ๆญฏ PDF

Size: px
Start display at page:

Download "ๆญฏ97419522.PDF"

Transcription

1 Natural Language Text Retreval Based on Neural Networks

2 1 SVM(Support Vector Machne) SVM SV(Support Vector) SV SVM SRM(Structural Rsk Mnmzaton) SVM Convex Programmng Reuters SVM 97% (break-even pont) SVM Naïve Bayesan SV : Support Vector Machne Structural Rsk Mnmzaton Convex Programmng

3 RBF(Radal Bass Functon) SUPPORT VECTOR MACHINES (SVMS) Structural Rsk Mnmzaton (SRM)17 42 SVM (lnearly separable) SVM SVM 27

4 SVM Naïve Bayesan

5 Reuters SV 38 v

6 RBF σ 1 RBF β 0 =2 β 1 = Nave Bayesan SV RBF SV 41 v

7 (WWW) [Yang 97] SVM(Support Vector Machne) SVM SV(Support Vector) 1

8 1 12 Naïve Bayesan Doc v NB Naïve Bayesan v NB = argmax P( v ) v j V j postons P( a v ) j v j a Doc [Mtchell 97] Qunlan C45 [Qunlan 93] k-nn(nearest Neghbor) k 2

9 SVM 3 4 SVM 5 6 3

10 doc 0 {doc category-value } (supervsed learnng) 4

11 2 (stemmng) (stop lst) (stem) engneerng engneered engneer engneer Porter Porter / the of and to 10 20~30% [Frakes et al 92] : TF(Term Frequency) doc w j TF 5

12 2 TF( w doc ) = count of w occurngn document doc TF IDF(Inverse Document Frequency) [Frakes et al 92] IDF n IDF( w ) = log DF( w ) n DF(Document Frequency) DF ( w ) = number of document wherew s occurrng tfdf TF IDF TF IDF DF IDF 0 tfdf 6

13 (sparse vector) 0 7

14 Rosenblatt(1958) (neuron) (synaptc weghts vector) (bas) 3-1 v m v = w x =1 + b w w m x x b 8

15 3 1 y = ฯ•( v) = 1 v 0 v < m = 1 1 (hyperplane) w x + b = 0 w = w w ) ( 1 n w

16 (nput layer) (output layer) (hdden layer) (network) (nonlnear actvaton functon) 10

17 3 Logstc functon: 1 ฯ•( v) = 1+ exp( av) Hyperbolc tangent functon: ฯ•( v ) = a tanh( bv) 2 (backpropagaton algorthm) RBF(Radal Bass Functon) RBF RBF

18 3 3-3 RBF ฯ•(x) radal-bass functon ฯ•(x) ฯ•( x) = exp x 2σ 2 t 2 x t radal bass functon σ radal-bass functon Radal-bass (t ) 12

19 3 m1 F( x) = w ฯ• ( x) = 1 + b 32 Support Vector Machnes (SVMs) RBF (global mnmum) (local mnmum) 4 RBF radal-bass (tral-error) SVM 1 SV (support vector) [haykn 98] SVM SV SV 2 13

20 3 PCA (Prncpal Component Analyss) SOM (Self Organzed Map) VQ (Vector Quantzer) SVM SVM 3 SVM 4 (SRM:Structural Rsk Mnmzaton) SRM SVM SVM 14

21 4 SVM 4 SVM ( 1 x1 d ) ( xl dl ) x R d { 1 1} N F( x w) { F( x w) : w W} F( x w) : R { 11} N 15

22 4 SVM F(xw * ) R( w ) = d F( x w ) dfx D ( x d) w (free parameter) F D ( x ) x d x d (jont probablty) R(w) (rsk functonal) (expected rsk) F D ( x ) x d R(w) l R(w) (emprcal rsk) R emp l 1 ( w) = d F( x w) l = 1 R emp (w) R emp (w) R(w) R emp (w) R emp (w) w R(w) w* consstent P ( sup R( w) ( w) > ε ) 0 R emp l Vapnk Chervonenks VC (Vapnk-Chervonenks dmenson) VC F(xw) F(xw) Vapnk Chervonenks 2l η h ln + 1 ln 4 (41) ( ) ( ) h R w R w + emp w W l 16

23 4 SVM h VC h (41) R(w) R emp (w) l VC R emp (w) VC VC VC R emp (w) 2l η h ln + 1 ln h 4 l VC 412 Structural Rsk Mnmzaton (SRM) VC Vapnk Structural Rsk Mnmzaton (SRM) (true error) (emprcal rsk) 4-1 VC VC VC 17

24 4 SVM 4-1 SRM Fk ( x w); w W k k = 12 n 18

25 4 SVM F F 1 2 F n VC h h 1 2 h n (41) SRM Fn VC VC VC SRM SVM VC VC 42 SVM 421 (lnearly separable) 19

26 4 SVM SVM {-1+1} S = { x : ( x d ) d = + 1} + S - = { x : ( x d ) d = 1} 2 (hyperplane) (42) w T x + b = 0 x w b SVM T w x + b 0 T w x + b 0 x x S S + w b w b (43) T w x + b 1 T w x + b 1 x x S + S r n n H = { x R : a x = α} 20

27 4 SVM r = T w x + b 1 w w (44) ρ = 2 r = 2 w ρ (margn of separaton) 1 (support vector) r = w SVM ρ w w 4-2 ρ 21

28 4 SVM SVM 41 SRM VC VC SRM SVM w w SRM 22

29 4 SVM Vapnk x 1 x 2 x l 3 (ball) R T 2 k A k F ( w x) = { w x + b : w } F k VC h k m 0 h k 2 2 k mn{ R A m0} + 1 VC h k w VC 0 SRM VC SVM ( 1 x1 d )( xl dl ) x R d { 1 N 1} (45) Mnmze w b subject to d ( w Φ( w) = T x + b) 1 = 12 l 1 T w w 2 3 n x r o B( x r) = { x R : x x n o < r} 23

30 4 SVM

31 4 SVM { } l ξ slack = 1 T (46) d ( w x + b) 1 ξ = 12 l ξ Φ( ) = ξ l = (nonlnear surface) SVM (feature space)

32 4 SVM 4-4 m 0 m 1 m 1 ฯ• ฯ• ( x) = { ฯ•1( x) ฯ• m ( x)} 1 T w ฯ•( x) + b = 0 SVM 26

33 4 SVM (47) Mnmze w b subject to d ( w Φ( w T 1 ) = w 2 ξ 0 T x + b) 1 ξ w + C l = 1 ξ = 12 l = 12 l C C (47) w C 425 SVM (47) Convex Programmng [Peressn et al 88] f ( λx1 + [1 λ] x2) λf ( x1) + [1 λ] f ( x2) f(x) Convex Convex Programmng Convex (target functon) Convex (47) Lagrangan Dualty Dual Problem [Nash et al 97] (47) Lagrangan prmal functon l 1 T T (48) L w b ξ λ γ ) = w w λ{ d ( w ฯ•( x ) + b) 1+ ξ} ( γ ξ + C ξ 2 = 1 = 1 = 1 λ 0 γ 0 Lagrange Multpler l l 27

34 4 SVM 28 mn-max dualty 4 Dual Problem (49) ) ( mn maxmze 0 0 γ λ ξ ξ γ λ b L b w w (48) Convex Programmng ) ( mn γ λ ξ ξ b L b w w 0 ) ( cond3: 0 ) ( cond2 : 0 ) ( ) ( cond1: 1 1 = + = = = = = = = C b L d b b L d b L l l γ λ ξ γ λ ξ λ γ λ ξ ฯ• λ γ λ ξ w w x w w w cond1 (49) (410) C d d d L l l l j j T j j l = = = = = = λ λ ฯ• ฯ• λ λ λ λ λ 0 0 ) ( ) ( 2 1 ) ( maxmze * x x (410) SVM ) ( ) ( j T x x ฯ• ฯ• K(x x j ) 4 ) ( ) ( ) ( * * * * y x F y x F y x F (x*y*) ) ( mnmax ) ( mn max y x F y x F Y y X x X x Y y =

35 4 SVM T T = = = T K ( x x j ) ฯ• ( x ) ฯ•( x j ) ฯ• ( x j ) ฯ•( x ) akฯ•k ( x ) ฯ•k ( x j ) k SVM (1 1 exp 2σ tanh p + x T y) P 2 x x 2 T ( β x x + β ) 0 1 σ 2 RBF (410)λ w b l = 1 λ d K( x x ) + b = 0 Ns w = = 1 λ d ฯ•( x ) T Ns Ns = Number of Support Vectors b = 1 w λ d K( x x ) d =1 λ 0 0<λ 0 <C x 0 = 1 0 b Karush-Kuhn-Tucker KKT (saddle pont) 5 ( w * b* ξ* λ* γ * ) λ [ d ( w T ฯ•( x ) + b) 1+ ξ ] = 0 γ ξ = 0 = 12 l = 12 l λ < C cond3 ξ 0 0< λ < C x 5 L Lagrangan L( x* λ) L( x* λ*) L( x λ*) (x*λ*) 29

36 4 SVM T w ฯ•( x ) + b) 1 = 0 d ( b (410)Convex Programmmng 2 Quadratc Programmng [Nash et al 97] (410) Quadratc Programmng (411) 1 Mnmze F( Λ) = Λ1 + ΛΗΛ 2 subject to Λd = 0 Λ C1 Λ 0 Η j =d d j K(x x j ) Quadratc Programmng LOQO[Vanderbe 97] 30

37 Reuters Reuters Reuters newswre Reuter Carnege Reusters Davd Lews 595 Reuters Reuters SGML Reuters

38 5 EXCHANGES 39 ORGS 56 PEOPLE 267 PLACES 175 TOPICS TOPICS Reuters TOPICS TOPICS 2 Reuters ModLews (13625): LEWISSPLIT="TRAIN"; TOPICS="YES" or "NO" (61888): LEWISSPLIT="TEST"; TOPICS="YES" or "NO" (1765): LEWISSPLIT="NOT-USED" or TOPICS="BYPASS" ModApte (9603): LEWISSPLIT="TRAIN"; TOPICS="YES" (3299): LEWISSPLIT="TEST"; TOPICS="YES" 32

39 5 (8676): ModHayes : (20856): CGISPLIT="TRAINING-SET" (722): CGISPLIT="PUBLISHED-TESTSET" (0): 5-2 Reuters ModApte Reuters DF 5-3 DF (Document Frequency) <BODY> </BODY> Reuters newslne stemmng 33

40 5 IDF SVM 8754 (feature) 0: 0 n: n tfdf 1 ModApte <BODY></BODY> TOPICS

41 5 Earn Acq Money-fx Gran Crude Trade Interest Wheat Shp Corn "corn" "crude" "earn" "gran" "nterest" (Accuracy) = 35

42 5 2 (Precson/Recall break-even pont) recall precson recall precson a b -1 c d 5-5 recall = a/(a+c) precson = a/(a+b) recall precson (precson/recall break-even pont) precson recall precson/recallbreak even pont = 2 precson+ recall (Accuracy) (a+d)/(a+b+c+d) 531 SVM C=1000 SVM

43 s 1 RBF 37

44 5 5-3 b 0 =2 b 1 =1 2 corn crude earn gran nterest RBF SV SVM 97% earn 5-4 corn nterest crude gran earn SV 38

45 5 532 Naïve Bayesan Naïve Bayesan Nave Bayesan SVM Naïve Bayesan RBF SVM Naïve Bayesan

46 5 5-6 RBF SV 8762 SV SV 40

47 5 5-6 RBF SV

48 6 6 SVM SVM SVM Naïve Bayesan SVM SV SVM SV SV SVM Quadratc 42

49 6 Programmmng SVM Quadratc Optmzer 43

50 [Cherkassky et al 98] Vladmr Cherkassky and Flp Muler Learnng From Data Concepts Theory and Methods John Wley & Sons Inc 1997 [Frakes et al 92] Wllam B Frakes and Rchard Baeze-Yates Informaton Retreval Data Structures & Algorthms Prentce-Hall Inc 1997 [Haykn 98] Smon Haykn Neural Networks 2 nd edton Prentce-Hall Inc 1997 [Lews 91] Davd D Lews Evaluatng Text Categorzaton In Proceedngs of the Speech and Natural Language Workshop pp [Lere 97] Ray Lere and Prasad Tadepall Actve Learnng wth Commttees for Text Categorzaton In the Proceedngs of AAAI 97 pp [Mtchell 97] Tom M Mtchell Machne Learnng McGraw-Hll Companes Inc 1997 [Nash et al 97] Stephen G Nash and Arela Sofer Lnear and Nonlnear Programmng McGraw-Hll Companes Inc 1997 [Osuna et al 97] Edgar E Osuna Robert Freund and Federco Gros Support Vector Machne: Tranng and Applcatons AI Memo MIT AI Lab 1997 [Peressn et al 88] A L Peressn F E Sullvan and J J Uhl Jr The Mathematcs of Nonlnear Programmng Sprnger Verlag New York Inc 1997 [Qunlan 93] J Ross Qunlan C45: Programs for Machne Learnng Morang Kaufmann Publshers Inc 1993 [Stston 96] M O Sttson J A E Weston A Gammerman V Vovk and V Vapnk Theory of Support Vector Machnes Techncal Report CSD-TR Royal Holloway Unversty of London 1997 [Vanderbe 97] Robert J Vanderbe LOQO User s Manual Verson 310 Techncal Report SOR Prnceton Unversty

51 [Vapnk 95] V Vapnk The Nature of Statstcal Learnng Theory Sprnger Verlag New York Inc 1997 [Yang 97] Ymng Yang An Evaluaton of Statstcal Approaches to Text Categorzaton Techncal Report CMU-CS Carnege Mellon Unversty

52 ABSTRACT Now that the world s connected by onlne network t s an age of a flood of nformaton It s dffcult and tme-consumng to classfy accordng to user's nterests the enormous nformaton pourng n from onlne network Therefore f the classfcaton system can be automatcally bult usng machne learnng technques t wll be very effcent The problem of classfyng texts has a very hgher dmenson of nput space and the nformaton that the text tself contans s sparse In ths paper Support Vector Machne (SVM) an algorthm sutable for problems havng these characterstcs s mplemented In order to experment wth the effect of Support Vectors (SVs) whch SVM produces multlayer perceptron network s traned over the reduced data set usng only SVs SVM s a very strong algorthm based on Structural Rsk Mnmzaton (SRM) of the statstcal learnng theory In addton SVM's learnng process whch searches optmal solutons s a mathematcally well modeled process called Convex Programmng In the experment about 5 frequently-appeared topcs of Reuters document set t s remarkable that the resultng accuracy s hgher than 97% And SVM shows a better break-even pont than Nave bayesan classfer's In addton traned multlayer perceptron network usng only SVs not only shows a good performance but also reduces a tranng tme remarkably Keywords: Text Classfcaton Multlayer Perceptron Network SVM SRM Convex Programmng 46

53 2 730?

ๆญฏ000000035964.PDF

ๆญฏ000000035964.PDF SVM SVM 200112 200112 1 1 2 3 2.1 3 2.2 Labeled Unlabeled 8 2.2.1 8 2.2.2 9 2.2.3 Unlabeled 10 2.2.4 11 3 Unlabeled 12 3.1 Support Vector Machne 12 3.1.1 SVM 12 3.1.2 15 3.1.3 SVM 17 3.2 18 3.2.1 Unlabeled

More information

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA ์ •์‹ ๋ฌธํ™”์—ฐ๊ตฌ 2001 ๊ฒจ์šธํ˜ธ ์ œ24๊ถŒ ์ œ4ํ˜ธ(ํ†ต๊ถŒ 85ํ˜ธ) pp. 75 96 ไผๅŠƒ่ซ–ๆ–‡ ้€€ๆบชๅญธๆดพ์˜ ็ถ“ๆฟŸ็š„ ๅŸบ : ่ฒก็”ฃ ๅฝขๆˆ๊ณผ ๆ‰€ๆœ‰ ่ฆๆจก๋ฅผ ์ค‘์‹ฌ์œผ๋กœ 1) โ… . ๋จธ๋ฆฌ๋ง โ…ก. ่ฒก็”ฃ ๅฝขๆˆ ๋ฌธ ์ˆ™ ์ž* โ…ข. ่ฒก็”ฃ ๆ‰€ๆœ‰ ่ฆๆจก โ…ฃ. ๋งบ์Œ๋ง โ… . ๋จธ๋ฆฌ๋ง ้€€ๆบชๅญธๆดพ ๋Š” ์ง€์—ญ, ๋‹น์ƒ‰, ํ•™๋ฌธ์ƒ์˜ ์ด๋ก ์  ๋ฐฐ๊ฒฝ ๋“ฑ ๋‹ค์–‘ํ•œ ์˜๋ฏธ๋ฅผ ๋‚ดํฌํ•œ ์šฉ์–ด์ด ๋ฉฐ, ์‹œ๊ธฐ์— ๋”ฐ๋ผ์„œ ์ง€์นญํ•˜๋Š” ์˜๋ฏธ์— ์ฐจ์ด๊ฐ€

More information

5. ํšŒ ์˜๋‚ด์šฉ < ์ œ 1ํ˜ธ ์•ˆ : 2011ํ•™๋…„๋„ ๋ฒ• ์•ˆ ํšŒ ์ œ ์ฒ  ์‚ฐ(์•ˆ )> ๋ฒ•์ธ ์‚ฌ๋ฌด๊ตญ์žฅ์˜ ์„ฑ์™ผ ๋ณด๊ณ ์— ์ด์ด ์˜์žฅ์ด ์ด์‚ฌํšŒ ๊ฐœํšŒ ์šฉ ์„ ์–ธํ•˜๊ณ  ํšŒ๊ณ„ํŒ๋ ค๋ถ€์žฅ์— ๊ฒŒ ์ œ l ํ˜ธ ์•ˆ์ธ 20 11 ํ•™๋…„๋„ ์ž…์ธ ํšŒ๊ณ„ ๊ฒฐ์‚ฐ(์•ˆ)์— ๋Œ€ํ•œ ์„ฑ๋ช…์œต ์ง€์‹œํ•จ ํšŒ๊ณ„ํŒ๋ฆฌ๋ถ€์žฅ์ด 2011 ํ•™๋…„

5. ํšŒ ์˜๋‚ด์šฉ < ์ œ 1ํ˜ธ ์•ˆ : 2011ํ•™๋…„๋„ ๋ฒ• ์•ˆ ํšŒ ์ œ ์ฒ  ์‚ฐ(์•ˆ )> ๋ฒ•์ธ ์‚ฌ๋ฌด๊ตญ์žฅ์˜ ์„ฑ์™ผ ๋ณด๊ณ ์— ์ด์ด ์˜์žฅ์ด ์ด์‚ฌํšŒ ๊ฐœํšŒ ์šฉ ์„ ์–ธํ•˜๊ณ  ํšŒ๊ณ„ํŒ๋ ค๋ถ€์žฅ์— ๊ฒŒ ์ œ l ํ˜ธ ์•ˆ์ธ 20 11 ํ•™๋…„๋„ ์ž…์ธ ํšŒ๊ณ„ ๊ฒฐ์‚ฐ(์•ˆ)์— ๋Œ€ํ•œ ์„ฑ๋ช…์œต ์ง€์‹œํ•จ ํšŒ๊ณ„ํŒ๋ฆฌ๋ถ€์žฅ์ด 2011 ํ•™๋…„ ํ•™๊ต๋ฒ•์–ธํ•œ์„ฑํ•™์› 2012ํ•™๋…„๋„ ์ œ 2์ฐจ ์ด์‚ฌ ํšŒ ํšŒ ์˜ ๋ก ๊ตฌ ss 01 ์‚ฌ ๊ฐ์‚ฌ ์ผ์›์ง•์ˆ˜ 8์ธ 2์ธ ์žฌ์ ์ž‰์œˆ 7์ธ 2์ธ ์ฐธ์„์ž‰์› 5์ธ ์ธ 1. ์—ฐ ์‹œ : 2012๋…„ 5์›” 22์ผ(ํ™”) 10:30 11:10 (ํšŒ์˜์†Œ์ง‘ ์ƒ๋ณด์ผ : 2012.5.10.) 2. ์žฅ ์†Œ ๊ฒฝ์„ฑ๋Œ€ํ•™๊ต ์ •๋ณดํŒ 10์ถฉ ํšŒ์˜์‹ค 3. ์—„์› ์ถœ ๊ฒฐ ์‚ฌํ•ญ ์ฐธ์„์ž„์›ฌ (5๋ช…) : ๊น€๋Œ€์„ฑ, ์ด๋™์ฒ , ๊น€์ˆœ์นญ,

More information

untitled

untitled 2005. 12 1 2 ยฑ KOTRA KOTRA 1 2,, 3 ) /, KOTRA ฮด 1 x 1 ฮถ y 1 ฮต 1 ฮด 2 x 2 ฮท = ฮฒฮพ + ฮถ y 2 ฮต 2 x x x ฮด 3 1 2 3 x 3 ฮป 1 ฮด = ฮป 2 ฮพ + ฮด ฮป 3 ฮด 1 2 3 y 3 ฮต 3 Interaction W 1 W 2 W 3 ISSUE

More information

cat_data3.PDF

cat_data3.PDF ( ) IxJ ( 5 0% ) Pearson Fsher s exact test ฯ‡, LR Ch-square( G ) x, Odds Rato ฮธ, Ch-square Ch-square (Goodness of ft) Pearson cross moment ( Mantel-Haenszel ), Ph-coeffcent, Gamma (ฮณ ), Kendall ฯ„ (bnary)

More information

PowerPoint Presentation

PowerPoint Presentation ์ปดํ“จํ„ฐ๋น„์ „ ๋ฐ ํŒจํ„ด์ธ์‹ ์—ฐ๊ตฌํšŒ 2009.2.12 Support Vector Machines http://cespc1.kumoh.ac.kr/~nonezero/svm ws cvpr.pdf ๊ธˆ์˜ค๊ณต๊ณผ๋Œ€ํ•™๊ต ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€ ๊ณ ์žฌํ•„ 1 Contents Introduction Optimal Hyperplane Soft-Margin SVM Nonlinear SVM with Kernel

More information

ๆญฏ522๋ฐ•๋ณ‘ํ˜ธ.PDF

ๆญฏ522๋ฐ•๋ณ‘ํ˜ธ.PDF 2001 The Effect of Nozzle Locaton on the Concentraton Profles n Chemcal Addton Tank,,, 305-353 150, dsk block, CFD FLUENT 5, Abstract A numercal analyss of the flow and necton characterstcs s performed

More information

<3130BAB9BDC428BCF6C1A4292E687770>

<3130BAB9BDC428BCF6C1A4292E687770> ๆช€ ๅœ‹ ๅคง ๅญธ ๆ ก ็ฌฌ ไบŒ ๅ ๅ…ซ ๅ›ž ํ•™ ์ˆ  ๋ฐœ ํ‘œ ็ฌฌ ไบŒ ๅ ไน ๅ›ž ํŠน ๋ณ„ ์ „ ๊ฒฝ๊ธฐ๋„ ํŒŒ์ฃผ ๅ‡บ ๅœŸ ์„ฑ์ฃผ์ด์”จ( ๆ˜Ÿ ๅทž ๏งก ๆฐ ) ํ˜•๋ณด( ่กก ่ผ” )์˜ ๋ถ€์ธ ํ•ดํ‰์œค์”จ( ๆตท ๅนณ ๅฐน ๆฐ 1660~1701) ๆœ ้ฃพ ํ•™์ˆ ๋ฐœํ‘œ:2010. 11. 5(๊ธˆ) 13:00 ~ 17:30 ๋‹จ๊ตญ๋Œ€ํ•™๊ต ์ธ๋ฌธ๊ด€ ์†Œ๊ทน์žฅ(210ํ˜ธ) ํŠน ๋ณ„ ์ „:2010. 11. 5(๊ธˆ) ~ 2010. 11.

