회구조 Ⅲ. 사회문제의 해결방식과 그 의미 Ⅳ. 설화와 후대전승과의 상관관계 Ⅴ. 결론 국문초록 삼국유사 의 조에는 왕거인 이야기와 거타지 이야기가 하나의 설화에 묶여 전하고 있는데, 두 이야기는 해결구조에서 차이를

More information

#KM-340BL

#KM-340BL PARTS BOOK KM-340BL 고속 1본침 본봉 상하송 재봉기 High Speed, 1-Needle, Upper and Lower Feed Lock Stitch Machine W/Large Hook PME-100707 SunStar CO., LTD. INFORMATION A. Parts Book Structure of Part Book Unique code

More information

PowerPoint 프레젠테이션

PowerPoint 프레젠테이션 Reasons for Poor Performance Programs 60% Design 20% System 2.5% Database 17.5% Source: ORACLE Performance Tuning 1 SMS TOOL DBA Monitoring TOOL Administration TOOL Performance Insight Backup SQL TUNING

More information

#KM-235(110222)

#KM-235(110222) PARTS BOOK KM-235A/B INFORMATION A. Parts Book Structure of Part Book Unique code by mechanism Unique name by mechanism Explode view Ref. No. : Unique identifcation number by part Parts No. : Unique Product

More information

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M 2017.11 Vol.257 C O N T E N T S 02 06 38 52 69 82 141 146 154 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.11 3 4 2017.11 6 2017.11 1) 7 2) 22.7 19.7 87 193.2 160.6 83 22.2 18.4 83 189.6 156.2

More information

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구 Siamese Neural Network 박천음 강원대학교 Intelligent Software Lab. Intelligent Software Lab. Intro. S2Net Siamese Neural Network(S2Net) 입력 text 들을 concept vector 로표현하기위함에기반 즉, similarity 를위해가중치가부여된 vector 로표현

More information

<31325FB1E8B0E6BCBA2E687770>

<31325FB1E8B0E6BCBA2E687770> 88 / 한국전산유체공학회지 제15권, 제1호, pp.88-94, 2010. 3 관내 유동 해석을 위한 웹기반 자바 프로그램 개발 김 경 성, 1 박 종 천 *2 DEVELOPMENT OF WEB-BASED JAVA PROGRAM FOR NUMERICAL ANALYSIS OF PIPE FLOW K.S. Kim 1 and J.C. Park *2 In general,

More information

,.,..,....,, Abstract The importance of integrated design which tries to i

,.,..,....,, Abstract The importance of integrated design which tries to i - - The Brand Touchpoint Analysis through Corporate Identity Typeface of Mobile Telecommunication Companies - Focusing on and - : Lee, Ka Young Dept. Lifestyle Design, Dankook University : Kim, Ji In Dept.

More information

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower.

2 min 응용 말하기 01 I set my alarm for 7. 02 It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower. 스피킹 매트릭스 특별 체험판 정답 및 스크립트 30초 영어 말하기 INPUT DAY 01 p.10~12 3 min 집중 훈련 01 I * wake up * at 7. 02 I * eat * an apple. 03 I * go * to school. 04 I * put on * my shoes. 05 I * wash * my hands. 06 I * leave

More information

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1 : LabVIEW Control Design, Simulation, & System Identification LabVIEW Control Design Toolkit, Simulation Module, System Identification Toolkit 2 (RLC Spring-Mass-Damper) Control Design toolkit LabVIEW

More information

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타 RESEARCH ARTICLE Kor. J. Aesthet. Cosmetol., 20-40대 여성의 외모만족도가 미용관리태도에 미치는 영향 홍수남 1, 김효숙 2 * 1 건국대학교 뷰티사이언스디자인학과, 2 건국대학교 의상디자인과 Effects of Extrinsic Body Satisfaction on Beauty Management Behavior of

More information

methods.hwp

methods.hwp 1. 교과목 개요 심리학 연구에 기저하는 기본 원리들을 이해하고, 다양한 심리학 연구설계(실험 및 비실험 설계)를 학습하여, 독립된 연구자로서의 기본적인 연구 설계 및 통계 분석능력을 함양한다. 2. 강의 목표 심리학 연구자로서 갖추어야 할 기본적인 지식들을 익힘을 목적으로 한다. 3. 강의 방법 강의, 토론, 조별 발표 4. 평가방법 중간고사 35%, 기말고사

More information

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M 2017.12 Vol.258 C O N T E N T S 02 06 35 57 89 94 100 103 105 M O N T H L Y P U B L I C F I N A N C E F O R U M 2 2017.12 3 4 2017.12 * 6 2017.12 7 1,989,020 2,110,953 2,087,458 2,210,542 2,370,003 10,767,976