More information

์ž๊ธฐ๊ตฌ์„ฑ์ง€๋„ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ์ด์ƒ ํƒ์ง€(Novelty Detection using SOM SOM-based Methods)

์ž๊ธฐ๊ตฌ์„ฑ์ง€๋„ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ์ด์ƒ ํƒ์ง€(Novelty Detection using SOM SOM-based Methods) 5 ํ•œ๊ตญ๊ฒฝ์˜๊ณผํ•™ํšŒ/๋Œ€ํ•œ์‚ฐ์—…๊ณตํ•™ํšŒ ์ถ˜๊ณ„๊ณต๋™ํ•™์ˆ ๋Œ€ํšŒ 5๋…„ 5์›” ์ผ~์ผ, ์ถฉ๋ถ๋Œ€ํ•™๊ต ์ž๊ธฐ๊ตฌ์„ฑ์ง€๋„ ๊ธฐ๋ฐ˜ ๋ฐฉ๋ฒ•์„ ์ด์šฉํ•œ ์ด์ƒ ํƒ์ง€ Novelty Detecton usng SOM-based Methods ์ดํ˜•์ฃผ, ์กฐ์„ฑ์ค€ E-mal: {mpatton, zoon}@snu.ac.r ์„œ์šธ๋Œ€ํ•™๊ต ๊ณต๊ณผ๋Œ€ํ•™ ์‚ฐ์—…๊ณตํ•™๊ณผ ์„œ์šธ์‹œ ๊ด€์•…๊ตฌ ์‹ ๋ฆผ๋™ ์‚ฐ 5-, 5- Abstract Novelty

More information

<3131BFF92D3828C6D0B3CEBFACB1B82DC0CCBBF3C8A D38302E687770>

<3131BFF92D3828C6D0B3CEBFACB1B82DC0CCBBF3C8A D38302E687770> - ๊ฐ€๊ตฌ์†Œ๋“์„์ค‘์‹ฌ์œผ๋กœ - ์ด์ƒํ˜ธ * โ… . ๋“ค์–ด๊ฐ€๋ฉฐ ) 30..,, (Unobserved Heterogenety).. NLS(966~) PSID(968~), BHPS(99~), GSOEP(984~). 990 994 998, (998~). 2~3...,. * (shlee@kl.re.kr). 66_ ๋…ธ๋™๋ฆฌ๋ทฐ (Korean Labor and Income Panel

More information

ๆก t H I K ์žฌ์ ๊ฒฝ์ œ์ž‰์ž‘๊ณผ ๊ท€ํ•˜ ๋ณธ ๋ณด๊ณ ์„œ๋ฅผ r ๊ตญ์ œ๊ธˆ์œต๊ฑฐ๋ž˜๋ฅผ ํ†ตํ•œ ์ž๊ธˆ์„ธ๋‹ฅ ์œ  ํ˜• ๋ฐ ๋Œ€์ฒ˜๋ฐฉ์•ˆ ์—ฐ๊ตฌ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์šฉ์—ญ์˜ ์ตœ์ข…๋ณด๊ณ  ์„œ๋กœ ์ œ์ถœํ•œ๋‹ˆ๋‹ค. 2 0 0 2 ๋…„ 9 ์›” ํ™ˆํฉ ๋ฅผํˆด E์ž„ ํ›Œํ™ˆ

ๆก t H I K ์žฌ์ ๊ฒฝ์ œ์ž‰์ž‘๊ณผ ๊ท€ํ•˜ ๋ณธ ๋ณด๊ณ ์„œ๋ฅผ r ๊ตญ์ œ๊ธˆ์œต๊ฑฐ๋ž˜๋ฅผ ํ†ตํ•œ ์ž๊ธˆ์„ธ๋‹ฅ ์œ  ํ˜• ๋ฐ ๋Œ€์ฒ˜๋ฐฉ์•ˆ ์—ฐ๊ตฌ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์šฉ์—ญ์˜ ์ตœ์ข…๋ณด๊ณ  ์„œ๋กœ ์ œ์ถœํ•œ๋‹ˆ๋‹ค. 2 0 0 2 ๋…„ 9 ์›” ํ™ˆํฉ ๋ฅผํˆด E์ž„ ํ›Œํ™ˆ ์ฃ„์ฆ๊ฐ Z ์„œ ๊ตญ์ œ๊ธˆ์œต๊ฑฐ๋ž˜๋ฅผ ํ†ตํ•œ ์ž๊ธˆ์„ธํƒ ์œ ํ˜• ๋ฐ ๋Œ€์ฒ˜๋ฐฉ์•ˆ ์—ฐ๊ตฌ 2 O O 2-9 ๆก t H I K ์žฌ์ ๊ฒฝ์ œ์ž‰์ž‘๊ณผ ๊ท€ํ•˜ ๋ณธ ๋ณด๊ณ ์„œ๋ฅผ r ๊ตญ์ œ๊ธˆ์œต๊ฑฐ๋ž˜๋ฅผ ํ†ตํ•œ ์ž๊ธˆ์„ธ๋‹ฅ ์œ  ํ˜• ๋ฐ ๋Œ€์ฒ˜๋ฐฉ์•ˆ ์—ฐ๊ตฌ ์— ๊ด€ํ•œ ์—ฐ๊ตฌ์šฉ์—ญ์˜ ์ตœ์ข…๋ณด๊ณ  ์„œ๋กœ ์ œ์ถœํ•œ๋‹ˆ๋‹ค. 2 0 0 2 ๋…„ 9 ์›” ํ™ˆํฉ ๋ฅผํˆด E์ž„ ํ›Œํ™ˆ ์ฏค f g g ้™ฃ ํผ ็ฉถ ์ข‹ f E ํ™‰ ๅฐ ๅค– ็ถ“ ๆฟŸ ๆ”ฟ ็ญ– ๆ˜ญ ็ฉถ ้™ข ๆ˜ญ

More information

๋‚ด์ง€4์›”์ตœ์ข…

๋‚ด์ง€4์›”์ตœ์ข… ๋‚ด ๊ฐ€ ๋งŒ ๋‚œ 7 0 ๋…„ ๋Œ€ ์ฃฝ์€ ์–ธ๋ก ์˜ ์‚ฌํšŒ ๋™์•„์ž์œ ์–ธ๋ก ์ˆ˜ํ˜ธํˆฌ์Ÿ์œ„์›ํšŒ 2008๋…„ ์ด›๋ถˆ์ง‘ํšŒ๊ฐ€ ํ•œ์ฐฝ์ผ ๋•Œ ์ •๋™์ต์€ ์˜ค๋ž˜ ์ „ ์ž์‹ ์ด๋ชธ๋‹ด์•˜๋˜ ๋™์•„์ผ ๋ณด์‚ฌ ์•ž์— ์„œ ์žˆ์—ˆ๋‹ค. ์ด›๋ถˆ์„๋“ ์‹œ๋ฏผ๋“ค์€ ๋™์•„์ผ๋ณด๋Š” ์“ฐ๋ ˆ๊ธฐ๋‹ค! ๋ผ๋ฉฐ ์•ผ์œ  ๋ฅผ ๋ณด๋ƒˆ๋‹ค. ํ•œ๋•Œ ๊ตญ๋ฏผ๋“ค์ด ๊ฐ€์žฅ ์‚ฌ๋ž‘ํ–ˆ๋˜ ์‹ ๋ฌธ ๋™์•„์ผ๋ณด๋Š” ์ Š์€ ์‹œ์ ˆ ๊ทธ์™€๋™ ๋ฃŒ ๊ธฐ์ž๋“ค์ด ๋ชฉ์ˆจ์„ ๊ฑธ๊ณ  ์™ธ์ณค๋˜ ์ž์œ  ์–ธ๋ก  ์ด ์•„๋‹ˆ์—ˆ๋‹ค. ๊ทธ๋Š” ์ฐจ๋งˆ๋”๋ฐ”๋ผ

More information

<B5B6BCADC7C1B7CEB1D7B7A52DC0DBBEF7C1DF313232332E687770>

<B5B6BCADC7C1B7CEB1D7B7A52DC0DBBEF7C1DF313232332E687770> 2013 ์†Œ์™ธ๊ณ„์ธต ๋…์„œ ์ธ๋ฌธํ•™ ํ”„๋กœ๊ทธ๋žจ ๊ฒฐ๊ณผ๋ณด๊ณ ์„œ - 2 - 2013 ์†Œ์™ธ๊ณ„์ธต ๋…์„œ ์ธ๋ฌธํ•™ ํ”„๋กœ๊ทธ๋žจ ๊ฒฐ๊ณผ๋ณด๊ณ ์„œ c o n t e n t s 5 22 44 58 84 108 126 146 168 186 206 220 231 268 296 316 ๊ฝƒ๋ฐ”์œ„ ์ž‘์€ ๋„์„œ๊ด€ ๊ฟˆ์ด ์ž๋ผ๋Š” ์ฑ… ๋งˆ์„ ๊ธฐ์ ์˜ ๋„์„œ๊ด€ ๋‚จ๋ถ€ ๋„์„œ๊ด€ ๋†์†Œ 1๋™ ๋„์„œ๊ด€ ๋†์†Œ 3๋™ ๋„์„œ๊ด€ ๋™๋ถ€ ๋„์„œ๊ด€

More information

์ž…์žฅ

์ž…์žฅ [์ž…์žฅ] 20๋Œ€ ์ด์„  ์—ฌ์„ฑ ๋น„์ •๊ทœ์ง ์ฒญ๋…„์ •์ฑ… ํ‰๊ฐ€ ์—ฌ์„ฑ ์ •์ฑ… ํ‰๊ฐ€: ๋‹ค์‹œ ๋ด๋„ ๋ณ€ํ•จ์—†๋‹ค (p.2-p.4) ๋น„์ •๊ทœ์ง ์ •์ฑ… ํ‰๊ฐ€: ์‚ฌ์ด๋น„์— ์†์ง€ ๋ง์ž (p.5-p.7) ์ฒญ๋…„ ์ผ์ž๋ฆฌ ์ •์ฑ… ํ‰๊ฐ€: ์ทจ์—…์ค€๋น„์ƒ๊ณผ ๋…ธ๋™์ž์˜ ๋ถ„์—ด๋กœ ๋ฏธ๋ž˜๋ฅผ ๋…ผํ•  ์ˆœ ์—†๋‹ค (p.8-p.11) 2016๋…„ 4์›” 8์ผ [์—ฌ์„ฑ ์ •์ฑ… ํ‰๊ฐ€] ๋‹ค์‹œ ๋ด๋„ ๋ณ€ํ•จ์—†๋‹ค ์ด๋ฒˆ 20๋Œ€ ์ด์„  ๋งŒํผ ์ •์ฑ… ์—†๊ณ , ๋‹ด๋ก 

More information

ไผ)์ด๋ผ๊ณ  ํ•˜์˜€๋Š”๋ฐ, ๋ผ์ž(็พ…ๅญ—)๋Š” ๋‚˜์ž(้‚ฃๅญ—)๋กœ ์“ฐ๊ธฐ๋„ ํ•˜๊ณ  ์•ผ์ž(่€ถๅญ—)๋กœ ์“ฐ๊ธฐ๋„ ํ•œ๋‹ค. ๋˜ ์„œ๋ฒŒ(ๅพไผ)์ด๋ผ๊ณ ๋„ ํ•œ๋‹ค. ์„ธ์†์—์„œ ๊ฒฝ์ž(ไบฌๅญ—)๋ฅผ ์ƒˆ๊ฒจ ์„œ๋ฒŒ(ๅพไผ)์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ด ๋•Œ๋ฌธ์— ๋˜ ์‚ฌ๋ผ(ๆ–ฏ็พ…)๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•˜๊ณ , ๋˜ ์‚ฌ๋กœ(ๆ–ฏ็›ง)๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์žฌ์œ„ ๊ธฐ๊ฐ„์€ 6

ไผ)์ด๋ผ๊ณ  ํ•˜์˜€๋Š”๋ฐ, ๋ผ์ž(็พ…ๅญ—)๋Š” ๋‚˜์ž(้‚ฃๅญ—)๋กœ ์“ฐ๊ธฐ๋„ ํ•˜๊ณ  ์•ผ์ž(่€ถๅญ—)๋กœ ์“ฐ๊ธฐ๋„ ํ•œ๋‹ค. ๋˜ ์„œ๋ฒŒ(ๅพไผ)์ด๋ผ๊ณ ๋„ ํ•œ๋‹ค. ์„ธ์†์—์„œ ๊ฒฝ์ž(ไบฌๅญ—)๋ฅผ ์ƒˆ๊ฒจ ์„œ๋ฒŒ(ๅพไผ)์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ด ๋•Œ๋ฌธ์— ๋˜ ์‚ฌ๋ผ(ๆ–ฏ็พ…)๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•˜๊ณ , ๋˜ ์‚ฌ๋กœ(ๆ–ฏ็›ง)๋ผ๊ณ  ํ•˜๊ธฐ๋„ ํ•œ๋‹ค. ์žฌ์œ„ ๊ธฐ๊ฐ„์€ 6 ๋™๊ฒฝ์žก๊ธฐๆฑไบฌ้›œ่จ˜ ๊ถŒ1 ์ง„ํ•œ๊ธฐ่พฐ้Ÿ“็ด€ ๊ฒฝ์ƒ๋„๋Š” ๋ณธ๋ž˜ ์ง„ํ•œ(่พฐ้Ÿ“)์˜ ๋•…์ธ๋ฐ, ๋’ค์— ์‹ ๋ผ(ๆ–ฐ็พ…)์˜ ์†Œ์œ ๊ฐ€ ๋˜์—ˆ๋‹ค. ์—ฌ์ง€์Šน ๋žŒ(่ผฟๅœฐๅ‹่ฆฝ) ์— ๋‚˜์˜จ๋‹ค. ์ง„ํ•œ์€ ๋งˆํ•œ(้ฆฌ้Ÿ“)์˜ ๋™์ชฝ์— ์žˆ๋‹ค. ์Šค์Šค๋กœ ๋งํ•˜๊ธฐ๋ฅผ, ๋ง ๋ช…ํ•œ ์ง„(็งฆ)๋‚˜๋ผ ์‚ฌ๋žŒ์ด ๋‚œ๋ฆฌ๋ฅผ ํ”ผํ•˜์—ฌ ํ•œ(้Ÿ“)์œผ๋กœ ๋“ค์–ด์˜ค๋‹ˆ ํ•œ์ด ๋™์ชฝ ๊ฒฝ๊ณ„๋ฅผ ๋ถ„ํ•  ํ•˜์—ฌ ์ฃผ์—ˆ์œผ๋ฏ€๋กœ ์„ฑ์ฑ…(ๅŸŽๆ …)์„ ์„ธ์› ๋‹ค. ํ•˜์˜€๋‹ค. ๊ทธ ์–ธ์–ด๊ฐ€ ์ง„๋‚˜๋ผ ์‚ฌ๋žŒ๊ณผ ๋น„์Šทํ•˜๋‹ค.

More information

0429bodo.hwp

0429bodo.hwp ์นœ์ผ์ธ๋ช…์‚ฌ์ „ ์ˆ˜๋ก๋Œ€์ƒ์ž ๋ช…๋‹จ ์นœ์ผ์ธ๋ช…์‚ฌ์ „ํŽธ์ฐฌ์œ„์›ํšŒ ใ„ฑ ใ„ด ใ„ท ใ„น ใ… ใ…‚ ใ…… ใ…‡ ใ…ˆ ใ…Š ใ…‹ ใ…Œ ใ… ใ…Ž ์ด ๋ช…๋‹จ์€ ์นœ์ผ์ธ๋ช…์‚ฌ์ „ ์ˆ˜๋ก๋Œ€์ƒ์ž์˜ ํ›„์† ๋˜๋Š” ์—ฐ๊ณ ์ž๋กœ๋ถ€ํ„ฐ ์ด์˜์‹ ์ฒญ์„ ๋ฐ›๊ธฐ ์œ„ํ•ด ์ž‘์„ฑ ๋˜์—ˆ์Šต๋‹ˆ๋‹ค. ์ด ์ธ๋ฌผ์ •๋ณด๋ฅผ ๋ฌด๋‹จ ๋ณต์‚ฌํ•˜์—ฌ ์œ ํฌํ•˜๊ฑฐ๋‚˜ ์ธํ„ฐ๋„ท์„ ํ†ตํ•ด ์ „ ํŒŒํ•˜๋Š”์ผ์ฒด์˜ํ–‰์œ„๋Š”๋ฒ•์—์ €์ด‰๋ ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ์ฃผ์š” ํ›ˆํฌ์ƒ ์•ฝ์–ด 1. ๋ณ‘ํ•ฉ๊ธฐ๋…์žฅ 2. ๋Œ€์ •๋Œ€๋ก€๊ธฐ๋…์žฅ 3. ์†Œํ™”๋Œ€๋ก€๊ธฐ๋…์žฅ

More information

ๆ™‚ ็ฟ’ ่ชช ) 5), ์›ํ˜ธ์„ค( ๅ…ƒ ๆ˜Š ่ชช ) 6) ๋“ฑ์ด ์žˆ๋‹ค. 7) ์ด ๊ฐ€์šด๋ฐ ์ž„์ œ์„ค์— ๋™์˜ํ•˜๋Š”๋ฐ”, ์ƒ์„ธํ•œ ๋…ผ์˜๋Š” ํ™ฉํŒจ๊ฐ•์˜ ๋…ผ์˜๋กœ ๋ฏธ๋ฃจ๋‚˜ ๊ทธ์˜ ๋…ผ์˜์— ๋…ผ๊ฑฐ๋กœ์„œ ๋น ์ ธ ์žˆ๋Š” ๋ถ€๋ถ„์„ ๋ณด๊ฐ•ํ•˜์—ฌ ์ž„์ œ์„ค์— ๋Œ€ํ•œ ๋ณ€์ฆ( ่พจ ่ญ‰ )์„ ๋ง๋ถ™์ด๊ณ ์ž ํ•œ๋‹ค. ์šฐ์„ , ๋‹ค์Œ์˜ ์ธ์šฉ๋ฌธ์„ ๋ณด๋„๋ก

ๆ™‚ ็ฟ’ ่ชช ) 5), ์›ํ˜ธ์„ค( ๅ…ƒ ๆ˜Š ่ชช ) 6) ๋“ฑ์ด ์žˆ๋‹ค. 7) ์ด ๊ฐ€์šด๋ฐ ์ž„์ œ์„ค์— ๋™์˜ํ•˜๋Š”๋ฐ”, ์ƒ์„ธํ•œ ๋…ผ์˜๋Š” ํ™ฉํŒจ๊ฐ•์˜ ๋…ผ์˜๋กœ ๋ฏธ๋ฃจ๋‚˜ ๊ทธ์˜ ๋…ผ์˜์— ๋…ผ๊ฑฐ๋กœ์„œ ๋น ์ ธ ์žˆ๋Š” ๋ถ€๋ถ„์„ ๋ณด๊ฐ•ํ•˜์—ฌ ์ž„์ œ์„ค์— ๋Œ€ํ•œ ๋ณ€์ฆ( ่พจ ่ญ‰ )์„ ๋ง๋ถ™์ด๊ณ ์ž ํ•œ๋‹ค. ์šฐ์„ , ๋‹ค์Œ์˜ ์ธ์šฉ๋ฌธ์„ ๋ณด๋„๋ก ๊ณผ ์ž„์ œ ์‹ ํ•ด์ง„(์ „๋‚จ๋Œ€) 1. ๋จธ๋ฆฌ๋ง ์„ธ์กฐ์˜ ์™•์œ„์ฐฌํƒˆ๊ณผ ๋‹จ์ข…๋ณต์œ„ ๊ณผ์ •์—์„œ์˜ ์‚ฌ์œก์‹ ์„ ์†Œ์žฌ๋กœ ํ•œ ์ž‘ํ’ˆ์€ ๋‚จํšจ์˜จ( ๅ— ๅญ ๆบซ )์˜ (1492๋…„ ์ง์ „?), ์ž„์ œ( ๏งด ๆ‚Œ )์˜ (1576?), ๊น€์ˆ˜๋ฏผ( ๏คŠ ๅฃฝ ๆฐ‘ )์˜ (1757) ๋“ฑ์ด ์žˆ๋‹ค. 1) ์ฒซ ์ž‘ํ’ˆ์€ ์ง‘์ „( ้›†

More information

cls46-06(์‹ฌ์šฐ์˜).hwp

cls46-06(์‹ฌ์šฐ์˜).hwp ่˜‡ ๅทž ์›๋ฆผ์˜ ๆ™ฏ ๅ ์—ฐ๊ตฌ * ็”จ ๅ…ธ ํ•œ ๊ฒฝ๋ช…์„ ์ค‘์‹ฌ์œผ๋กœ 1)์‹ฌ์šฐ์˜ ** ๋ชฉ ์ฐจ โ… . ์„œ๋ก  โ…ก. ๊ธฐ์กด์˜ ๊ฒฝ๋ช… ๅ‘ฝ ๅ ๆณ• โ…ข. ๊ท€๋‚ฉ์  ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅธ ๊ฒฝ๋ช… ๋ถ„๋ฅ˜ 1. ์‹ ํ™”์ „์„ค ์—ญ์‚ฌ๊ณ ์‚ฌ 2. ๆ–‡ ่พญ, ่ฉฉ ๅฅ โ…ฃ. ๊ฒฐ๋ก  โ… . ์„œ๋ก  ๆ™ฏ ๅ ์ด๋ž€ ๆ™ฏ ่ง€ ้กŒ ๅ (๊ฒฝ๊ด€์— ๋ถ™์ธ ์ด๋ฆ„) ์˜ ์ค€๋ง๋กœ, ๋ณผ๋งŒํ•œ ๊ฒฝ์น˜ ์ง€๊ตฌ์™€ ๊ฒฝ์น˜ ์ง€ ์  ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์น˜ ์ง€๊ตฌ ๋‚ด ์„ธ์›Œ์ง„ ์ธ๊ณต๋ฌผ์— ๋ถ™์—ฌ์ง„

More information

38--18--์ตœ์šฐ์„.hwp

38--18--์ตœ์šฐ์„.hwp ๅค ่ฉฉ ๆบ < ้ก” ๅปถ ไน‹ > ็ฏ‡ ่ญฏ ่จป * ๅด” ๅฎ‡ ้Œซ 1) 1. ๅบ ๆ–‡ 2. ๅค ่ฉฉ ๆบ < ้ก” ๅปถ ไน‹ > ็ฏ‡ ่ญฏ ่จป 3. ็ต ่ชž 1. ๅบ ๆ–‡ ๏ฅฒ ๅพท ๆฝ› (1673-1769)์˜ ๅญ— ๋Š” ็ขบ ๅฃซ ์ด๊ณ  ่™Ÿ ๋Š” ๆญธ ๆ„š ์ด๋‹ค. ๆฑŸ ๅ— ้•ท ๆดฒ (ํ˜„์žฌ์˜ ๆฑŸ ่˜‡ ็œ ่˜‡ ๅทž ) ์‚ฌ๋žŒ์œผ๋กœ ๆทธ ไปฃ ่– ็ฅ–, ไธ– ๅฎ—, ้ซ˜ ๅฎ— ์‚ผ๋Œ€๋ฅผ ๋ชจ๋‘ ๊ฑฐ์ณค๋‹ค. ํŠนํžˆ ์‹œ๋ฅผ ๋ชน ์‹œ ์ข‹์•„ํ•œ

More information

๊ต์‚ฌ์šฉ์ง€๋„์„œ_์“ฐ๊ธฐ.hwp

๊ต์‚ฌ์šฉ์ง€๋„์„œ_์“ฐ๊ธฐ.hwp 1. ์žฌ๋ฏธ์žˆ๋Š” ๊ธ€์ž ๋‹จ์›์˜ ๊ตฌ์„ฑ ์˜๋„ ์ด ๋‹จ์›์€ ๋„๋น„์™€ ๊นจ๋น„๊ฐ€ ๊ธธ์„ ์žƒ๊ณ  ํ—ค๋งค๋‹ค ๊ธ€์ž ๊ณต๋ถ€์˜ ํ•„์š”์„ฑ์„ ๋Š๋ผ๊ณ  ๊ธ€์ž ๊ณต๋ถ€๋ฅผ ํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์œผ๋กœ ์‹œ์ž‘๋œ๋‹ค. ์ž์นซ ์ง€๊ฒจ์šธ ์ˆ˜ ์žˆ๋Š” ์“ฐ๊ธฐ ๊ณต๋ถ€๋ฅผ ๋‹ค์–‘ํ•œ ๋†€์ด ์œ„์ฃผ์˜ ํ™œ๋™์œผ๋กœ ๊ตฌ์„ฑํ•˜์˜€๊ณ , ํ•™์Šต์ž ์ฃผ๋ณ€์˜ ๋‹ค์–‘ํ•œ ์ž๋ฃŒ๋“ค์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ํ•™์Šต์— ๋Œ€ํ•œ ํฅ๋ฏธ๋ฅผ ๊ฐ–๊ณ  ํ™œ๋™ํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. ๊ฐ ๋‹จ๊ณ„์˜ ํ•™์Šต์„ ๋งˆ์น  ๋•Œ๋งˆ๋‹ค ๋„๊นจ๋น„ ์—ฐํ•„์„

More information

<32303132BDC3BAB8C1A4B1D4C6C75BC8A3BFDC303530395D2E687770>

<32303132BDC3BAB8C1A4B1D4C6C75BC8A3BFDC303530395D2E687770> ์กฐ ๋ก€ ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1220ํ˜ธ ์ต์‚ฐ์‹œ ์ฃผ๋ฏผ๊ฐ์‚ฌ ์ฒญ๊ตฌ์— ๊ด€ํ•œ ์กฐ๋ก€ ์ผ๋ถ€๊ฐœ์ •์กฐ๋ก€ 1 ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1221ํ˜ธ ์ต์‚ฐ์‹œ ์ œ์•ˆ์ œ๋„ ์šด์˜์กฐ๋ก€ ์ผ๋ถ€๊ฐœ์ •์กฐ๋ก€ 3 ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1222ํ˜ธ ์ต์‚ฐ์‹œ ์‹œ์ฑ„์— ๊ด€ํ•œ ์กฐ๋ก€ ํ์ง€์กฐ๋ก€ 12 ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1223ํ˜ธ ์ต์‚ฐ์‹œ ์‹œ์„ธ ๊ฐ๋ฉด ์กฐ๋ก€ ์ „๋ถ€๊ฐœ์ •์กฐ๋ก€ 13 ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1224ํ˜ธ ์ต์‚ฐ์‹œ ํ–‰์ •๊ธฐ๊ตฌ์„ค์น˜์กฐ๋ก€ 19 ์ต์‚ฐ์‹œ ์กฐ๋ก€ ์ œ1225ํ˜ธ ์ต์‚ฐ์‹œ

More information

E1-์ •๋‹ต๋ฐํ’€์ด(1~24)ok

E1-์ •๋‹ต๋ฐํ’€์ด(1~24)ok ์ดˆ๋“ฑ 2 ํ•™๋…„ 1์ฃผ 2 2์ฃผ 7 3์ฃผ 12 4์ฃผ 17 ๋ถ€๋ก` ๊ตญ์–ด ๋Šฅ๋ ฅ ์ธ์ฆ ์‹œํ—˜ 22 1์ฃผ 1. ๋Š๋‚Œ์„ ๋งํ•ด์š” 1 โ‘ด แ„‚ โ‘ต แ„€ 1 8~13์ชฝ ๋“ฃ๊ธฐ ๋งํ•˜๊ธฐ/์“ฐ๊ธฐ 1 ` 2 ` 3 ์ฐธ๊ณ  ` 4 5 5 5 ` 6 4 ` 7 ์ฐธ๊ณ  ` 8 ์ผ๊ธฐ ` 9 5 10 1 11, 3 [1~3] ๋“ค๋ ค์ค„ ๋‚ด์šฉ ์˜›๋‚  ์˜›๋‚ , ๊นŠ์€ ์‚ฐ๊ณจ์งœ๊ธฐ์— ํฐ ํ˜ธ๋ž‘์ด ํ•œ ๋งˆ๋ฆฌ๊ฐ€ ์‚ด๊ณ  ์žˆ์—ˆ์Šต ์ด

More information

<C1B6BCB1B4EBBCBCBDC3B1E2342DC3D6C1BE2E687770>

<C1B6BCB1B4EBBCBCBDC3B1E2342DC3D6C1BE2E687770> ๊ถŒ2 ๋™๊ฒฝ์žก๊ธฐ ๆฑไบฌ้›œ่จ˜ ๋™๊ฒฝ์žก๊ธฐ 173 ๊ถŒ2 ๋ถˆ์šฐ ไฝ›ๅฎ‡ ์˜๋ฌ˜์‚ฌ(้ˆๅฆ™ๅฏบ) ๋ถ€(ๅบœ)์˜ ์„œ์ชฝ 5๋ฆฌ(้‡Œ)์— ์žˆ๋‹ค. ๋‹น ๋‚˜๋ผ ์ •๊ด€(่ฒž่ง€) 6๋…„(632) ์— ์‹ ๋ผ์˜ ์„ ๋•์™•(ๅ–„ๅพท็Ž‹)์ด ์ฐฝ๊ฑดํ•˜์˜€๋‹ค. ๋ถˆ์ „(ไฝ›ๆฎฟ)์€ 3์ธต์ธ๋ฐ ์ฒด์ œ๊ฐ€ ํŠน์ดํ•˜๋‹ค. ์†์„ค์— ์ ˆํ„ฐ๋Š” ๋ณธ๋ž˜ ํฐ ์—ฐ๋ชป์ด์—ˆ๋Š”๋ฐ, ๋‘๋‘๋ฆฌ(่ฑ†่ฑ†้‡Œ) ์‚ฌ๋žŒ๋“ค์ด ํ•˜๋ฃป๋ฐค ๋งŒ์— ๋ฉ” ์šฐ๊ณ  ๋“œ๋””์–ด ์ด ๋ถˆ์ „์„ ์„ธ์› ๋‹ค. ๊ณ  ์ „ํ•œ๋‹ค. ์ง€๊ธˆ์€

More information

์กฐ์„ ์™•์กฐ ๋Šฅ ์› ๋ฌ˜ ๊ธฐ๋ณธ ์‚ฌ๋ฃŒ์ง‘ -๋ถ€๋ก : ๋Šฅ ์› ๋ฌ˜์˜ ํ˜„๋Œ€์  ๋ช…์นญํ‘œ๊ธฐ ๊ธฐ์ค€์•ˆ ์ฐจ ๋ก€ ์„œ ์žฅ : ์กฐ์„ ์™•์‹ค์˜ ๋Šฅ ์› ๋ฌ˜ ์ œ๋„ 11 ์ œ 1๋ถ€ ๋Šฅ ์› ๋ฌ˜ ๊ธฐ๋ณธ ์‚ฌ๋ฃŒ โ… . ๋Šฅํ˜ธ( ๏ฅ™ ่™Ÿ ) ๋ฐ ๋ฌ˜ํ˜ธ( ๅปŸ ่™Ÿ )๋ฅผ ๊ฒฐ์ •ํ•œ ์œ ๋ž˜ 1. ๊ฑด์›๋ฆ‰( ๅฅ ๅ…ƒ ้™ต ) 21 2. ์ •๋ฆ‰( ่ฒž ้™ต ) 22 3. ํ—Œ๋ฆ‰( ็ป ้™ต )

More information

<C0CEBCE2BABB2D33C2F7BCF6C1A420B1B9BFAAC3D1BCAD203130B1C72E687770>

<C0CEBCE2BABB2D33C2F7BCF6C1A420B1B9BFAAC3D1BCAD203130B1C72E687770> ํ•ด์ œ ๋ฉด์–‘ํ–‰๊ฒฌ์ผ๊ธฐ ๆฒ” ้™ฝ ่กŒ ้ฃ ๆ—ฅ ่จ˜ ์ด ์ž๋ฃŒ๋Š” ํ•œ๋ง์˜ ๊ฐœํ™”ํŒŒ ๊ด€๋ฃŒ, ๊น€์œค์‹ ้‡‘ ๅ… ๆค (1835~1922)์ด ์ถฉ์ฒญ๋„ ๋ฉด์ฒœ ๆฒ” ๅท ์— ์œ ๋ฐฐํ•˜๋ฉด์„œ ๋™ํ•™๋†๋ฏผํ˜๋ช… ์‹œ๊ธฐ์— ์ „๋ฌธ ๅ‚ณ ่ž ํ•œ ๊ฒƒ์„ ์ผ์ผ์ด ๊ธฐ๋กํ•œ ์ผ๊ธฐ์ฑ… ์ด๋‹ค. ์ˆ˜๋กํ•œ ๋ถ€๋ถ„์€ ์†์Œ์ฒญ์‚ฌ ็บŒ ้™ฐ ๆ™ด ๅฒ ์˜ ๊ถŒ 7๋กœ ๋‚ด์ œ ๅ…ง ้กŒ ๊ฐ€ ๋ฉด์–‘ํ–‰๊ฒฌ์ผ๊ธฐ ๆฒ” ้™ฝ ่กŒ ้ฃ ๆ—ฅ ่จ˜ ๋กœ ๋˜์–ด ์žˆ๋Š” ๋ถ€๋ถ„ ๊ฐ€์šด๋ฐ ๊ณ„์‚ฌ๋…„ ็™ธ ๅทณ ๅนด

More information

๋ฏผ์ฃผ์žฅ์ •-๋…ธ๋™์šด๋™(๋ถ„๊ถŒ).indd

๋ฏผ์ฃผ์žฅ์ •-๋…ธ๋™์šด๋™(๋ถ„๊ถŒ).indd ๋ฏผ์ฃผ์žฅ์ • 100๋…„, ๊ด‘์ฃผ ์ „๋‚จ์ง€์—ญ ์‚ฌํšŒ์šด๋™ ์—ฐ๊ตฌ ๋…ธ๋™์šด๋™์‚ฌ ์ • ํ˜ธ ๊ธฐ ๋†๋ฏผ์šด๋™ 1 ๋ชฉ ์ฐจ ์ œ1์žฅ ์—ฐ๊ตฌ ๋ฐฐ๊ฒฝ๊ณผ ๋ฐฉ๋ฒ• 07 1. ๋ฌธ์ œ์ œ๊ธฐ 2. ๊ธฐ์กด ์—ฐ๊ตฌ์˜ ๊ฒ€ํ†  3. ์—ฐ๊ตฌ ๋Œ€์ƒ์˜ ํŠน์„ฑ๊ณผ ๋ณ€ํ™” 4. ์—ฐ๊ตฌ ์ž๋ฃŒ์™€ ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 07 10 12 16 ์ œ2์žฅ ์ด์Šน๋งŒ ์ •๋ถ€ ์‹œ๋Œ€์˜ ๋…ธ๋™์กฐํ•ฉ์šด๋™ 19 1. ์ด์Šน๋งŒ ์ •๋ถ€์˜ ๋…ธ๋™์ •์ฑ…๊ณผ ๋Œ€ํ•œ๋…ธ์ด 1) ๋…ธ๋™ ๊ด€๋ จ ๋ฒ•๋ฅ ๋“ค์˜ ์ œ์ •๊ณผ ๊ด‘์ฃผ

More information

๊ณผ ์œ„ ๊ฐ€ ์˜ค๋Š” ๊ฒฝ์šฐ์—๋Š” ์•ž๋ง ๋ฐ›์นจ์„ ๋Œ€ํ‘œ์Œ์œผ๋กœ ๋ฐ”๊พผ [๋‹ค๊ฐ€ํŽ˜]์™€ [ํ๊ท€ ์—]๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ๋ฐœ์Œ์ด [์•ˆ์ž์„œ], [ํ• ํŠผ], [์—…์“ฐ๋ฏ€๋กœ], [์ ˆ๋ฏ] ํ’€์ด ์ž์Œ์œผ๋กœ ๋๋‚˜๋Š” ๋ง์ธ ์•‰- ๊ณผ ํ•ฅ-, ์—†-, ์ Š- ์— ๊ฐ๊ฐ ๋ชจ์Œ์œผ๋กœ ์‹œ์ž‘ํ•˜๋Š” ํ˜•์‹ํ˜•ํƒœ์†Œ์ธ -์•„์„œ, -์€, -์œผ๋ฏ€๋กœ, -์Œ

๊ณผ ์œ„ ๊ฐ€ ์˜ค๋Š” ๊ฒฝ์šฐ์—๋Š” ์•ž๋ง ๋ฐ›์นจ์„ ๋Œ€ํ‘œ์Œ์œผ๋กœ ๋ฐ”๊พผ [๋‹ค๊ฐ€ํŽ˜]์™€ [ํ๊ท€ ์—]๊ฐ€ ์˜ฌ๋ฐ”๋ฅธ ๋ฐœ์Œ์ด [์•ˆ์ž์„œ], [ํ• ํŠผ], [์—…์“ฐ๋ฏ€๋กœ], [์ ˆ๋ฏ] ํ’€์ด ์ž์Œ์œผ๋กœ ๋๋‚˜๋Š” ๋ง์ธ ์•‰- ๊ณผ ํ•ฅ-, ์—†-, ์ Š- ์— ๊ฐ๊ฐ ๋ชจ์Œ์œผ๋กœ ์‹œ์ž‘ํ•˜๋Š” ํ˜•์‹ํ˜•ํƒœ์†Œ์ธ -์•„์„œ, -์€, -์œผ๋ฏ€๋กœ, -์Œ . ์Œ์šด [ใ„ฑ] [๊ตญ], [๋ฐ•], [๋ถ€์–ต], [์•ˆํŒ] ๋ฐ›์นจ์˜ ๋ฐœ์Œ [ใ„ท] [๊ณง], [๋ฏฟ], [๋‚Ÿ], [๋น‹], [์˜ซ], [๊ฐ‡๋”ฐ], [ํžˆ์ƒ] [ใ…‚] [์ˆฉ], [์ž…], [๋ฌด๋ฆ…] [ใ„ด],[ใ„น],[ใ…],[ใ…‡] [๊ฐ„], [๋ง], [์„ฌ], [๊ณต] ์ฐพ์•„๋ณด๊ธฐ. ์Œ์ ˆ ๋์†Œ๋ฆฌ ๊ทœ์น™ (p. 6) [ใ„ฑ] [๋„‰], [๋ชฉ], [์‚ญ] [ใ„ด] [์•ˆ๋”ฐ], [์•ˆ๊ผฌ] [ใ„น] [์™ธ๊ณจ], [ํ• ๊ผฌ]

More information

6ยฑร‡ยธรฑร‚รท

6ยฑร‡ยธรฑร‚รท 6 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ๊ณผ์ฒœ์‹ฌ์ƒ์†Œํ•™๊ต ์กธ์—…์ฆ์„œ(๋ฌธํ—Œ๋ฒˆํ˜ธ 03-004) ์ผ์ œ๊ฐ•์ ๊ธฐ ๊ณผ์ฒœ์ดˆ๋“ฑํ•™๊ต์˜ ์œ ์ผํ•œ ํ•œ๊ตญ์ธ ๊ต์žฅ์ด์—ˆ๋˜ ๋งน์ค€์„ญ์ž„์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

More information

<C3D6C1BE5FBBF5B1B9BEEEBBFDC8B0B0DCBFEFC8A32831333031323120C3D6C1BEBABB292E687770>

<C3D6C1BE5FBBF5B1B9BEEEBBFDC8B0B0DCBFEFC8A32831333031323120C3D6C1BEBABB292E687770> ์šฐ๋ฆฌ ์‹œ์˜ ํ–ฅ๊ธฐ ์‚ฌ๋ž‘ํ•˜๋Š” ์ผ๊ณผ ๋‹ญ๊ณ ๊ธฐ๋ฅผ ์”น๋Š” ์ผ ์ตœ์Šน์ž, ์œ  ์ค€ ์„œ์šธ์˜ˆ์ˆ ๋Œ€ํ•™๊ต ๋ฌธ์˜ˆ์ฐฝ์ž‘๊ณผ ๊ฐ•์‚ฌ/๋ฌธํ•™ํ‰๋ก ๊ฐ€ ํ•œ ์ˆŸ๊ฐˆ์˜ ๋ฐฅ, ํ•œ ๋ฐฉ์šธ์˜ ๋ˆˆ๋ฌผ๋กœ ๋ฌด์—‡์„ ์ฑ„์šธ ๊ฒƒ์ธ๊ฐ€, ๋ฐฅ์„ ๋ˆˆ๋ฌผ์— ๋ง์•„๋จน๋Š”๋‹ค ํ•œ๋“ค. ๊ทธ๋Œ€๊ฐ€ ์•„๋ฌด๋ฆฌ ๋‚˜๋ฅผ ์‚ฌ๋ž‘ํ•œ๋‹ค ํ•ด๋„ ํ˜น์€ ๋‚ด๊ฐ€ ์•„๋ฌด๋ฆฌ ๊ทธ๋Œ€๋ฅผ ์‚ฌ๋ž‘ํ•œ๋‹ค ํ•ด๋„ ๋‚˜๋Š” ์˜ค๋Š˜์˜ ๋‹ญ๊ณ ๊ธฐ๋ฅผ ์”น์–ด์•ผ ํ•˜๊ณ  ๋‚˜๋Š” ์˜ค๋Š˜์˜ ๋ˆˆ๋ฌผ์„ ์‚ผ์ผœ์•ผ ํ•œ๋‹ค.