More information

분산시스템_강의교재 - 7

분산시스템_강의교재 - 7 07. 분산프로그래밍 - Sprig Framework 명지대학교 ICT 융합대학김정호 1 분산시스템을개발할수있다. 분산시스템을이해할수있다. 분산시스템을분석 / 설계할수있다. 분산시스템을구현할수있다. 네트워크이론을이해할수있다. Compoet Diagram 을작성할수있다. 수강시스템을이해하고신규기능을추가구현할수있다. RMI 프로그램을구현할수있다. Deploymet

More information

한국 출산력의 저하 요인에 관한 연구

한국 출산력의 저하 요인에 관한 연구 가족계획실천율 가족계획실천자 세 유배우부인 조출생률 년간 총출생아수 연앙인구수 일반출산율 년간 총출생아수 가임연령 여자연앙인구수 합계출산율 세 연령층 여성이 출산한 출생아수 세 연령층 여성의 연앙인구수 즉 합계출산율 합 6 계 출 산 율 5 4 3 2 1 1960 1973 1977 1981 1985 1989 1993 1997 2001

More information

한국성인에서초기황반변성질환과 연관된위험요인연구

한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 한국성인에서초기황반변성질환과 연관된위험요인연구 - - i - - i - - ii - - iii - - iv - χ - v - - vi - - 1 - - 2 - - 3 - - 4 - 그림 1. 연구대상자선정도표 - 5 - - 6 - - 7 - - 8 - 그림 2. 연구의틀 χ - 9 - - 10 - - 11 -

More information

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * , 40 12 (2006 6) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). * 40, 40 12 (EPQ; economic production quantity). (setup cost) (setup time) Bradley

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI:   (LiD) - - * Way to Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp.353-376 DOI: http://dx.doi.org/10.21024/pnuedi.29.1.201903.353 (LiD) -- * Way to Integrate Curriculum-Lesson-Evaluation using Learning-in-Depth

More information

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770>

<313630313032C6AFC1FD28B1C7C7F5C1DF292E687770> 양성자가속기연구센터 양성자가속기 개발 및 운영현황 DOI: 10.3938/PhiT.25.001 권혁중 김한성 Development and Operational Status of the Proton Linear Accelerator at the KOMAC Hyeok-Jung KWON and Han-Sung KIM A 100-MeV proton linear accelerator

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test χ, LR Ch-square( G ) x, Odds Rato θ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (γ ), Kendall τ (bnary)

More information

Microsoft PowerPoint - 27.pptx

Microsoft PowerPoint - 27.pptx 이산수학 () n-항관계 (n-ary Relations) 2011년봄학기 강원대학교컴퓨터과학전공문양세 n-ary Relations (n-항관계 ) An n-ary relation R on sets A 1,,A n, written R:A 1,,A n, is a subset R A 1 A n. (A 1,,A n 에대한 n- 항관계 R 은 A 1 A n 의부분집합이다.)

More information

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770>

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F32303134303531362E687770> 미디어 경제와 문화 2014년 제12권 2호, 7 43 www.jomec.com TV광고 시청률 예측방법 비교연구 프로그램의 장르 구분에 따른 차이를 중심으로 1)2) 이인성* 단국대학교 커뮤니케이션학과 박사과정 박현수** 단국대학교 커뮤니케이션학부 교수 본 연구는 TV프로그램의 장르에 따라 광고시청률 예측모형들의 정확도를 비교하고 자 하였다. 본 연구에서

More information

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료 MUNHWAJAE Korean Journal of Cultural Heritage Studies Vol. 47. No. 1, March 2014, pp.134~151. Copyright 2014, National Research Institute of Cultural Heritage 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 정지연 a 明 珍 素 也

More information

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특 한국도시행정학회 도시행정학보 제25집 제4호 2012. 12 : pp.231~251 생활지향형 요소의 근린주거공간 분포특성 연구: 경기도 시 군을 중심으로* Spatial Distribution of Daily Life-Oriented Features in the Neighborhood: Focused on Municipalities of Gyeonggi Province

More information

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466> 001 002 003 004 005 006 008 009 010 011 2010 013 I II III 014 IV V 2010 015 016 017 018 I. 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 III. 041 042 III. 043

More information

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI:   3 * Effects of 9th Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp.357-378 DOI: http://dx.doi.org/10.21024/pnuedi.29.2.201906.357 3 * Effects of 9th Grade Students Participation in Career Curriculum Cluster

More information

½Éº´È¿ Ãâ·Â

½Éº´È¿ Ãâ·Â Standard and Technology of Full-Dimension MINO Systems in LTE-Advances Pro Massive MIMO has been studied in academia foreseeing the capacity crunch in the coming years. Presently, industry has also started