More information

์ดˆ๋“ฑ๊ตญ์–ด์—์„œ ๊ด€์šฉํ‘œํ˜„ ์ง€๋„ ๋ฐฉ์•ˆ ์—ฐ๊ตฌ

์ดˆ๋“ฑ๊ตญ์–ด์—์„œ ๊ด€์šฉํ‘œํ˜„ ์ง€๋„ ๋ฐฉ์•ˆ ์—ฐ๊ตฌ 80 < ๊ด€์šฉ ํ‘œํ˜„ ์ธ์ง€๋„> ๋‚จ ์—ฌ 70 60 50 40 30 20 10 0 1 2 3 4 5 6 70 < ๊ด€์šฉ ํ‘œํ˜„ ์‚ฌ์šฉ ์ •๋„> ๋‚จ ์—ฌ 60 50 40 30 20 10 0 4ํ•™๋…„ ๊ฐ€๋”์“ด๋‹ค ์จ๋ณธ์ ์žˆ๋‹ค ์ „ํ˜€์•ˆ์“ด๋‹ค 5ํ•™๋…„ ๊ฐ€๋”์“ด๋‹ค ์จ๋ณธ์ ์žˆ๋‹ค ์ „ํ˜€์•ˆ์“ด๋‹ค 6ํ•™๋…„ ๊ฐ€๋”์“ด๋‹ค ์จ๋ณธ์ ์žˆ๋‹ค ์ „ํ˜€์•ˆ์“ด๋‹ค 70 < ์†๋‹ด ์ธ์ง€๋„> ๋‚จ ์—ฌ 60 50 40 30 20 10 0 1 2

More information

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45 3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : 20049 0/45 Define ~ Analyze Define VOB KBI R 250 O 2 2.2% CBR Gas Dome 1290 CTQ KCI VOC Measure Process Data USL Target LSL Mean Sample N StDev (Within) StDev

More information

177

177 176 177 178 179 180 181 182 183 184 185 186 187 188 (2) ์–‘์ฃผ์กฐ์”จ ์‚ฌ๋งˆ๋ฐฉ๋ชฉ์—๋Š” ์„œ์ฒœ์˜ ์–‘์ฃผ์กฐ์”จ๊ฐ€ 1789๋…„๋ถ€ํ„ฐ 1891๋…„๊นŒ์ง€ 5๋ช…์ด ํ•ฉ๊ฒฉํ•˜์˜€๋‹ค. ํ•œ์‚ฐ์—์„œ๋„ 1777๋…„๋ถ€ํ„ฐ 1864๋…„๊นŒ์ง€ 5๋ช…์ด ๋“ฑ์žฌ๋˜์—ˆ๊ณ , ๋น„์ธ์—์„œ๋„ 1735๋…„๋ถ€ํ„ฐ 1801๋…„๊นŒ์ง€ 4๋ช…์ด ์˜ฌ๋ผ์žˆ๋‹ค. ์„œ์ฒœ์ง€์—ญ ์ผ๋Œ€์— ๋„“๊ฒŒ ์„ธ๊ฑฐ์ง€๋ฅผ ๋งˆ๋ จํ•˜๊ณ  ์žˆ์—ˆ ๋˜ ๊ฒƒ์œผ๋กœ

More information

์ œ์ฃผ์–ด ๊ต์œก์ž๋ฃŒ(์ค‘๋“ฑ)-์ž‘์—….hwp

์ œ์ฃผ์–ด ๊ต์œก์ž๋ฃŒ(์ค‘๋“ฑ)-์ž‘์—….hwp ์—ฌ๋Š”๋ง ํ’€๊ฝƒ, ์ œ์ฃผ์–ด ์ œ์ฃผ์–ด๋Š” ์ œ์ฃผ์ธ์˜ ํ–ฅ๊ธฐ์ž…๋‹ˆ๋‹ค. ์ œ์ฃผ์ธ์˜ ์‚ถ์˜ ์†๋์—์„œ ํ”ผ์–ด๋‚˜๋Š” ์‚ถ์˜ ํ–ฅ๊ธฐ์ด๊ณ , ๊ฟˆ์˜ ๋‚ด์Œ์ž…๋‹ˆ๋‹ค. ๊ทธ๋ถ„๋“ค์ด ์–ด๋ฃจ๋งŒ์กŒ๋˜ ์‚ถ์ด ๊ฑฐ์น ์—ˆ๋˜ ๊นŒ๋‹ญ์— ๋”์šฑ ํ–ฅ๊ธฐ๋กญ๊ณ , ๊ทธ ๊ฟˆ์ด ์• ํ‹‹ํ–ˆ๊ธฐ์— ๋”์šฑ ์€์€ํ•ฉ๋‹ˆ๋‹ค. ์ œ์ฃผ์–ด๋Š” ์ œ์ฃผ๊ฐ€ ํ”ผ์›Œ๋‚ธ ํ’€์žŽ์ž…๋‹ˆ๋‹ค. ์ œ์ฃผ์˜ ๊ฑฐ์นœ ๋•…์— ๋ฟŒ๋ฆฌ๋ฅผ ๋‚ด๋ฆฌ๊ณ  ์‹น์„ ํ‹”์šฐ๊ณ , ๋น„๋ฐ”๋žŒ ๋งž๊ณ  ์ž๋ž๊ธฐ์— ๋”์šฑ ์งˆ๋ฐ•ํ•ฉ๋‹ˆ๋‹ค. ์‚ฌ์ฒ  ์‹ฑ๊ทธ๋Ÿฌ์šด ๋“คํ’€๊ณผ ๋“ค๊ฝƒํ–ฅ๊ธฐ๊ฐ€

More information

ยธรฉยธรฑยผร’ยฝร„รรถ 63รˆยฃ_ยณยปรรถ รƒร–รยพ

ยธรฉยธรฑยผร’ยฝร„รรถ 63รˆยฃ_ยณยปรรถ รƒร–รยพ ์ •๋ณด๋‚˜๋ˆ” ์„ญ์ด์™€ ํ•จ๊ป˜ํ•˜๋Š” ์—ฌํ–‰ ์ž„๊ฐ•์„ญ ๋ณต์ง€๊ณผ ๊ณผ์žฅ ์—ฌ๋ฆ„์ด๋‹ค. ํœด๊ฐ€์ฒ ์ด๋‹ค. ๋‹ค ๋“ค ์–ด๋””๋ก ๊ฐ€ ๋– ๋‚  ์ค€๋น„์— ๋งˆ์Œ ์ด ๋“ค๋–  ์žˆ๋Š” ์‹œ๊ธฐ๊ฐ€ ์•„๋‹Œ๊ฐ€ ์‹ถ๋‹ค. ์—ฌํ–‰ ๋งค๋‹ˆ์•„๊นŒ์ง€๋Š” ์•„๋‹ˆ ์ง€๋งŒ, ๋‚˜๋ฆ„ ์—ฌํ–‰์„ ์ฆ๊ธฐ๋Š” ์‚ฌ ๋žŒ์œผ๋กœ์„œ ๊ฐ€์กฑ๋“ค๊ณผ ์‹ ๋‚˜๋Š” ํœด ๊ฐ€๋ฅผ ๋ณด๋‚ผ ๊ณ„ํš์— ์‚ด์ง ๋“ค๋–  ์žˆ๋Š” ๋‚˜์—๊ฒŒ ํ˜ผ์ž๋งŒ ์‹ ๋‚˜์ง€ ๋ง ๊ณ  ๊ฐ™์ด ์ข€ ์‹ ๋‚ฌ์œผ๋ฉด ์ข‹๊ฒ ๋‹ค๋ฉฐ ๊ฐ€์กฑ๋“ค๊ณผ ๊ฐ™์ด ๊ฐ€๋ฉด ์ข‹์€ ์—ฌํ–‰ ๋ˆˆ์ด ์‹œ๋ฆฌ๋„๋ก

More information

01Report_210-4.hwp

01Report_210-4.hwp ์—ฐ๊ตฌ๋ณด๊ณ ์„œ 210-4 ํ•ด๋ฐฉ ํ›„ ํ•œ๊ตญ์—ฌ์„ฑ์˜ ์ •์น˜์ฐธ์—ฌ ํ˜„ํ™ฉ๊ณผ ํ–ฅํ›„ ๊ณผ์ œ ํ•œ๊ตญ์—ฌ์„ฑ๊ฐœ๋ฐœ์› ๋ชฉ ์ฐจ โ…  ์„œ ๋ก  โ…ก ๊ตญํšŒ ๋ฐ ์ง€๋ฐฉ์˜ํšŒ์—์„œ์˜ ์—ฌ์„ฑ์ฐธ์—ฌ โ…ข ์ •๋‹น์กฐ์ง๋‚ด ์—ฌ์„ฑ์ฐธ์—ฌ ๋ฐ ์ •๋‹น์˜ ์—ฌ์„ฑ์ •์ฑ… โ…ฃ ์—ฌ์„ฑ์œ ๊ถŒ์ž์˜ ํˆฌํ‘œ์œจ ๋ฐ ํˆฌํ‘œํ–‰ํƒœ โ…ค ์—ฌ์„ฑ๋‹จ์ฒด์˜ ์—ฌ์„ฑ์ •์น˜์ฐธ์—ฌ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ์šด๋™ โ…ฅ ์—ฌ์„ฑ์˜ ์ •์น˜์ฐธ์—ฌ ํ™•๋Œ€๋ฅผ ์œ„ํ•œ ํ–ฅํ›„ ๊ณผ์ œ ์ฐธ๊ณ ๋ฌธํ—Œ ๋ถ€ ๋ก ํ‘œ ๋ชฉ ์ฐจ โ…  ์„œ ๋ก  . ์„œ๋ก  1.

More information

<C3D1BCB15FC0CCC8C45FBFECB8AE5FB1B3C0B0C0C75FB9E6C7E228323031362D352D32315FC5E4292E687770>

<C3D1BCB15FC0CCC8C45FBFECB8AE5FB1B3C0B0C0C75FB9E6C7E228323031362D352D32315FC5E4292E687770> ์ด์„  ์ดํ›„ ์šฐ๋ฆฌ ๊ต์œก์˜ ๋ฐฉํ–ฅ ๋‹น ์ฒด์ œ์—์„œ ์šฐ๋ฆฌ ๊ต์œก์˜ ์ „๋ง๊ณผ ๊ต์œกํ–‰์ •๊ฐ€๋“ค์˜ ์—ญํ•  ๋ฐ• ํ˜ธ ๊ทผ ์„œ์šธ์‹œ์˜ํšŒ ์˜์› ๊ต์œก์œ„์›ํšŒ ์œ„์› ์„œ๋ก  ๋…„ ์›” ์ผ ์ œ ๋Œ€ ๊ตญํšŒ์˜์› ์„ ๊ฑฐ๊ฐ€ ์น˜๋Ÿฌ์กŒ๋‹ค ์„ ๊ฑฐ๋Š” ๋ฐ”๋กœ ๋ฏผ์˜ ์˜ ๋ฐ˜์˜์ด๊ธฐ ๋•Œ๋ฌธ์— ์ด์„ ๊ฒฐ๊ณผ๋ฅผ ์‚ดํŽด๋ณด๊ณ  ์™œ ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๊ฐ€ ๋‚˜์™”๋Š”๊ฐ€๋ฅผ ๋ถ„์„ํ•ด ๋ณธ ํ›„ ๋…„ ์›” ์ผ์„ ๊ธฐ์ ์œผ๋กœ ์ œ ๋Œ€ ๊ตญํšŒ์˜์›๋“ค์˜ ์ž„๊ธฐ๊ฐ€ ์‹œ ์ž‘๋˜๋Š” ์ƒํ™ฉ์—์„œ ์šฐ๋ฆฌ ๊ต์œก์ด ์–ด๋–ป๊ฒŒ

More information

๋ชฉ ์ฐจ ็‡Ÿ ไธ‹ ้ข 5 ๅ‰ ๆ‰€ ้ข 71 ๅพŒ ๆ‰€ ้ข 153 ไธ‰ ๆœจ ้ข 263 ๏ง„ ๏งŠ ้ข 285 ้ƒฝ ๅทฒ ไธŠ ๆข 367 ๅŒ ๆฒป ๏ง‘ ๅนด (1867) ๆญฃ ๆœˆ ๆ—ฅ ๆฐธ ๅฎ— ้˜ฒ ็‡Ÿ ไปŠ ไธ ๅฏ ๅผ ๅธณ ็ฑ ๋ฒ”๋ก€ 1. ํ›ผ์† ๋“ฑ์˜ ์ด์œ ๋กœ ํŒ๋…์ด ๋ถˆ๊ฐ€๋Šฅํ•œ ๊ธ€์ž๋Š” ๋กœ ํ‘œ๊ธฐํ•จ. ๋‹จ, ๋น„์ • ์ด ๊ฐ€๋Šฅํ•œ ๊ฒฝ์šฐ๋Š” ( ) ์•ˆ์— ํ‘œ๊ธฐํ•จ. 2. ์›๋ณธ์—์„œ ๋ˆ„๋ฝ๋œ ๊ธ€์ž๋Š” [ ] ์•ˆ์— ํ‘œ๊ธฐํ•จ. ๋‹จ, ๋ˆ„๋ฝ๋œ

More information

639..-1

639..-1 ์ œ639ํ˜ธ [์ฃผ๊ฐ„] 2014๋…„ 12์›” 15์ผ(์›”์š”์ผ) http://gurotoday.com http://cafe.daum.net/gorotoday ๋ฌธ์˜ 02-830-0905 ๋Œ€์ž… ์ค€๋น„์— ์ง€์นœ ์ˆ˜ํ—˜์ƒ ์—ฌ๋Ÿฌ๋ถ„ ํž˜๋‚ด์„ธ์š” ์‹ ๋„๋ฆผํ…Œํฌ๋…ธ๋งˆํŠธ์„œ ์ˆ˜ํ—˜์ƒ๊ณผ ํ•™๋ถ€๋ชจ 600๋ช… ๋Œ€์ƒ ๋Œ€์ž…์„ค๋ช…ํšŒ ๊ตฌ๋กœ์•„ํŠธ๋ฐธ๋ฆฌ์„œ๋Š” ์ˆ˜ํ—˜์ƒ 1,000๋ช… ์ดˆ๋Œ€ ํ•ดํ”ผ ์ฝ˜์„œํŠธ ์—ด๋ ค ๊ตฌ๋กœ๊ตฌ๊ฐ€ ๋Œ€์ž… ์ค€๋น„๋กœ ์ง€์นœ

More information

๊ต์œก ๊ณผ ํ•™๊ธฐ ์ˆ ๋ถ€ ๊ณ  ์‹œ ์ œ 20 11-36 1ํ˜ธ ์ดˆ ์ค‘๋“ฑ๊ต์œก๋ฒ• ์ œ23์กฐ ์ œ2ํ•ญ์— ์˜๊ฑฐํ•˜์—ฌ ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ ์‹œํ•ฉ๋‹ˆ๋‹ค. 2011๋…„ 8์›” 9์ผ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์žฅ๊ด€ 1. ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ • ์ด๋ก ์€ ๋ณ„์ฑ… 1 ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 2. ์ดˆ๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์€ ๋ณ„์ฑ…

๊ต์œก ๊ณผ ํ•™๊ธฐ ์ˆ ๋ถ€ ๊ณ  ์‹œ ์ œ 20 11-36 1ํ˜ธ ์ดˆ ์ค‘๋“ฑ๊ต์œก๋ฒ• ์ œ23์กฐ ์ œ2ํ•ญ์— ์˜๊ฑฐํ•˜์—ฌ ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ ์‹œํ•ฉ๋‹ˆ๋‹ค. 2011๋…„ 8์›” 9์ผ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์žฅ๊ด€ 1. ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ • ์ด๋ก ์€ ๋ณ„์ฑ… 1 ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 2. ์ดˆ๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์€ ๋ณ„์ฑ… ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€ ๊ณ ์‹œ ์ œ 2011 361ํ˜ธ [๋ณ„์ฑ… 3] ์ค‘ํ•™๊ต ๊ต์œก๊ณผ์ • ๊ต์œก ๊ณผ ํ•™๊ธฐ ์ˆ ๋ถ€ ๊ณ  ์‹œ ์ œ 20 11-36 1ํ˜ธ ์ดˆ ์ค‘๋“ฑ๊ต์œก๋ฒ• ์ œ23์กฐ ์ œ2ํ•ญ์— ์˜๊ฑฐํ•˜์—ฌ ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์„ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ณ ์‹œํ•ฉ๋‹ˆ๋‹ค. 2011๋…„ 8์›” 9์ผ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€์žฅ๊ด€ 1. ์ดˆ ์ค‘๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ • ์ด๋ก ์€ ๋ณ„์ฑ… 1 ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. 2. ์ดˆ๋“ฑํ•™๊ต ๊ต์œก๊ณผ์ •์€ ๋ณ„์ฑ… 2 ์™€ ๊ฐ™์Šต๋‹ˆ๋‹ค. 3.

More information

์‹œํ—˜์ง€ ์ถœ์ œ ์–‘์‹

์‹œํ—˜์ง€ ์ถœ์ œ ์–‘์‹ 2013ํ•™๋…„๋„ ์ œ2ํ•™๊ธฐ ์ œ1์ฐจ ์„ธ๊ณ„์‚ฌ ์ง€ํ•„ํ‰๊ฐ€ ๊ณ„ ๋ถ€์žฅ ๊ต๊ฐ ๊ต์žฅ 2013๋…„ 8์›” 30์ผ 2, 3๊ต์‹œ ์ œ 3ํ•™๋…„ ์ธ๋ฌธ (2, 3, 4, 5)๋ฐ˜ ์ถœ์ œ๊ต์‚ฌ : ๋ฐฑ์ข…์› ์ด ์‹œํ—˜ ๋ฌธ์ œ์˜ ์ €์ž‘๊ถŒ์€ ํ’์•”๊ณ ๋“ฑํ•™๊ต์— ์žˆ์Šต๋‹ˆ๋‹ค. ์ € ์ž‘๊ถŒ๋ฒ•์— ์˜ํ•ด ๋ณดํ˜ธ๋ฐ›๋Š” ์ €์ž‘๋ฌผ์ด๋ฏ€๋กœ ์ „์žฌ์™€ ๋ณต์ œ๋Š” ๊ธˆ์ง€ ๋˜๋ฉฐ, ์ด๋ฅผ ์–ด๊ธธ ์‹œ ์ €์ž‘๊ถŒ๋ฒ•์— ์˜๊ฑฐ ์ฒ˜๋ฒŒ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. 3. ์ „๊ทผ๋Œ€ ์‹œ๊ธฐ (๊ฐ€)~(๋ผ)

More information

์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”์—๋Š” ๋ฌด์—‡์ด ์žˆ๋Š”์ง€ ์•Œ์•„๋ด…์‹œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”๋ฅผ ์ฒดํ—˜ํ•ฉ์‹œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”๋ฅผ ์†Œ์ค‘ํžˆ ์—ฌ๊ธฐ๋Š” ๋งˆ์Œ์„ ๊ฐ€์ง‘์‹œ๋‹ค. 5. ์šฐ๋ฆฌ ์˜ท ํ•œ๋ณต์˜ ํŠน์ง• ์ž๋ฃŒ 3 ์ฐธ๊ณ  ๋‚จ์ž์™€ ์—ฌ์ž๊ฐ€ ์ž…๋Š” ํ•œ๋ณต์˜ ์ข…๋ฅ˜ ๊ฐ€ ๋‹ฌ๋ž๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๋ ค ์ค€๋‹ค. 85์ชฝ ๋ฌธ์ œ 8, 9 ์ž๋ฃŒ

์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”์—๋Š” ๋ฌด์—‡์ด ์žˆ๋Š”์ง€ ์•Œ์•„๋ด…์‹œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”๋ฅผ ์ฒดํ—˜ํ•ฉ์‹œ๋‹ค. ์šฐ๋ฆฌ๋‚˜๋ผ์˜ ์ „ํ†ต๋ฌธํ™”๋ฅผ ์†Œ์ค‘ํžˆ ์—ฌ๊ธฐ๋Š” ๋งˆ์Œ์„ ๊ฐ€์ง‘์‹œ๋‹ค. 5. ์šฐ๋ฆฌ ์˜ท ํ•œ๋ณต์˜ ํŠน์ง• ์ž๋ฃŒ 3 ์ฐธ๊ณ  ๋‚จ์ž์™€ ์—ฌ์ž๊ฐ€ ์ž…๋Š” ํ•œ๋ณต์˜ ์ข…๋ฅ˜ ๊ฐ€ ๋‹ฌ๋ž๋‹ค๋Š” ๊ฒƒ์„ ์•Œ๋ ค ์ค€๋‹ค. 85์ชฝ ๋ฌธ์ œ 8, 9 ์ž๋ฃŒ ํ†ตํ•ฉ ์šฐ๋ฆฌ๋‚˜๋ผ โ‘ต ์กฐ์ƒ๋‹˜๋“ค์ด ์‚ด๋˜ ์ง‘์— ๋Œ€ ํ•ด ์•„๋Š” ์–ด๋ฆฐ์ด ์žˆ๋‚˜์š”? ์ €์š”. ์˜จ๋Œ๋กœ ๋‚œ๋ฐฉ๊ณผ ์ทจ์‚ฌ๋ฅผ ๊ฐ™์ด ํ–ˆ์–ด์š”! ๋„ค, ๋งž์•„์š”. ๊ทธ๋ฆฌ๊ณ  ์กฐ์ƒ๋‹˜๋“ค์€ ๊ธฐ์™€์ง‘๊ณผ ์ดˆ๊ฐ€์ง‘์—์„œ ์‚ด์•˜์–ด์š”. ์ฃผ๋ฌด๋ฅด๊ฑฐ๋‚˜ ๋ง์•„์„œ ๋งŒ๋“ค ์ˆ˜ ์žˆ๋Š” ์ „ํ†ต ๊ทธ๋ฆ‡๋„ ์šฐ๋ฆฌ์˜ ์ „ํ†ต๋ฌธํ™”์˜ˆ์š”. ๊ทธ๋ฆฌ๊ณ  ์šฐ๋ฆฌ ์˜ท์ธ ํ•œ๋ณต์€ ์ฐธ ์•„๋ฆ„ ๋‹ต์ฃ ? ์—ฌ์ž๋Š” ์ €๊ณ ๋ฆฌ์™€ ์น˜๋งˆ, ๋‚จ์ž๋Š” ๋ฐ”์ง€์™€ ์กฐ๋ผ๋ฅผ ์ž…์–ด์š”. ๋ช…์ ˆ์— ํ•œ๋ณต์„ ์ž…๊ณ  ์ ˆ์„

More information

์ƒํ’ˆ ์ „๋‹จ์ง€

์ƒํ’ˆ ์ „๋‹จ์ง€ 2013 2013 ์ถ”์„๋งž์ด ์ถ”์„๋งž์ด ์ง€์—ญ์šฐ์ˆ˜์ƒํ’ˆ ์•ˆ๋‚ด ์•ˆ๋‚ด ์ง€์—ญ์šฐ์ˆ˜์ƒํ’ˆ ์ง€์—ญ ์šฐ์ˆ˜์ƒํ’ˆ์„ ์•ˆ๋‚ดํ•˜์—ฌ ๋“œ๋ฆฌ์˜ค๋‹ˆ ๋ช…์ ˆ ๋ฐ ํ–‰์‚ฌ์šฉ ์„ ๋ฌผ๋กœ ๋งŽ์ด ํ™œ์šฉํ•˜์—ฌ ์ฃผ์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ์ง€์—ญ์šฐ์ˆ˜์ƒํ’ˆ์„ ๊ตฌ์ž…ํ•˜์‹œ๋ฉด ์ง€์—ญ๊ฒฝ์ œ๊ฐ€ ์‚ด์•„๋‚ฉ๋‹ˆ๋‹ค. ์ฆ๊ฑฐ์šด ํ•œ๊ฐ€์œ„ ๋ณด๋‚ด์‹œ๊ณ , ๋ณต ๋งŽ์ด ๋ฐ›์œผ์„ธ์š”! - ๊ฒฝ๊ธฐ๋™๋ถ€์ƒ๊ณตํšŒ์˜์†Œ ์ž„์ง์› ์ผ๋™ - ์ง€์—ญ์šฐ์ˆ˜์ƒํ’ˆ์„ ๊ตฌ์ž…ํ•˜์‹œ๋ฉด ์ง€์—ญ๊ฒฝ์ œ๊ฐ€ ์‚ด์•„๋‚ฉ๋‹ˆ๋‹ค.

More information

::: ํ•ด๋‹น์‚ฌํ•ญ์ด ์—†์„ ๊ฒฝ์šฐ ๋ฌด ํ‘œ์‹œํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฒ€ํ† ํ•ญ๋ชฉ ๊ฒ€ ํ†  ์—ฌ ๋ถ€ ( ํ‘œ์‹œ) ์‹œ ๋ฏผ : ์œ  ( ) ๋ฌด ์‹œ ๋ฏผ ์ฐธ ์—ฌ ๊ณ  ๋ ค ์‚ฌ ํ•ญ ์ด ํ•ด ๋‹น ์‚ฌ ์ž : ์œ  ( ) ๋ฌด ์ „ ๋ฌธ ๊ฐ€ : ์œ  ( ) ๋ฌด ์˜ด ๋ธŒ ์ฆˆ ๋งŒ : ์œ  ( ) ๋ฌด ๋ฒ• ๋ น ๊ทœ ์ • : ๊ตํ†ต ํ™˜๊ฒฝ ์žฌ

::: ํ•ด๋‹น์‚ฌํ•ญ์ด ์—†์„ ๊ฒฝ์šฐ ๋ฌด ํ‘œ์‹œํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฒ€ํ† ํ•ญ๋ชฉ ๊ฒ€ ํ†  ์—ฌ ๋ถ€ ( ํ‘œ์‹œ) ์‹œ ๋ฏผ : ์œ  ( ) ๋ฌด ์‹œ ๋ฏผ ์ฐธ ์—ฌ ๊ณ  ๋ ค ์‚ฌ ํ•ญ ์ด ํ•ด ๋‹น ์‚ฌ ์ž : ์œ  ( ) ๋ฌด ์ „ ๋ฌธ ๊ฐ€ : ์œ  ( ) ๋ฌด ์˜ด ๋ธŒ ์ฆˆ ๋งŒ : ์œ  ( ) ๋ฌด ๋ฒ• ๋ น ๊ทœ ์ • : ๊ตํ†ต ํ™˜๊ฒฝ ์žฌ ์‹œ ๋ฏผ ๋ฌธ์„œ๋ฒˆํ˜ธ ์–ด๋ฅด์‹ ๋ณต์ง€๊ณผ-1198 ์ฃผ๋ฌด๊ด€ ์žฌ๊ฐ€๋ณต์ง€ํŒ€์žฅ ์–ด๋ฅด์‹ ๋ณต์ง€๊ณผ์žฅ ๋ณต์ง€์ •์ฑ…๊ด€ ๋ณต์ง€๊ฑด๊ฐ•์‹ค์žฅ ๊ฒฐ์žฌ์ผ์ž 2013.1.18. ๊ณต๊ฐœ์—ฌ๋ถ€ ๋ฐฉ์นจ๋ฒˆํ˜ธ ๋Œ€์‹œ๋ฏผ๊ณต๊ฐœ ํ˜‘ ์กฐ 2013๋…„ ์žฌ๊ฐ€๋…ธ์ธ์ง€์›์„ผํ„ฐ ์šด์˜ ์ง€์› ๊ณ„ํš 2013. 01. ๋ณต์ง€๊ฑด๊ฐ•์‹ค (์–ด๋ฅด์‹ ๋ณต์ง€๊ณผ) ::: ํ•ด๋‹น์‚ฌํ•ญ์ด ์—†์„ ๊ฒฝ์šฐ ๋ฌด ํ‘œ์‹œํ•˜์‹œ๊ธฐ ๋ฐ”๋ž๋‹ˆ๋‹ค. ๊ฒ€ํ† ํ•ญ๋ชฉ ๊ฒ€ ํ†  ์—ฌ ๋ถ€ ( ํ‘œ์‹œ) ์‹œ ๋ฏผ : ์œ  ( ) ๋ฌด

More information

2

2 1 2 3 4 5 6 ๋˜ํ•œ ๊ฐ™์€ ํƒˆ๋ถ์ž๊ฐ€ ์†Œ์œ ํ•˜๊ณ  ์žˆ๋˜ ์ด๋ผ๊ณ  ํ• ์ˆ˜ ์žˆ๋Š” ๋˜ ํ•œ์žฅ์˜ ์‚ฌ์ง„๋„ ํ…Œ๋ฃจ๊ผฌ์–‘์ด๋ผ๊ณ  ๋ณด๊ณ ์žˆ๋‹ค. ไบŒๅฎฎๅ–œไธ€ (๋‹ˆ๋…ธ๋ฏธ์•ผ ์š”์‹œ๊ฐ€์ฆˆ). 1938 ๋…„ 1 ์›” 15 ์ผ์ƒ. ์‹ ์žฅ 156~7 ์„ผ์น˜. ์ฒด์ค‘ 52 ํ‚ค๋กœ. ๋ชธ์€ ์—ฌ์œˆํ˜•์ด๊ณ  ์–ผ๊ตด์€ ๊ธดํ˜•. 1962 ๋…„ 9 ์›”๊ฒฝ ๋„๊พœ๋„ ์‹œ๋‚˜๊ฐ€์™€๊ตฌ์—์„œ ์‹ค์ข…. ๋‹น์‹œ 24 ์„ธ. ์ง์—… ํšŒ์‚ฌ์›. ๋ฐค์—๋Š” ์ „๋ฌธํ•™๊ต์—

More information

ํ™”์ด๋ จ(่ฏไปฅๆˆ€) 141001.hwp

ํ™”์ด๋ จ(่ฏไปฅๆˆ€) 141001.hwp ๅนด ่Šฑ ไธ‹ ็† ่Šณ ็›Ÿ ๆฎต ๆต ็„ก ้™ ๆƒ… ๆƒœ ๅˆฅ ๆฒˆ ้ ญ ๅ…’ ่† ๅคœ ๆทฑ ้›ฒ ็ด„ ไธ‰ ์‹ญ๋…„์„ ๊ฝƒ ์•„๋ž˜์„œ ์•„๋ฆ„๋‹ค์šด ๋งน์„ธ ์ง€ํ‚ค๋‹ˆ ํ•œ ๊ฐ€๋‹ฅ ํ’๋ฅ˜๋Š” ๋์—†๋Š” ์ •์ด์–ด๋ผ. ๊ทธ๋Œ€์˜ ๋ฌด๋ฆŽ์— ๋ˆ„์›Œ ์• ํ‹‹ํ•˜๊ฒŒ ์ด๋ณ„ํ•˜๋‹ˆ ๋ฐค์€ ๊นŠ์–ด ๊ตฌ๋ฆ„๊ณผ ๋น—์†์—์„œ ์‚ผ์ƒ์„ ๊ธฐ์•ฝํ•˜๋„ค. * ๋“ค์–ด๊ฐ€๋Š” ๊ธ€ ํŒŒ๋ฅด๋ผ๋‹ˆ ๋จธ๋ฆฌ๋ฅผ ๊นŽ์€ ์•„์ด๊ฐ€ ์‹œ๋ฆฐ ์†์„ ํ˜ธํ˜ธ ๋ถˆ๋ฉฐ ๋ถˆ ์˜†์— ์•‰์•„ ์žˆ๋‹ค. ์–ผ์Œ์žฅ ๊ฐ™์€ ๋‚ ์”จ์— ํ—ˆ์—ฐ ์ž…๊น€์ด ์—ฐ๊ธฐ์ฒ˜๋Ÿผ

More information

ร†รฒรˆ๏ฟฝยดยฉยธยฎ 94รˆยฃ ยณยปรรถ_รƒร–รยพ

ร†รฒรˆ๏ฟฝยดยฉยธยฎ 94รˆยฃ ยณยปรรถ_รƒร–รยพ ์‚ฌ๋žŒ ์•ˆ๊ฐ„ํž˜์„ ๋‹คํ•ด ํ–‰๋ณตํ•ด์ง€๊ณ  ์‹ถ์—ˆ๋˜ ์‚ฌ๋žŒ, ํ—ˆ์„ธ์šฑ์„ ๊ทธ๋ฆฌ๋‹ค - ํ—ˆ์„ธ์šฑ ํ‰์ „ ์ž‘๊ฐ€ ์†ก๊ธฐ์—ญ - ์„œ์šธ ํ‰ํ†ต์‚ฌ ๋…ธ๋™๋ถ„ํšŒ์› ํ—ˆ์„ธ์šฑ. ํšจ์ˆœ์ด ๋ฏธ์„ ์ด์˜ ์–ต์šธํ•œ ์ฃฝ์Œ์— ๋Œ€ ํ•ด ๋ฏธ๊ตญ์€ ์‚ฌ์ฃ„ํ•˜๋ผ๋Š” ํˆฌ์Ÿ์˜ ํ˜„์žฅ์— ์„œ ๊ทธ ๋ถ„์„ ์ฒ˜์Œ ๋งŒ๋‚ฌ๋‹ค. ํ‰ํƒ ๋Œ€์ถ”๋ฆฌ ์˜ ๋„“์€ ๋“คํŒ์„ ๋‘ ์†Œ๋…€์˜ ๋ชฉ์ˆจ์„ ์•— ์•„๊ฐ„ ๋ฏธ๊ตฐ๋“ค์—๊ฒŒ ๋˜ ๋นผ์•—๊ธธ ์ˆœ ์—†๋‹ค๋ฉฐ ๋งŒ๋“ค์–ด ์˜จ ํ˜„์ˆ˜๋ง‰์„ ๋Œ€์ถ”์ดˆ๊ต์— ๊ฐ™์ด ๊ฑธ์—ˆ๋‹ค. 2007๋…„

More information

ๆญฏ1##01.PDF

ๆญฏ1##01.PDF 1.? 1.?,..,.,. 19 1.,,..,. 20 1.?.,.,,...,.,..,. 21 1,.,.,. ( ),. 10 1? 2.5%. 1 40. 22 1.? 40 1 (40 2.5% 1 ). 10 40 4., 4..,... 1997 ( ) 12. 4.6% (26.6%), (19.8%), (11.8%) 23 1. (?).. < >..,..!!! 24 2.

More information

<5BC1F8C7E0C1DF2D31B1C75D2DBCF6C1A4BABB2E687770>

<5BC1F8C7E0C1DF2D31B1C75D2DBCF6C1A4BABB2E687770> ์ œ3ํŽธ ์ • ์น˜ ์ œ3ํŽธ ์ •์น˜ ์ œ1์žฅ ์˜ํšŒ ์ œ1์ ˆ ์˜ํšŒ ๊ธฐ๊ตฌ ์ œ2์ ˆ ์˜ํšŒ๊ธฐ๊ตฌ ๋ฐ ์ง์› ํ˜„ํ™ฉ ์ž์น˜ํ–‰์ •์ „๋ฌธ์œ„์›ํšŒ ์ž์น˜ํ–‰์ •์ „๋ฌธ์œ„์› ์‚ฐ์—…๊ฑด์„ค์œ„์›ํšŒ ์‚ฐ์—…๊ฑด์„ค์ „๋ฌธ์œ„์› ์ œ1์žฅ ์˜ํšŒ 321 ์ œ3์ ˆ ์˜ํšŒ ํ˜„ํ™ฉ 1. ์ œ1๋Œ€ ๊ณ ์ฐฝ๊ตฐ์˜ํšŒ ์ œ1๋Œ€ ๊ณ ์ฐฝ๊ตฐ์˜ํšŒ ์˜์› ํ˜„ํ™ฉ ์ง ์œ„ ์„ฑ ๋ช… ์ƒ๋…„์›”์ผ ์ฃผ ์†Œ ๋น„ ๊ณ  322 ์ œ3ํŽธ ์ •์น˜ 2. ์ œ2๋Œ€ ๊ณ ์ฐฝ๊ตฐ์˜ํšŒ ์ œ2๋Œ€ ๊ณ ์ฐฝ๊ตฐ์˜ํšŒ ์˜์› ํ˜„ํ™ฉ ์ง ์œ„

More information

120229(00)(1~3).indd

120229(00)(1~3).indd ๋ฒ• ๋ฅ  ๊ตญํšŒ์—์„œ ์˜๊ฒฐ๋œ ๊ณต์ง์„ ๊ฑฐ๋ฒ• ์ผ๋ถ€๊ฐœ์ •๋ฒ•๋ฅ ์„ ์ด์— ๊ณตํฌํ•œ๋‹ค. ๋Œ€ ํ†ต ๋ น ์ด ๋ช… ๋ฐ• 2012๋…„ 2์›” 29์ผ ๊ตญ ๋ฌด ์ด ๋ฆฌ ๊น€ ํ™ฉ ์‹ ๊ตญ ๋ฌด ์œ„ ์› ํ–‰์ •์•ˆ์ „๋ถ€ ๋งน ํ˜• ๊ทœ ์žฅ ๊ด€ (์ค‘์•™์„ ๊ฑฐ๊ด€๋ฆฌ์œ„์›ํšŒ ์†Œ๊ด€) ๋ฒ•๋ฅ  ์ œ11374ํ˜ธ ๊ณต์ง์„ ๊ฑฐ๋ฒ• ์ผ๋ถ€๊ฐœ์ •๋ฒ•๋ฅ  ๊ณต์ง์„ ๊ฑฐ๋ฒ• ์ผ๋ถ€๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ฐœ์ •ํ•œ๋‹ค. ์ œ21์กฐ์ œ1ํ•ญ์— ๋‹จ์„œ๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์‹ ์„คํ•œ๋‹ค. ๋‹ค๋งŒ,์„ธ์ข…ํŠน๋ณ„์ž์น˜์‹œ์˜ ์ง€์—ญ๊ตฌ๊ตญํšŒ์˜์›

More information

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770>

<C7D1B1B9B0E6C1A6BFACB1B8C7D0C8B828C0CCC1BEBFF85FC0CCBBF3B5B75FBDC5B1E2B9E9292E687770> ํ•œ๊ตญ ์ฆ๊ถŒํšŒ์‚ฌ์˜ ํšจ์œจ์„ฑ ๋ถ„์„ ์ด์ข…์›* ์ด์ƒ๋ˆ** ์‹ ๊ธฐ๋ฐฑ*** โ… . ์„œ ๋ก  1990๋…„์ดํ›„ ์ฆ๊ถŒ์‹œ์žฅ์˜ ๊ฐœ๋ฐฉํ™” ๋ฐ ์ž์œจํ™”๊ฐ€ ์ง„์ „๋˜์–ด๊ฐ€๊ณ  ์žˆ๋˜ ๊ณผ์ •์—์„œ 1997๋…„ 12์›” ์™ธํ™˜ ์œ„๊ธฐ์‚ฌํƒœ๊ฐ€ ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜์—ˆ๊ณ , ์ดํ›„ ์ฆ๊ถŒํšŒ์‚ฌ์˜ ๊ตฌ์กฐ์กฐ์ • ๊ฐ€์†ํ™”, ์™ธ๊ตญ๊ณ„ ์ฆ๊ถŒํšŒ์‚ฌ์˜ ์ง„์ž… ํ™•๋Œ€ ๋ฐ IT๊ธฐ์ˆ ์˜ ๋ฐœ์ „์— ๋”ฐ๋ฅธ ์ฆ๊ถŒ ์˜จ๋ผ์ธ๊ฑฐ๋ž˜์˜ ํ™•๋Œ€, ์™ธ๊ตญ์ธ์˜ ํˆฌ์žํ•œ๋„ ์™„์ „์ฒ ํ์— ๋”ฐ๋ฅธ ์™ธ๊ตญ์ธ ๊ฑฐ๋ž˜๋น„์ค‘์˜

More information

<32332D322D303120B9E6BFB5BCAE20C0CCB5BFC1D6312D32302E687770>

<32332D322D303120B9E6BFB5BCAE20C0CCB5BFC1D6312D32302E687770> ๋ฐฉ ์˜ ์„ ์ด ๋™ ์ฃผ ์ตœ๊ทผ ๋“ค์–ด ์†Œ์…œ์ปค๋จธ์Šค๊ฐ€ ์ฐจ์„ธ๋Œ€ ์ „์ž์ƒ๊ฑฐ๋ž˜ ๋ชจํ˜•์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค ๋…„ ๊ตญ๋‚ด์— ์ฒซ ๋“ฑ์žฅํ•œ ์ด๋ž˜ ์†Œ์…œ์ปค๋จธ์Šค ์‹œ์žฅ ๊ทœ๋ชจ๋Š” ๋…„ ์กฐ ์›์— ๋‹ฌํ–ˆ๊ณ  ๋…„ ์กฐ ์›์„ ๋„˜์–ด์„ฐ๋‹ค ์˜จ๋ผ์ธ ์‡ผํ•‘๋ชฐ ํ˜น์€ ์ด๋งˆ์ผ“ํ”Œ๋ ˆ์ด์Šค ๋“ฑ์œผ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ๊ธฐ์กด์˜ ์ „ ์ž์ƒ๊ฑฐ๋ž˜ ๋ชจํ˜•์€ ์ผ๋ฐ˜์ ์œผ๋กœ ํŒ๋งค์ž๊ฐ€ ์ƒํ’ˆ ๊ฐ€๊ฒฉ ๊ณผ ๊ฑฐ๋ž˜ ํ˜•ํƒœ๋ฅผ ์ œ์•ˆํ•˜๊ณ  ๊ตฌ๋งค์ž๊ฐ€ ํ•ด๋‹น ๊ฑฐ๋ž˜๋ฅผ ์„ ํƒ์ ์œผ๋กœ ์ˆ˜์šฉํ•˜๋Š” ์ผ๋ฐฉํ–ฅ ๋ชจํ˜•์˜