More information

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범... ... 수시연구 2013-01.. 2010 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 2010... 권혁구ㆍ서상범... 서문 원장 김경철 목차 표목차 그림목차 xi 요약 xii xiii xiv xv xvi 1 제 1 장 서론 2 3 4 제 2 장 국가물류비산정방법 5 6 7 8 9 10 11 12 13

More information

I

I I II III (C B ) (C L ) (HL) Min c ij x ij f i y i i H j H i H s.t. y i 1, k K, i W k C B C L p (HL) x ij y i, i H, k K i, j W k x ij y i {0,1}, i, j H. K W k k H K i i f i i d ij i j r ij i j c ij r ij

More information

09권오설_ok.hwp

09권오설_ok.hwp (JBE Vol. 19, No. 5, September 2014) (Regular Paper) 19 5, 2014 9 (JBE Vol. 19, No. 5, September 2014) http://dx.doi.org/10.5909/jbe.2014.19.5.656 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a) Reduction

More information

디지털영상처리18_스테레오스코프

디지털영상처리18_스테레오스코프 Stereoscopic Imagig ( 양안식 3D) 4Stereoscopic Imagig 의원리 4Stereoscopic Imagig 기법들 4Stereoscopic 3D 거리 (Depth) 의인식 o Stereopsis ( 양안시 / 입체시 ) o Accommodatio of the eye ( 원근조절 ) o Occlusio of oe object by

More information

한글사용설명서

한글사용설명서 ph 2-Point (Probe) ph (Probe) ON/OFF ON ph ph ( BUFFER ) CAL CLEAR 1PT ph SELECT BUFFER ENTER, (Probe) CAL 1PT2PT (identify) SELECT BUFFER ENTER, (Probe), (Probe), ph (7pH)30 2 1 2 ph ph, ph 3, (,, ) ON

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., - THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jun.; 29(6), 457463. http://dx.doi.org/10.5515/kjkiees.2018.29.6.457 ISSN 1226-3133 (Print)ISSN 2288-226X (Online) Sigma-Delta

More information

01김경회-1차수정.hwp

01김경회-1차수정.hwp 한국민족문화 57, 2015. 11, 3~32 http://dx.doi.org/10.15299/jk.2015.11.57.3 장복선전 에 나타난 이옥의 문제의식 고찰 - 심노숭의 사가야화기, 정약용의 방친유사 와의 비교를 중심으로 1)김 경 회 * 1. 들어가며 2. 장복선의 행적 비교 1) 입전 동기 2) 장복선의 처지 3) 장복선의 구휼 및 연대 3. 장복선의

More information

슬라이드 1

슬라이드 1 CJ 2007 CONTENTS 2006 CJ IR Presentation Overview 4 Non-performing Asset Company Profile Vision & Mission 4 4 - & 4-4 - & 4 - - - - ROE / EPS - - DreamWorks Animation Net Asset Value (NAV) Disclaimer IR

More information

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7), THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. 2018 Jul.; 29(7), 550 559. http://dx.doi.org/10.5515/kjkiees.2018.29.7.550 ISSN 1226-3133 (Print) ISSN 2288-226X (Online) Human

More information

전용]

전용] A Study of select the apropos processing mechanical method by the presume of transformation of teeth s surface degree ABSTRACT This study has been tried to select the apropos processing method by the

More information

歯전용]

歯전용] 2001. 9. 6 1. 1. (1) (1) 1 (2) (2) 2 3 INVESTER PROFESIONAL ORGANIZATION GOVERNMENT CODE COMMITTEE SPECIFICATION CODE LAW LICENSE PERMIT PLANT 4 5 6 7 2. (1) 2. (1) 8 9 (2) (2) 10 (3) ( ). () 20kg/ (P70,

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 901 무선 센서 네트워크 환경에서 링크 품질에 기반한 라우팅에 대한 효과적인 싱크홀 공격 탐지 기법 (A Effective Sinkhole Attack Detection Mechanism for LQI based Routing in WSN) 최병구 조응준 (Byung

More information

<B3EDB9AEC1FD5F3235C1FD2E687770>

<B3EDB9AEC1FD5F3235C1FD2E687770> 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 경상북도 자연태음악의 소박집합, 장단유형, 전단후장 - 전통 동요 및 부녀요를 중심으로 - 이 보 형 1) * 한국의 자연태 음악 특성 가운데 보편적인 특성은 대충 밝혀졌지만 소박집합에 의한 장단주기 박자유형, 장단유형, 같은 층위 전후 구성성분의 시가( 時 價 )형태 등 은 밝혀지지 않았으므로

More information