More information

๋ณธ๋ฌธ01

๋ณธ๋ฌธ01 โ…ก ๋…ผ์ˆ  ์ง€๋„์˜ ๋ฐฉ๋ฒ•๊ณผ ์‹ค์ œ 2. ์ฝ๊ธฐ์—์„œ ๋…ผ์ˆ ๊นŒ์ง€ ์˜ ๊ฐœ๋ฐœ ๋ฐฐ๊ฒฝ ์ฝ๊ธฐ์—์„œ ๋…ผ์ˆ ๊นŒ์ง€ ์ž๋ฃŒ์ง‘ ๊ฐœ๋ฐœ์˜ ๋ณธ๋ž˜ ๋ชฉ์ ์€ ์ดˆ ์ค‘ ๊ณ ๊ต ํ•™๊ต ํ‰๊ฐ€์—์„œ ์„œ์ˆ ํ˜• ํ‰๊ฐ€ ๋น„์ค‘์ด 2005 ํ•™๋…„๋„ 30%, 2006ํ•™๋…„๋„ 40%, 2007ํ•™๋…„๋„ 50%๋กœ ํ™•๋Œ€ ๋˜๊ณ , 2008ํ•™๋…„๋„๋ถ€ํ„ฐ ๋Œ€ํ•™ ์ž…์‹œ์—์„œ ๋…ผ์ˆ  ๋น„์ค‘์ด ์ปค์ง€๋ฉด์„œ ๋…ผ์ˆ  ๊ต์œก์€ ํ•™๊ต๊ฐ€ ์ฑ…์ž„์ง„๋‹ค. ๋Š” ํ’ํ†  ์กฐ์„ฑ์œผ๋กœ ๊ณต๊ต์œก์˜ ์‹ ๋ขฐ์„ฑ๊ณผ

More information

untitled

untitled ์ •์ฑ…๊ณผ์ œ 2008-27 ํ™˜์œจ ๋ฐ ๊ตญ์ œ์œ ๊ฐ€ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ด€๊ด‘๋ถ€๋ฌธ ์˜ํ–ฅ ๋ถ„์„ ์—ฐ๊ตฌ์ž: ์ด๊ฐ•์šฑ ์—ฐ๊ตฌ์ฑ…์ž„ : ์ด๊ฐ•์šฑ (ํ•œ๊ตญ๋ฌธํ™”๊ด€๊ด‘์—ฐ๊ตฌ์› ์—ฐ๊ตฌ์œ„์›) ๊ณต๋™์—ฐ๊ตฌ์ž: ๋ชจ์ˆ˜์› (๋ชฉํฌ๋Œ€ํ•™๊ต ๊ต์ˆ˜) ์—ฐ๊ตฌ์กฐ์› : ๊น€๋ฏผ๊ฒฝ ์„œ ๋ฌธ ํ™˜์œจ ๋ฐ ๊ตญ์ œ ์œ ๊ฐ€์˜ ๋ถˆ์•ˆ์ • ๋“ฑ ์™ธ๋ถ€ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋”ฐ๋ผ ๊ด€๊ด‘์‚ฐ์—… ์— ๋Œ€ํ•œ ์ „๋ง์ด ์–ด๋ ค์šด ์ƒํ™ฉ์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ์—์„œ ์‹œ์ž‘๋œ ์„ธ๊ณ„ ๊ฒฝ๊ธฐ์˜ ์นจ์ฒด๋Š” ๊ด€๊ด‘๋ถ€๋ฌธ์—๋„ ์œ„์ถ•์„

More information

์ง„๋‹จ, ํ‘œ์‹œใƒป๊ด‘๊ณ ๋ฒ• ์‹œํ–‰ 1๋…„

์ง„๋‹จ, ํ‘œ์‹œใƒป๊ด‘๊ณ ๋ฒ• ์‹œํ–‰ 1๋…„ ์ง„๋‹จ, ํ‘œ์‹œ ๊ด‘๊ณ ๋ฒ• ์‹œํ–‰ 1๋…„ ํ‘œ์‹œ ๊ด‘๊ณ ๊ทœ์ œ ๋ฒ•๊ทœ๋Š” ํ†ตํ•ฉ๋˜์–ด์•ผ ํ•œ๋‹ค! ์ •์€์ข… ํ˜ธํ…”๋กฏ๋ฐ ๊ฒฝ์˜์ง€์›์‹ค/์ง€์ ์žฌ์‚ฐ๊ถŒ๋ฒ• ์„์‚ฌ ํ‘œ์‹œ๊ด‘๊ณ ๋ฒ• ์‹œํ–‰ 1๋…„ ์ž…๋ฒ•๊ณผ์ •์—์„œ ๋งŽ์€ ๋…ผ๋ž€์ด ์žˆ์—ˆ๋˜ ํ‘œ์‹œ๊ด‘๊ณ ๋ฒ•์ด ์ œ์ •๋˜์–ด ์‹œํ–‰( 99๋…„ 7์›”)๋œ์ง€ ๋ฒŒ์จ 1๋…„์ด ์ง€๋‚ฌ๋‹ค. ๊ณต์ •๊ฑฐ๋ž˜๋ฒ• 23์กฐ1ํ•ญ6ํ˜ธ์˜ ๋ถ€ ๋‹นํ‘œ์‹œ๊ด‘๊ณ  ๊ทœ์ •์ด ๋ถ„๊ฐ€ํ•˜์—ฌ ํƒ„์ƒํ•œ ํ‘œ์‹œ๊ด‘๊ณ ๋ฒ•์€ ๊ธฐ์กด ๊ณต์ •๊ฑฐ๋ž˜๋ฒ•์ด ๋ถ€๋‹นํ‘œ์‹œ๊ด‘๊ณ (ํ—ˆ์œ„ ๊ณผ์žฅ, ๊ธฐ๋งŒ,

More information

ยฐรญยผยฎรร– รƒรขยทร‚

ยฐรญยผยฎรร– รƒรขยทร‚ Performance Optimization of SCTP in Wireless Internet Environments The existing works on Stream Control Transmission Protocol (SCTP) was focused on the fixed network environment. However, the number of

More information

๋ฏผ๋ณ€_๋ณด๋„์ž๋ฃŒ_ํŠน์กฐ์œ„_์˜ˆ์‚ฐ_๋ฏธํŽธ์„ฑ_ํ—Œ๋ฒ•์†Œ์›_๋ฐ_๊ณต.hwp

๋ฏผ๋ณ€_๋ณด๋„์ž๋ฃŒ_ํŠน์กฐ์œ„_์˜ˆ์‚ฐ_๋ฏธํŽธ์„ฑ_ํ—Œ๋ฒ•์†Œ์›_๋ฐ_๊ณต.hwp 1 - ์„œ์šธ ์„œ์ดˆ๊ตฌ ๋ฒ•์›๋กœ4๊ธธ 23 ์–‘์ง€๋นŒ๋”ฉ 2์ธต ์ „ํ™” 02) 522-7284, ํŒฉ์Šค 02)522-7285 ์›นํŽ˜์ด์ง€ http://minbyun.org ์ „์ž์šฐํŽธ admin@minbyun.or.kr ๋ฌธ์„œ๋ฒˆํ˜ธ : ์ˆ˜ ์‹  : ์–ธ๋ก ์‚ฌ ์ œ์œ„ ๋ฐœ ์‹  : ๋ฏผ์ฃผ์‚ฌํšŒ๋ฅผ ์œ„ํ•œ ๋ณ€ํ˜ธ์‚ฌ๋ชจ์ž„ (๋‹ด๋‹น : ์กฐ์˜๊ด€ ๋ณ€ํ˜ธ์‚ฌ 010-8848 - 7828) ์ œ ๋ชฉ [๋ณด๋„์ž๋ฃŒ][์„ธ์›”ํ˜ธTF] ๊ธฐํš์žฌ์ •๋ถ€์žฅ๊ด€์˜

More information

<C7A5C1F620BEE7BDC4>

<C7A5C1F620BEE7BDC4> ์—ฐ์„ธ๋Œ€ํ•™๊ต ์ƒ๊ฒฝ๋Œ€ํ•™ ๊ฒฝ์ œ์—ฐ๊ตฌ์†Œ Economic Research Institute Yonsei Universit ์„œ์šธ์‹œ ์„œ๋Œ€๋ฌธ๊ตฌ ์—ฐ์„ธ๋กœ 50 50 Yonsei-ro, Seodaemun-gS gu, Seoul, Korea TEL: (+82-2) 2123-4065 FAX: (+82- -2) 364-9149 E-mail: yeri4065@yonsei.ac. kr http://yeri.yonsei.ac.kr/new

More information

ยฑรจยผยบรƒยถ รƒรขยทร‚-1

ยฑรจยผยบรƒยถ รƒรขยทร‚-1 Localization Algorithms Using Wireless Communication Systems For efficient Localization Based Services, development of accurate localization algorithm has to be preceded. In this paper, research trend

More information

<C5F0B0E82D313132C8A328C0DBBEF7BFEB292E687770>

<C5F0B0E82D313132C8A328C0DBBEF7BFEB292E687770> 2012๋…„ 7์›” 17์ผ ๋ฐœํ–‰ ํ†ต๊ถŒ ์ œ112ํ˜ธ 112 ๋ฐœํ–‰์ธ:๏งกๅœญ่กก/ํŽธ์ง‘์ธ:๏คŠๅฐ™ๅ‹ณ/์ฃผ๊ฐ„:๏คŠๆณฐ่ฉข/๋ฐœํ–‰์ฒ˜:็คพ)้€€ๆบชๅญธ้‡œๅฑฑ็ก็ฉถ้™ข (์šฐ614-743) ้‡œๅฑฑๅธ‚้‡œๅฑฑ้Žญๅ€็”ฐๆตฆๆดž608-1 819-8587/F.817-4013 ๅ‡บ่™•๊ฐ€ ๋ถ„๋ช…ํ•œ ๊ณต์ง์‚ฌํšŒ ์ธ๊ฐ„์ด ๊ฐ€์ง€๋Š” ์ธ์„ฑ์€ ๊ทธ ํŠน์„ฑ์ด ๋‹ค์–‘ํ•˜์—ฌ ์ผ๋ฅ ์ ์œผ๋กœ ํŒ๋‹จ ํ•œ ํ•˜๊ธฐ๋Š” ์‰ฝ์ง€ ์•Š๋‹ค. ๊ทธ๋Ÿฌ๋ฏ€๋กœ ์–ด๋–ค ๊ด€์ ๊ณผ ์ธก๋ฉด์—์„œ ๋…ผํ•˜๋Š๋ƒ์—

More information

?์œ์ถŽํ‚ด์ž–?

?์œ์ถŽํ‚ด์ž–? ๅฃ ํŠน์ง‘/๊ฐ‘์˜ค๊ฒฝ์žฅ 100 ๋…„ ๊ธฐ๋… ์บ…์˜ค๊ฒฝ์žฅ๊ธฐ์˜ ๋ฌธ๋ฒ• ์šฐ ๊ต์ˆ˜) 1. ์„œ ๋ก  ๊ฐœํ™”๊ธฐ์‹ผ ํŒ์จ์‚ฌ์–˜์„œ๋Š” ์ •ํ‰์„œ1 ๊ตญ์–ด์™€ ๊ทผ๋Œ€๊ตญ์–ด์—์„œ ํ˜„๋Œ€ํ”ฝ์จ ๋‹จ๊ณ„ํšจ ๋„™์จ๊ฐ€๋Š” ์ค‘์š”ํ•œ ๊ณผ๋„๊ธฐ์ž‘ ์„ฑ์ฉ์œท ๋ฐ€ ์ฉ q ๊ทธ๋™์•ˆ ์ค‘์„ธ๊ตญ์–ด์™€ ํ˜„๋Œ€๊ฝ‰์–ด์ฉŒ11 ์—ฝ๊พธ์–ดl ๋น„ํ•ด์„œ ๊ทผ ๋Œ€๊ตญ์–ด์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๋Š” ์ƒ๋Œ€์ฒ™์œผ๋กœ ์†Œํ˜ํ•˜์˜€์œผ๋ฉฐ ํŠนํžˆ ๊ฐœํ™”๊ธฐ ์‹œ๋Œ€๋Š” ๊ณผ๋„๊ธฐ๋กœ ์ทจ๊ธ‰๋˜ ์–ด ๋…์ž์ ์ธ ์—ฐ๊ตฌ๋Œ€์ƒ์œผ๋กœ ์ฃผ๋ชฉ์œจ ํฌ๊ฒŒ ๋ฐ›์ง€

More information

Buy one get one with discount promotional strategy

Buy one get one with discount promotional strategy Buy one get one with discount Promotional Strategy Kyong-Kuk Kim, Chi-Ghun Lee and Sunggyun Park ISysE Department, FEG 002079 Contents Introduction Literature Review Model Solution Further research 2 ISysE

More information

CSVM ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„

CSVM ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ ๅทฅ ๅญธ ๅš ๅฃซ ๅญธ ไฝ ๏ฅ ๆ–‡ CSVM ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ Desgn and Implementaton of Concurrent Support Vector Machne Processor 2005 ๅนด 2 ๆœˆ ไป ่ท ๅคง ๅญธ ๆ ก ๅคง ๅญธ ้™ข ้›ป ๆฐฃ ๅทฅ ๅญธ ็ง‘ (์ œ์–ด ๋ฐ ์‹œ์Šคํ…œ ์ „๊ณต) ้ญ ่ผ‰ ็Ž— ๅทฅ ๅญธ ๅš ๅฃซ ๅญธ ไฝ ๏ฅ ๆ–‡ CSVM ํ”„๋กœ์„ธ์„œ ์„ค๊ณ„ ๋ฐ ๊ตฌํ˜„ Desgn

More information

<32303136C7D0B3E2B5B520B9FDC7D0C0FBBCBABDC3C7E820C3DFB8AEB3EDC1F528C8A6BCF6C7FC292E687770>

<32303136C7D0B3E2B5B520B9FDC7D0C0FBBCBABDC3C7E820C3DFB8AEB3EDC1F528C8A6BCF6C7FC292E687770> 20ํ•™๋…„๋„ ๋ฒ•ํ•™์ ์„ฑ์‹œํ—˜ 1 ์ œ2๊ต์‹œ ์ถ”๋ฆฌ๋…ผ์ฆ ์„ฑ๋ช… ์ˆ˜ํ—˜ ๋ฒˆํ˜ธ ์ด ๋ฌธ์ œ์ง€๋Š” 35๋ฌธํ•ญ์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ๋ฌธํ•ญ ์ˆ˜๋ฅผ ํ™•์ธํ•˜์‹ญ์‹œ์˜ค. ๋ฌธ์ œ์ง€์˜ ํ•ด๋‹น๋ž€์— ์„ฑ๋ช…๊ณผ ์ˆ˜ํ—˜ ๋ฒˆํ˜ธ๋ฅผ ์ •ํ™•ํžˆ ์“ฐ์‹ญ์‹œ์˜ค. ๋‹ต์•ˆ์ง€์— ์ˆ˜ํ—˜ ๋ฒˆํ˜ธ, ๋ฌธํ˜•, ์„ฑ๋ช…, ๋‹ต์„ ํ‘œ๊ธฐํ•  ๋•Œ์—๋Š” ๋‹ต์•ˆ ์ž‘์„ฑ ์‹œ ๋ฐ˜๋“œ์‹œ ์ง€์ผœ์•ผ ํ•˜๋Š” ์‚ฌํ•ญ ์— ๋”ฐ๋ผ ํ‘œ๊ธฐํ•˜์‹ญ์‹œ์˜ค. ๋‹ต์•ˆ์ง€์˜ ํ•„์  ํ™•์ธ๋ž€ ์— ํ•ด๋‹น ๋ฌธ๊ตฌ๋ฅผ ์ •์ž๋กœ ๊ธฐ์žฌํ•˜์‹ญ์‹œ์˜ค.

More information

<C1A634C2F720BAB8B0EDBCAD20C1BEC6ED20BDC3BBE720C5E4C5A920C7C1B7CEB1D7B7A5C0C720BEF0BEEE20BBE7BFEB20BDC7C5C220C1A1B0CB20C1A6C3E22E687770>

<C1A634C2F720BAB8B0EDBCAD20C1BEC6ED20BDC3BBE720C5E4C5A920C7C1B7CEB1D7B7A5C0C720BEF0BEEE20BBE7BFEB20BDC7C5C220C1A1B0CB20C1A6C3E22E687770> ์ข…ํŽธ ์‹œ์‚ฌ ํ† ํฌ ํ”„๋กœ๊ทธ๋žจ์˜ ์–ธ์–ด ์‚ฌ์šฉ ์‹คํƒœ ์ ๊ฒ€ 1) 2016๋…„ 2์›” 5์ผ, ๋‘ ํ”„๋กœ๊ทธ๋žจ์˜ ์‹œ์ฒญ๋ฅ ์€ TV์กฐ์„  2.0%, JTBC 3.1%์ด๋‹ค. (๋‹์Šจ์ฝ”๋ฆฌ์•„ ์ œ๊ณต) ์ œ18์ฐจ - ๋…ผ์˜๋‚ด์šฉ - 1 ๋ฐฉ์†ก์‚ฌ ๋“ฑ๊ธ‰ ํ”„๋กœ๊ทธ๋žจ๋ช… ๋ฐฉ์†ก ์ผ์‹œ ์ถœ์—ฐ์ž TV์กฐ์„  15์„ธ ์ด์ƒ ์‹œ์ฒญ๊ฐ€ ๊ฐ•์ ๋“ค 2016. 1. 13(์ˆ˜) 23:00 ~ 00:20 2016. 1. 20(์ˆ˜) 23:00

More information

<B3EDB9AEC1FD5F3235C1FD2E687770>

<B3EDB9AEC1FD5F3235C1FD2E687770> ์˜ค์šฉ๋ก์˜ ์ž‘ํ’ˆ์„ธ๊ณ„ ์œค ํ˜œ ์ง„ 1) * ์ด ๋…ผ๋ฌธ์€ ์ƒ์ „( ็”Ÿ ๅ‰ )์— ํ•™์ž๋กœ ์ฃผ๋กœ ํ™œ๋™ํ•˜์˜€๋˜ ์˜ค์šฉ๋ก(1955~2012)์ด ์ž‘๊ณกํ•œ ์ž‘ํ’ˆ๋“ค์„ ์‚ดํŽด๋ณด๊ณ  ๊ทธ์˜ ์ž‘ํ’ˆ์„ธ๊ณ„๋ฅผ ํŒŒ์•…ํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ํ•œ๊ตญ์Œ์•…์ด๋ก ์ด ์› ๋ž˜ ์ž‘๊ณก๊ณผ ์ด๋ก ์„ ํฌํ•จํ•˜์˜€๋˜ ์ดˆ๊ธฐ ์ž‘๊ณก์ด๋ก ์ „๊ณต์˜ ํ˜•ํƒœ๋ฅผ ์—ผ๋‘์— ๋‘”๋‹ค๋ฉด ๊ทธ์˜ ์—ฐ ๊ตฌ์—์„œ ๊ธฐ์กด์—ฐ๊ตฌ์˜ ๋ฐฉ๋ฒ•๋ก ์„ ๋„˜์–ด์„œ ์ฐฝ์˜์ ์ธ ๋ถ„์„ ๊ฐœ๋…๊ณผ ์ฒด๊ณ„๋ฅผ ์ ์šฉํ•˜๋ ค๋Š”

More information

โ… . ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œํ™˜๊ฒฝ ๋ณ€ํ™” 29๋…„์€ ์„ธ๊ณ„ ๋ฐ ๊ตญ๋‚ด๊ฒฝ์ œ์˜ ์—ญ์‚ฌ ์†์—์„œ ์˜๋ฏธ ์žˆ๋Š” ํ•œ ํ•ด๋กœ ๊ธฐ๋ก๋  ๊ฒƒ์ด๋‹ค. ๋ฆฌ๋จผ ์‡ผํฌ ์ดํ›„์˜ ๊ธˆ์œต์‹œ์žฅ ํ˜ผ๋ž€๊ณผ ๊ฒฝ์ œ์ฃผ์ฒด๋“ค์˜ ์‹ฌ๋ฆฌ ์œ„์ถ•์€ ์ƒ๋‹นํ•œ ๊ธฐ๊ฐ„์˜ ๊ฒฝ๊ธฐ๋ถˆํ™ฉ์„ ์˜ˆ๊ณ ํ•˜๋Š” ๋“ฏ ํ–ˆ์ง€๋งŒ ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œ์œ„๊ธฐ๋ฅผ ์ˆ˜์Šตํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ๊ตญ์˜ ๊ธˆ์œต์•ˆ์ •ํ™” ๋Œ€์ฑ…๊ณผ ์žฌ์ •

โ… . ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œํ™˜๊ฒฝ ๋ณ€ํ™” 29๋…„์€ ์„ธ๊ณ„ ๋ฐ ๊ตญ๋‚ด๊ฒฝ์ œ์˜ ์—ญ์‚ฌ ์†์—์„œ ์˜๋ฏธ ์žˆ๋Š” ํ•œ ํ•ด๋กœ ๊ธฐ๋ก๋  ๊ฒƒ์ด๋‹ค. ๋ฆฌ๋จผ ์‡ผํฌ ์ดํ›„์˜ ๊ธˆ์œต์‹œ์žฅ ํ˜ผ๋ž€๊ณผ ๊ฒฝ์ œ์ฃผ์ฒด๋“ค์˜ ์‹ฌ๋ฆฌ ์œ„์ถ•์€ ์ƒ๋‹นํ•œ ๊ธฐ๊ฐ„์˜ ๊ฒฝ๊ธฐ๋ถˆํ™ฉ์„ ์˜ˆ๊ณ ํ•˜๋Š” ๋“ฏ ํ–ˆ์ง€๋งŒ ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œ์œ„๊ธฐ๋ฅผ ์ˆ˜์Šตํ•˜๊ธฐ ์œ„ํ•œ ๊ฐ๊ตญ์˜ ๊ธˆ์œต์•ˆ์ •ํ™” ๋Œ€์ฑ…๊ณผ ์žฌ์ • 21๋…„ ๊ตญ๋‚ด๊ฒฝ์ œ ์ „๋ง ๊ฒฝ์ œ์—ฐ๊ตฌ์‹ค gtlee@lgeri.com ๊ธˆ์œต์—ฐ๊ตฌ์‹ค hybae@lgeri.com โ… . ๊ธ€๋กœ๋ฒŒ ๊ฒฝ์ œํ™˜๊ฒฝ ๋ณ€ํ™” โ…ก. ๊ตญ๋‚ด๊ฒฝ์ œ ์ „๋ง โ…ข. ๋งบ์Œ๋ง 21๋…„ ์šฐ๋ฆฌ๊ฒฝ์ œ๋Š” ์ˆ˜์š”ํšŒ๋ณต๊ณผ ๊ธฐ์ €ํšจ๊ณผ์— ํž˜์ž…์–ด ์ƒ๋ฐ˜๊ธฐ์—๋Š” 5.8% ์„ฑ์žฅ๋ฅ ์„ ๋ณด์ผ ๊ฒƒ์œผ๋กœ ์˜ˆ ์ƒ๋œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์ €ํšจ๊ณผ๊ฐ€ ์ค„์–ด๋“œ๋Š” 21๋…„ ํ•˜๋ฐ˜๊ธฐ ์„ฑ์žฅ๋ฅ ์€ 3%๋Œ€์— ๋จธ๋ฌผ ๊ฒƒ์œผ๋กœ ๋ณด์—ฌ 21๋…„ ๊ตญ๋‚ด๊ฒฝ์ œ ์„ฑ์žฅ๋ฅ ์€

More information

ๆญฏ49์†์šฑ.PDF

ๆญฏ49์†์šฑ.PDF 2002 14 C Inventory An Estimation of 14 C Inventory on Each Unit of Wolsong NPP,,, 103-16 14 C 14 C Inventory 14 C Inventory 14 C 14 C, [Inventory] = [ 14 C ] - [ 14 C ] 14 C 14 C 13 C, 14 N 17 O [ 13

More information

๋ฌด์„ ๋ฐ์ดํ„ฐ_์š”๊ธˆ์ œ์˜_๊ฐ€๊ฒฉ์ฐจ๋ณ„ํ™”์—_๊ด€ํ•œ_์—ฐ๊ตฌv4.hwp

๋ฌด์„ ๋ฐ์ดํ„ฐ_์š”๊ธˆ์ œ์˜_๊ฐ€๊ฒฉ์ฐจ๋ณ„ํ™”์—_๊ด€ํ•œ_์—ฐ๊ตฌv4.hwp ๋ฌด์„ ๋ฐ์ดํ„ฐ ์š”๊ธˆ์ œ์˜ ๊ฐ€๊ฒฉ์ฐจ๋ณ„ํ™”์— ๊ด€ํ•œ ์—ฐ๊ตฌ ๊น€ํƒœํ˜„, ์ด๋™๋ช…, ๋ชจ์ •ํ›ˆ ์—ฐ์„ธ๋Œ€ํ•™๊ต ์ •๋ณด์‚ฐ์—…๊ณตํ•™๊ณผ ์„œ์šธ์‹œ ์„œ๋Œ€๋ฌธ๊ตฌ ์‹ ์ดŒ๋™ ์—ฐ์„ธ๋Œ€ํ•™๊ต ์ œ 3๊ณตํ•™๊ด€ ์„œ์šธ๋Œ€ํ•™๊ต ์‚ฐ์—…๊ณตํ•™๊ณผ ์„œ์šธ์‹œ ๊ด€์•…๊ตฌ ์‹ ๋ฆผ๋™ ์„œ์šธ๋Œ€ํ•™๊ต 39๋™ Abstract ์Šค๋งˆํŠธํฐ์˜ ๋„์ž…์œผ๋กœ ๋ฌด์„  ๋ฐ์ดํƒ€ ํŠธ๋ž˜ํ”ฝ ์ด ๋น ๋ฅธ ์†๋„๋กœ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๊ณ  3G ๋ฌด์„  ๋ฐ ์ดํƒ€๋ง์˜ ์šฉ๋Ÿ‰์œผ๋ก  ๋ถ€์กฑํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ธก๋˜ ๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š”

More information

1112 ๋ฌผ๋ฆฌ ํ™”ํ•™ N ok.indd

1112 ๋ฌผ๋ฆฌ ํ™”ํ•™ N ok.indd ๋ฌผ๋ฆฌI 1 ํŠน์ˆ˜์ƒ๋Œ€์„ฑ ์ด๋ก  2 ๋ถˆํ™•์ •์„ฑ ์›๋ฆฌ ์ž…์ž์™€ ํŒŒ๋™์˜ ๋ถˆํŽธํ•œ ๋™๊ฑฐ ๋ฏธ์‹œ ์„ธ๊ณ„ ์ž…์ž๋“ค์€ ์ผ์ƒ์ ์œผ๋กœ ๋งŒ๋‚˜๋Š” ๋ฌผ์ฒด์™€๋Š” ์ „ํ˜€ ๋‹ค๋ฅธ ๋ฐฉ์‹์œผ๋กœ ํ–‰๋™ํ•œ๋‹ค. ํŒŒ๋™๋„ ์•„๋‹ˆ๊ณ , ๊ทธ๋ ‡๋‹ค๊ณ  ์ž…์ž์ฒ˜๋Ÿผ ํ–‰๋™ํ•˜์ง€๋„ ์•Š๋Š”๋‹ค. ์ง€๊ธˆ๊นŒ์ง€ ๋ด์˜ค๋˜ ๊ทธ ์–ด๋–ค ๊ฒƒ๊ณผ๋„ ๋‹ฎ์€ ์ ์ด ์—†๋Š” ์ด์œ ! ์ด๋“ค์˜ ํ–‰๋™์„ ์ง€๋ฐฐํ•˜๋Š” ๋ฒ•์น™์ด ๋‹ค๋ฅด๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ๊ต๊ณผ์„œ ๊ตฌ์ˆ  ๊ฐ€์ด๋“œ 1% ์šฉ์–ด์‚ฌ์ „ ๋ฌผ ๋ฆฌ ํ”Œ๋ž‘ํฌ ์ƒ์ˆ˜(h):

More information

์‚ฌ์ƒ์ฒด์งˆ์˜ํ•™ํšŒ์ง€

์‚ฌ์ƒ์ฒด์งˆ์˜ํ•™ํšŒ์ง€ ์‚ฌ์ƒ์˜ํ•™ํšŒ์ง€ 1 o f C o r n t M o o o l 1 0 N o 2 1 9 9 8 ๅ›› ่ฑก ไบบ ่€ณ ็›ฎ ๅฃ˜ ๅฃ ์˜ ํ“จZ ๆ…‹ ๅญธ ็š„ ็‰น ๅพต ์งง ็ฉถ ๆดช ้Œซ ๅ–† ้ซ˜ ็‚ณ ็†™ ๅฎ‹ - ็‚ณ A M o r p h o r l o g i c a l S t u d y o f E a r, E y e, N o s e a n d M o u t h a c c o r d i n g

More information

11ยนรšยดรถยฑร”

11ยนรšยดรถยฑร” A Review on Promotion of Storytelling Local Cultures - 265 - 2-266 - 3-267 - 4-268 - 5-269 - 6 7-270 - 7-271 - 8-272 - 9-273 - 10-274 - 11-275 - 12-276 - 13-277 - 14-278 - 15-279 - 16 7-280 - 17-281 -

More information

์ž๊ธฐ๊ณต๋ช… ์ž„ํ”ผ๋˜์Šค ๋‹จ์ธต์ดฌ์˜ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์„ผํ„ฐ \(MREIT Research Center\)

์ž๊ธฐ๊ณต๋ช… ์ž„ํ”ผ๋˜์Šค ๋‹จ์ธต์ดฌ์˜ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์„ผํ„ฐ \(MREIT Research Center\) ์ƒ์ฒด์ž„ํ”ผ๋˜์Šค์˜๊ณ„์ธก (Bompedance Measurements) ๊ฒฝํฌ๋Œ€ํ•™๊ต์ „์ž์ •๋ณดํ•™๋ถ€๋™์„œ์˜๋ฃŒ๊ณตํ•™๊ณผ์šฐ์‘์ œ ejwoo@khu.ac.kr http://web.khu.ac.kr/~bl/ ๋ชฉ์ฐจ ์ƒ์ฒด์ž„ํ”ผ๋˜์Šค์˜๊ธฐ์ „ ์ „๊ทน ์ „ํ•ด์งˆ ํ”ผ๋ถ€์ธํ„ฐํŽ˜์ด์Šค ์ƒ์ฒด์ž„ํ”ผ๋˜์Šค์ธก์ •์‹œ์Šคํ…œ ์ „๊ทน์‚ฌ์šฉ๋ฒ• ์ „๊ทน๋ฒ• 4 ์ „๊ทน๋ฒ• ์ „๊ทน๋ฒ• ๋ฐœ์ง„ํšŒ๋กœ ์ •์ „๋ฅ˜์› ์ „์••์ธก์ •๋ฒ• ์ „๊ธฐ์•ˆ์ „๋ฐ์ „์› ์ฒด์ง€๋ฐฉ์˜๊ณ„์‚ฐ ์ฐธ๊ณ ์ž๋ฃŒ Overvew

More information

์š”. ์šฐ๋ฆฌ๋Š” ์‚ด ์ˆ˜๊ฐ€ ์—†์œผ๋‹ˆ๊ฒŒ ์ด๊ฒŒ ํฐ ๋ฌด์Šจ ์ „์Ÿ์ด๋‹ค ๊ทธ๋ž˜๊ฐ€์ง€๊ณ ์„œ ๋ด‰ ๋™๋ฉด์ด๋ผ๊ณ  ๊ฑฐ๊ธฐ๊ฐ€ ๋งํ•˜์ž๋ฉด ํ•ญ๊ตฌ ์˜€๊ฑฐ๋“ ์š”. ๊ทธ๋•Œ ๊ตฐ์ธ๋“ค์ด ํ›„ํ‡ด๋ฅผ ํ•œ ๊ฑฐ์˜ˆ์š”. ๊ตฐ์ธ๋“ค์ด ํ›„ํ‡ดํ•˜๋ฉด์„œ ํ™œ๋™ ๋ชป ํ•  ์‚ฌ๋žŒ๋“ค์€ ๋‹ค ๊ทธ๋ƒฅ ์ฃฝ์–ด๋ฒ„๋ฆฌ๊ณ  ๊ทธ ๋‚˜๋จธ์ง€ ์–ด๋Š ์ •๋„ ๋ถ€์ƒ๋‹นํ–ˆ์–ด๋„ ํ™œ ๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์€

์š”. ์šฐ๋ฆฌ๋Š” ์‚ด ์ˆ˜๊ฐ€ ์—†์œผ๋‹ˆ๊ฒŒ ์ด๊ฒŒ ํฐ ๋ฌด์Šจ ์ „์Ÿ์ด๋‹ค ๊ทธ๋ž˜๊ฐ€์ง€๊ณ ์„œ ๋ด‰ ๋™๋ฉด์ด๋ผ๊ณ  ๊ฑฐ๊ธฐ๊ฐ€ ๋งํ•˜์ž๋ฉด ํ•ญ๊ตฌ ์˜€๊ฑฐ๋“ ์š”. ๊ทธ๋•Œ ๊ตฐ์ธ๋“ค์ด ํ›„ํ‡ด๋ฅผ ํ•œ ๊ฑฐ์˜ˆ์š”. ๊ตฐ์ธ๋“ค์ด ํ›„ํ‡ดํ•˜๋ฉด์„œ ํ™œ๋™ ๋ชป ํ•  ์‚ฌ๋žŒ๋“ค์€ ๋‹ค ๊ทธ๋ƒฅ ์ฃฝ์–ด๋ฒ„๋ฆฌ๊ณ  ๊ทธ ๋‚˜๋จธ์ง€ ์–ด๋Š ์ •๋„ ๋ถ€์ƒ๋‹นํ–ˆ์–ด๋„ ํ™œ ๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์‚ฌ๋žŒ๋“ค์€ ํ˜•์„ ๋Œ€์‹ ํ•ด ๊ฐ€์žฅ์œผ๋กœ ์‚ฐ๋‹ค๋Š” ๊ฒƒ ์ž ๋ฃŒ ๋ช… : 20140411์ฐจํ˜•๋ˆ(๋ณด๋ น) ์กฐ ์‚ฌ ์ผ : 2014๋…„ 4์›” 11์ผ ์กฐ์‚ฌ์‹œ๊ฐ„ : 37๋ถ„(10:05-10:42) ๊ตฌ ์—ฐ ์ž : ์ฐจํ˜•๋ˆ(๋‚จ 1936๋…„์ƒ) ์กฐ ์‚ฌ ์ž : ๋ฐ•๊ฒฝ์—ด, ์œ ํšจ์ฒ , ์ด์›์˜. ์กฐ์‚ฌ์žฅ์†Œ : ์ถฉ์ฒญ๋‚จ๋„ ๋ณด๋ น์‹œ ์ฒญ์†Œ๋ฉด ์ฃฝ๋ฆผ3๋ฆฌ ์˜์‹๊ฒฝ๋กœ๋‹น [๊ตฌ์—ฐ์ž ์ •๋ณด] ๊ณ ํ–ฅ์€ ํ™ฉํ•ด๋„ ์˜น์ง„์ด๋‹ค. 1936๋…„์œผ๋กœ ์ „์Ÿ ๋‹น์‹œ 15์„ธ์˜€๋‹ค.

More information

<3230313320B5BFBEC6BDC3BEC6BBE74542532E687770>

<3230313320B5BFBEC6BDC3BEC6BBE74542532E687770> 58 59 ๋ถ๋กœ๋‚จ์™œ 16์„ธ๊ธฐ ์ค‘๋ฐ˜ ๋™์•„์‹œ์•„ ๊ตญ์ œ ์งˆ์„œ๋ฅผ ํ”๋“  ๊ณ„๊ธฐ๋Š” ๋ถ๋กœ๋‚จ ์™œ์˜€๋‹ค. ๋ถ๋กœ๋Š” ๋ถ์ชฝ ๋ชฝ๊ณจ์˜ ํƒ€ํƒ€๋ฅด์™€ ์˜ค์ด๋ผํŠธ, ๋‚จ์™œ๋Š” ๋‚จ์ชฝ์˜ ์™œ๊ตฌ๋ฅผ ๋งํ•œ๋‹ค. ๋‚˜๊ฐ€์‹œ๋…ธ ์ „ํˆฌ 1. 16์„ธ๊ธฐ ๋™์•„์‹œ์•„ ์ •์„ธ(์ž„์ง„์ „์Ÿ ์ „) (1) ๋ช… 1 ๋ถ๋กœ๋‚จ์™œ( ๅŒ— ่™œ ๅ— ๅ€ญ ) : 16์„ธ๊ธฐ ๋ถ๋ฐฉ ๋ชฝ๊ณจ์กฑ(๋งŒ๋ฆฌ์žฅ์„ฑ ๊ตฌ์ถ•)๊ณผ ๋‚จ์ชฝ ์™œ๊ตฌ์˜ ์นจ์ž… 2 ์žฅ๊ฑฐ์ •์˜ ๊ฐœํ˜ : ํ† ์ง€ ์žฅ๋Ÿ‰(ํ† ์ง€ ์กฐ์‚ฌ)์™€

More information

???? 1

???? 1 The Korean Journal of Applied Statistics (2013) 26(1), 201 208 DOI: http://dx.doi.org/10.5351/kjas.2013.26.1.201 A Note on Model Selection in Mixture Experiments with Process Variables Jung Il Kim a,1

More information

- ็›ฎ ๆฌก I. ์„œ ๋ก  - - - & - - 1 R. ํˆฌ ๊ธฐ์  ๊ณต๊ฒฉ ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ 3 1. ํ˜„๋ฌผํ™˜์‹œ ์žฅ์˜ ์ด์šฉ 3 ๊ฐ€. ์•ฝ์„ธ ํ†ตํ™” ์ฐจ์—… 3 ๋‚˜. ์•ฝ์„ธํ†ตํ™”ํ‘œ์‹œ ์œ ๊ฐ€์ฆ๊ถŒ ๋งค๊ฐ 4 2. ํŒŒ์ƒ๊ธˆ์œต์ƒํ’ˆ์‹œ์žฅ์˜ ์ด์šฉ 5.. ๊ฐ€ ํ†ตํ™”์„ ๋ฌผํ™˜ ๋งค๊ฐ 5 ๋‚˜ ํ†ตํ™”์˜ต์…˜ ๊ฑฐ๋ž˜์ „๋žต : S t r

- ็›ฎ ๆฌก I. ์„œ ๋ก  - - - & - - 1 R. ํˆฌ ๊ธฐ์  ๊ณต๊ฒฉ ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ 3 1. ํ˜„๋ฌผํ™˜์‹œ ์žฅ์˜ ์ด์šฉ 3 ๊ฐ€. ์•ฝ์„ธ ํ†ตํ™” ์ฐจ์—… 3 ๋‚˜. ์•ฝ์„ธํ†ตํ™”ํ‘œ์‹œ ์œ ๊ฐ€์ฆ๊ถŒ ๋งค๊ฐ 4 2. ํŒŒ์ƒ๊ธˆ์œต์ƒํ’ˆ์‹œ์žฅ์˜ ์ด์šฉ 5.. ๊ฐ€ ํ†ตํ™”์„ ๋ฌผํ™˜ ๋งค๊ฐ 5 ๋‚˜ ํ†ตํ™”์˜ต์…˜ ๊ฑฐ๋ž˜์ „๋žต : S t r ์™ธํ™˜ ๊ธ์‘์‹œ์ž‘์˜ ๋ฌ˜๋‹ˆํ„ฐ๋ง์ฒด์ œ ์ข…ํ•ฉ์ ์–ธ ๊ตฌ์ถ• 2 0 0 1. 9. 7 ์ฐจ๋ฐฑ์ธ f ์žฅ์›์ฐฝ I ๊น€์šฉํ™˜ ๋นผ ่ญฆ I์Ÿ๋ฟ”๋นจ์ซ“๋ฟ” - ็›ฎ ๆฌก I. ์„œ ๋ก  - - - & - - 1 R. ํˆฌ ๊ธฐ์  ๊ณต๊ฒฉ ์˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜ 3 1. ํ˜„๋ฌผํ™˜์‹œ ์žฅ์˜ ์ด์šฉ 3 ๊ฐ€. ์•ฝ์„ธ ํ†ตํ™” ์ฐจ์—… 3 ๋‚˜. ์•ฝ์„ธํ†ตํ™”ํ‘œ์‹œ ์œ ๊ฐ€์ฆ๊ถŒ ๋งค๊ฐ 4 2. ํŒŒ์ƒ๊ธˆ์œต์ƒํ’ˆ์‹œ์žฅ์˜ ์ด์šฉ 5.. ๊ฐ€ ํ†ตํ™”์„ ๋ฌผํ™˜ ๋งค๊ฐ 5 ๋‚˜ ํ†ตํ™”์˜ต์…˜

More information

84 ํ•œ๊ตญ๊ฒฝ์ž˜์—ฐ๊ตฌ ์ € 19๊ถŒ ์ € ํ˜ธ 1. ์„œ ๋ก  ํ•œ๊ตญ์—์„œ์˜ ์‚ด์ธ์‚ฌ๊ฑด์€ 90๋…„๋„์— 606๊ฑด(์„œ์šธ์ฒญ. 2004: 12) ์ด ๋ฐœ์ƒํ•˜์˜€๊ณ  98๋…„์— 963๊ฑด(์„œ์šธ ์ฒญ. 2008: 12) ์ด ๋ฐœ์ƒํ•œ ์ดํ›„ 2001๋…„ 1051 ๊ฑด(๊ฒฝ์ฐฐ์ฒญ. 2002: 77). 2007๋…„์—๋Š” 1111

84 ํ•œ๊ตญ๊ฒฝ์ž˜์—ฐ๊ตฌ ์ € 19๊ถŒ ์ € ํ˜ธ 1. ์„œ ๋ก  ํ•œ๊ตญ์—์„œ์˜ ์‚ด์ธ์‚ฌ๊ฑด์€ 90๋…„๋„์— 606๊ฑด(์„œ์šธ์ฒญ. 2004: 12) ์ด ๋ฐœ์ƒํ•˜์˜€๊ณ  98๋…„์— 963๊ฑด(์„œ์šธ ์ฒญ. 2008: 12) ์ด ๋ฐœ์ƒํ•œ ์ดํ›„ 2001๋…„ 1051 ๊ฑด(๊ฒฝ์ฐฐ์ฒญ. 2002: 77). 2007๋…„์—๋Š” 1111 ํ•œ๊ตญ๊ฒฝ์ดฌ์—ฐ๊ตฌ ์ฉŒ19๊ถŒ ์ฉŒ 11 ํ˜ธ 2010๋…„ ๋ด„ pp. 83-110 ์—ฐ์‡„์‚ด์–ธ์‚ฌ๊ฑด์ˆ˜์‚ฌ์— ์žˆ์–ด์„œ ๊ณต๊ฐ„์  ํ”„๋กœํŒŒ์ผ๋ น์— ๋Œ€ํ•œ ์—ฐ๊ตฌ -์—ฐ์‡„์‚ด์ธ๋ฒ” ์œ ์˜์ฒ , ์ •๋‚จ๊ทœ, ๊ฐ•ํ˜ธ์ˆœ์‚ฌ๊ฑด์„ ์ค‘์‹ฌ์œผ๋กœ ๋ฐ• ํ˜• ์‹* ์„œ๋ก  II ์ด๋ก ์  ๋ฐฐ๊ฒฝ ์ฐจ ๋ ค III. ์—ฐ์‡„์‚ด์ธ๋ฒ”์˜ ๋ฒ”ํ–‰๋ถ„์„ IV. ์—ฐ์‡„์‚ด์ธ์‚ฌ๊ฑด์— ๋Œ€ํ•œ ๊ณต๊ฐ„์  ํ”„๋กœํŒŒ์ผ๋ง v ์—ฐ์‡„์‚ด์ธ๋ฒ”์— ๋Œ€ํ•œ ํšจ์œจ์  ์ˆ˜์‚ฌ๋นŒ๋ฐ˜ W ๊ฒฐ๋ก  ๊ตญ๋ฌธ์ดˆ๋ก ํ•œ๋ž™1์„œ์˜

More information

05-08 087ร€รŒรร–รˆรฑ.hwp

05-08 087ร€รŒรร–รˆรฑ.hwp ์‚ฐ๋ณ„๊ต์„ญ์— ๋Œ€ํ•œ ํ‰๊ฐ€ ๋ฐ ๋งŒ์กฑ๋„์˜ ์˜ํ–ฅ์š”์ธ ๋ถ„์„(์ด์ฃผํฌ) ๊Œ™ 87 ๋…ธ ๋™ ์ • ์ฑ… ์—ฐ ๊ตฌ 2005. ์ œ5๊ถŒ ์ œ2ํ˜ธ pp. 87118 c ํ•œ ๊ตญ ๋…ธ ๋™ ์—ฐ ๊ตฌ ์› ์‚ฐ๋ณ„๊ต์„ญ์— ๋Œ€ํ•œ ํ‰๊ฐ€ ๋ฐ ๋งŒ์กฑ๋„์˜ ์˜ํ–ฅ์š”์ธ ๋ถ„์„: ๋ณด๊ฑด์˜๋ฃŒ๋…ธ์กฐ์˜ ์‚ฌ๋ก€ ์ด์ฃผํฌ * 2004,,,.. 1990. : 2005 4 7, :4 7, :6 10 * (jlee@ewha.ac.kr) 88 ๊Œ™ ๋…ธ๋™์ •์ฑ…์—ฐ๊ตฌ

More information

11๋ฏผ๋ฝ์ดˆ์‹ ๋ฌธ4ํ˜ธ

11๋ฏผ๋ฝ์ดˆ์‹ ๋ฌธ4ํ˜ธ ๊ฟˆ์„ ํ‚ค์šฐ๋Š” ๋ฏผ๋ฝ ์–ด๋ฆฐ์ด ์ œ2011-2ํ˜ธ ๋ฏผ๋ฝ์ดˆ๋“ฑํ•™๊ต 2011๋…„ 12์›” 21์ผ ์ˆ˜์š”์ผ 1 ํŽด๋‚ธ๊ณณ : ๋ฏผ๋ฝ์ดˆ๋“ฑํ•™๊ต ํŽด๋‚ธ์ด : ๊ต ์žฅ ์‹ฌ์ƒํ•™ ๊ต ๊ฐ ๊ฐ•์˜ฅ์„ฑ ๊ต ๊ฐ ๊น€๋‘ํ™˜ ๊ต ์‚ฌ ๊น€ํ˜œ์˜ ์„ฑ์‹ค ๊ทผ๋ฉด ์ •์ง 4 8 0-8 6 1 ๊ฒฝ๊ธฐ๋„ ์˜์ •๋ถ€์‹œ ์šฉํ˜„๋กœ 159๋ฒˆ๊ธธ 26 Tel. 031) 851-3813 Fax. 031) 851-3815 http://www.minrak.es.kr

More information

<BBE7B8B3B4EBC7D0B0A8BBE7B9E9BCAD28C1F8C2A5C3D6C1BE293039313232392E687770>

<BBE7B8B3B4EBC7D0B0A8BBE7B9E9BCAD28C1F8C2A5C3D6C1BE293039313232392E687770> 2008 ์‚ฌ ๋ฆฝ ๋Œ€ ํ•™ ๊ฐ ์‚ฌ ๋ฐฑ ์„œ 2009. 11. ๋“ค์–ด๊ฐ€๋Š” ๋ง 2008๋…„๋„ ์ƒˆ ์ •๋ถ€ ์ถœ๋ฒ” ์ดํ›„ ๊ตฌ ๊ต์œก์ธ์ ์ž์›๋ถ€์™€ ๊ณผํ•™๊ธฐ์ˆ ๋ถ€๊ฐ€ ํ•˜๋‚˜์˜ ๋ถ€์ฒ˜๋กœ ํ†ตํ•ฉํ•˜์—ฌ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€๋กœ ํž˜์ฐจ๊ฒŒ ์ถœ๋ฒ”ํ•˜์˜€์Šต๋‹ˆ๋‹ค. ๊ทธ๋™์•ˆ ๊ต์œก๊ณผํ•™๊ธฐ์ˆ ๋ถ€๋Š” ๊ณ ๊ต๋‹ค์–‘ํ™” 300 ํ”„๋กœ์ ํŠธ ๋“ฑ ์ž์œจํ™” ๋‹ค์–‘ํ™”๋œ ๊ต์œก์ฒด์ œ ๊ตฌ์ถ•๊ณผ ๋งž์ถคํ˜• ๊ตญ๊ฐ€์žฅํ•™์ œ๋„ ๋“ฑ ๊ต์œก๋ณต์ง€ ๊ธฐ๋ฐ˜ ํ™•์ถฉ์œผ๋กœ ๊ต์œก๋งŒ์กฑ ๋‘๋ฐฐ, ์‚ฌ๊ต์œก๋น„ ์ ˆ๊ฐ

More information

์ด์šฉ์ž๋ฅผ ์œ„ํ•˜์—ฌ 1. ๋ณธ ๋ณด๊ณ ์„œ์˜ ๊ฐ์ข… ์ง€ํ‘œ๋Š” ๊ฐ•์›๋„, ์ •๋ถ€ ๊ฐ๋ถ€์ฒ˜, ๊ธฐํƒ€ ๊ตญ๋‚ด ์ฃผ์š” ๊ธฐ๊ด€์—์„œ ์ƒ์‚ฐ ํ•œ ํ†ต๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž‘์„ฑํ•œ ๊ฒƒ์œผ๋กœ์„œ ๊ฐ ํ†ต๊ณ„ํ‘œ๋งˆ๋‹ค ๊ทธ ์ถœ์ฒ˜๋ฅผ ์ฃผ๊ธฐํ•˜์˜€์Œ. 2. ์ผ๋ถ€ ์ž๋ฃŒ์ˆ˜์น˜๋Š” ์„ธ๋ชฉ๊ณผ ํ•ฉ๊ณ„๊ฐ€ ๊ฐ๊ฐ ๋ฐ˜์˜ฌ๋ฆผ๋˜์—ˆ์œผ๋ฏ€๋กœ ์„ธ๋ชฉ์˜ ํ•ฉ์ด ํ•ฉ๊ณ„์™€ ์ผ ์น˜๋˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ๋„ ์žˆ์Œ. 3. ํ†ต๊ณ„ํ‘œ ๋ฐ ๋„ํ‘œ์˜ ๋‚ด์šฉ ์ค‘์—์„œ ์ „๋…„๋„ํŒ ์ˆ˜์น˜์™€ ์ผ์น˜๋˜์ง€ ์•Š๋Š” ๊ฒƒ์€ ์ตœ๊ทผํŒ์—์„œ

More information

์ œ1์ ˆ ์กฐ์„ ์‹œ๋Œ€ ์ด์ „์˜ ๊ต์œก

์ œ1์ ˆ ์กฐ์„ ์‹œ๋Œ€ ์ด์ „์˜ ๊ต์œก ์ œ1์ ˆ ์šฐ๋ฆฌ ๊ต์œก ์•ฝ์‚ฌ ์ œ2์žฅ ์‚ฌ์ฒœ๊ต์œก์˜ ๋ฐœ์ž์ทจ ์ œ1์ ˆ ์šฐ๋ฆฌ ๊ต์œก ์•ฝ์‚ฌ 1. ๊ทผ๋Œ€ ์ด์ „์˜ ๊ต์œก ๊ฐ€. ๊ณ ๋Œ€์˜ ๊ต์œก ์ธ๋ฅ˜( ไบบ ้กž )๊ฐ€ ์ด ์ง€๊ตฌ์ƒ์— ์‚ด๋ฉด์„œ๋ถ€ํ„ฐ ์—ญ์‚ฌ์™€ ํ•จ๊ป˜ ๊ต์œก( ๆ•Ž ่‚ฒ )์€ ์–ด๋– ํ•œ ํ˜•ํƒœ๋กœ๋“  ์ง€ ์กด์žฌํ•˜๊ณ  ์žˆ์—ˆ์„ ๊ฒƒ์ด๋‹ค. ์šฐ๋ฆฌ ์กฐ์ƒ๋“ค์ด ์–ธ์ œ๋ถ€ํ„ฐ ์ด๊ณณ์—์„œ ์‚ถ์„ ๊พธ๋ ค์™”๋Š”์ง€๋Š” ์—ฌ ๋Ÿฌ ๊ฐ€์ง€ ์œ ์ ๊ณผ ์œ ๋ฌผ๋กœ ๋‚˜ํƒ€๋‚˜๊ณ  ์žˆ๋‹ค. ๊ทธ ๋‹น์‹œ ์šฐ๋ฆฌ์กฐ์ƒ๋“ค์˜ ์ƒํ™œ์„ ๋ฏธ๋ฃจ์–ด

More information

์‚ฌ์ง„ 24 _ ์ข…๋ฃจ์ง€ ์ „๊ฒฝ(์„œ๋ถ์—์„œ) ์‚ฌ์ง„ 25 _ ์ข…๋ฃจ์ง€ ๋‚จ์ธก๊ธฐ๋‹จ(๋™์—์„œ) ์‚ฌ์ง„ 26 _ ์ข…๋ฃจ์ง€ ๋ถ์ธก๊ธฐ๋‹จ(์„œ์—์„œ) ์‚ฌ์ง„ 27 _ ์ข…๋ฃจ์ง€ 1์ฐจ ๊ฑด๋ฌผ์ง€ ์ดˆ์„ ์ ์‹ฌ์„ ์‚ฌ์ง„ 28 _ ์ข…๋ฃจ์ง€ ์ค‘์‹ฌ ๋ฐฉํ˜•์ ์‹ฌ ์œ  ์‚ฌ์ง„ 29 _ ์ข…๋ฃจ์ง€ ๋™์ธก ๊ณ„๋‹จ์„ <๊ฒฝ๋ฃจ์ง€> ์œ„ ์น˜ ํƒ‘์ง€์˜ ๋‚จ๋ถ์ค‘์‹ฌ

์‚ฌ์ง„ 24 _ ์ข…๋ฃจ์ง€ ์ „๊ฒฝ(์„œ๋ถ์—์„œ) ์‚ฌ์ง„ 25 _ ์ข…๋ฃจ์ง€ ๋‚จ์ธก๊ธฐ๋‹จ(๋™์—์„œ) ์‚ฌ์ง„ 26 _ ์ข…๋ฃจ์ง€ ๋ถ์ธก๊ธฐ๋‹จ(์„œ์—์„œ) ์‚ฌ์ง„ 27 _ ์ข…๋ฃจ์ง€ 1์ฐจ ๊ฑด๋ฌผ์ง€ ์ดˆ์„ ์ ์‹ฌ์„ ์‚ฌ์ง„ 28 _ ์ข…๋ฃจ์ง€ ์ค‘์‹ฌ ๋ฐฉํ˜•์ ์‹ฌ ์œ  ์‚ฌ์ง„ 29 _ ์ข…๋ฃจ์ง€ ๋™์ธก ๊ณ„๋‹จ์„ <๊ฒฝ๋ฃจ์ง€> ์œ„ ์น˜ ํƒ‘์ง€์˜ ๋‚จ๋ถ์ค‘์‹ฌ ํ•˜ ์ถœ ์ž… ์‹œ ์„ค ํ˜•ํƒœ ๋ฐ ํŠน์ง• ์ œ2์ฐจ ์‹œ๊ธฐ : ๊ฑด๋ฌผ 4๋ฉด ์ค‘์•™์— ๊ฐ๊ฐ 1๊ฐœ์†Œ์”ฉ ์กด์žฌ - ๋‚จ, ์„œ, ๋ถ๋ฉด์˜ ๊ธฐ๋‹จ ์ค‘์•™์—์„œ๋Š” ๊ณ„๋‹จ์ง€์˜ ํ”์ ์ด ๋šœ๋ ท์ด ๋‚˜ํƒ€๋‚ฌ์œผ๋ฉฐ ์ „๋ฉด๊ณผ ์ธก๋ฉด์˜ ์ค‘์•™์นธ์— ์œ„์น˜ - ๋™์„œ ๊ธฐ๋‹จ ์ค‘์•™์—์„œ๋Š” ๊ณ„๋‹จ ์œ ์ธ ๊ณ„๋‹จ์šฐ์„( ้šŽ ๆฎต ้š… ็Ÿณ ) ๋ฐ›์นจ์ง€๋Œ€์„์ด ๋ฐœ๊ฒฌ - ๊ณ„๋‹จ๋„ˆ๋น„๋Š” ๋™์ธก๋ฉด์—์„œ ๋ฐœ๊ฒฌ๋œ ๊ณ„๋‹จ์šฐ์„ ์ง€๋Œ€์„์˜ ํฌ๊ธฐ์™€ ์œ„์น˜๋ฅผ ๊ทผ๊ฑฐ๋กœ ์•ฝ 2.06m - ๋ฉด์„๊ณผ

More information

์ƒˆ๋งŒ๊ธˆ์„ธ๋ฏธ๋‚˜-1101-์ด์–‘์žฌ.hwp

์ƒˆ๋งŒ๊ธˆ์„ธ๋ฏธ๋‚˜-1101-์ด์–‘์žฌ.hwp ์ƒˆ๋งŒ๊ธˆ์ง€์—ญ์˜ ํ•ฉ๋ฆฌ์ ์ธ ํ–‰์ •๊ตฌ์—ญ ๊ฒฐ์ •๋ฐฉ์•ˆ ์ด ์–‘ ์žฌ ์›๊ด‘๋Œ€ํ•™๊ต ๊ต์ˆ˜ โ… . ์‹œ์ž‘ํ•˜๋ฉด์„œ ํ–‰์ •๊ฒฝ๊ณ„์˜ ํš์ • ์›์น™์€ ๊ตญ๋ฏผ ๋ˆ„๊ฐ€ ๋ณด์•„๋„ ๊ณต๊ฐํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ค€์œผ๋กœ ๊ฒฐ์ • ๋˜์–ด์•ผ ๊ด€๋ จ ์ง€๋ฐฉ์ž์น˜๋‹จ์ฒด์™€ ์‹œ๋ฏผ๋“ค์˜ ๋ถ„์Ÿ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ชจ ๋ฅด๋Š” ์ด๊ฐ€ ์—†์„ ๊ฒƒ์ด๋‹ค. ์‹ ์ƒ๋งค๋ฆฝ์ง€์˜ ๊ด€ํ• ์— ๋Œ€ํ•œ ์ง€๋ฐฉ์ž์น˜๋‹จ์ฒด ๊ฐ„ ๋ถ„์Ÿ(๊ฒฝ๊ธฐ๋„ ํ‰ํƒ์‹œ์™€ ์ถฉ์ฒญ๋‚จ๋„ ๋‹น์ง„๊ตฐ, ์ „๋ผ๋‚จ๋„ ์ˆœ์ฒœ์‹œ์™€ ์ „๋ผ๋‚จ๋„ ๊ด‘์–‘์‹œ

More information

??

?? ํ•œ๊ตญ๊ณตํ•ญ๊ณต์‚ฌ์™€ ์–ด๋ฆฐ์ด์žฌ๋‹จ์ด ํ•จ๊ป˜ํ•˜๋Š” ์ œ2ํšŒ ๋‹ค๋ฌธํ™”๊ฐ€์ • ์ƒํ™œ์ˆ˜๊ธฐ ๊ณต๋ชจ์ „ ์ˆ˜๊ธฐ์ง‘ ๋Œ€ํ•œ๋ฏผ๊ตญ ๋‹ค๋ฌธํ™”๊ฐ€์ •์˜ ํ–‰๋ณต๊ณผ ์‚ฌ๋ž‘์„ ํ•จ๊ป˜ ๋งŒ๋“ค์–ด ๊ฐ‘๋‹ˆ๋‹ค. Contents 02 04 06 07 08 10 14 16 20 22 25 28 29 30 31 4 5 6 7 8 9 10 11 12 13 15 14 17 16 19 18 21 20 23 22 24 25 26 27 29 28

More information

652

652 ์ถ• ์‚ฌ 2003๋…„ 11์›” 5์ผ ์ˆ˜์š”์ผ ์ œ 652 ํ˜ธ ๋Œ€๊ตฌ๋Œ€์‹ ๋ฌธ ์ฐฝ๊ฐ„ 39์ฃผ๋…„์„ ์ถ•ํ•˜ํ•ฉ๋‹ˆ๋‹ค! ์•Œ์ฐจ๊ณ  ๋‹น์ฐฌ ๋Œ€๊ตฌ๋Œ€์‹ ๋ฌธ์œผ๋กœ ์ง€๋กœ์ž(ๆŒ‡๊ฑŸ่€…)์˜ ์—ญํ•  ์šฐ๋ฆฌ ๋Œ€ํ•™๊ต์˜ ๋Œ€ํ‘œ์  ์–ธ๋ก ๋งค์ฒด์ธ ๋Œ€๊ตฌ๋Œ€ ์‹ ๋ฌธ์ด ์˜ค๋Š˜๋กœ ์ฐฝ๊ฐ„ ์„œ๋ฅธ ์•„ํ™‰ ๋Œ์„ ๋งž์•˜์Šต ๋‹ˆ๋‹ค. ์ •๋ก ์งํ•„์„ ์‚ฌ์‹œ๋กœ ์‚ผ๊ณ  ๊พธ์ค€ํžˆ ์–ธ๋กœ ์˜ ๊ฐœ์ฒ™์„ ์œ„ํ•ด ๋•€ํ˜๋ ค์˜จ ๊ทธ ๋™์•ˆ์˜ ๋…ธ๊ณ ์— ์ „ ๋น„ํ˜ธ๊ฐ€์กฑ์„ ๋Œ€ํ‘œํ•˜์—ฌ ์ถ•ํ•˜์˜ ๋œป์„ ์ „ํ•˜ ๋Š” ๋ฐ”์ž…๋‹ˆ๋‹ค.

More information

ๆญฏ20010629-001-1-์กฐ์„ ์ผ๋ณด.PDF

ๆญฏ20010629-001-1-์กฐ์„ ์ผ๋ณด.PDF 6. 29 () 11:00 ( ) 20 0 1. 6. 29 11( ).(397-1941) 1. 2. 3. 4. 5. 1. 28, 60() (,, ) 30 619(, 6. 29) () 6 (,,,,, ),,, - 1 - < > (, ), () < > - 2 - 2.,,, 620,, - 3 - 3. ( ) 1,614,, 864 ( ) 1,6 14 864 () 734

More information

<C0CCBDB4C6E4C0CCC6DB34C8A35F28C3D6C1BE292E687770>

<C0CCBDB4C6E4C0CCC6DB34C8A35F28C3D6C1BE292E687770> ๊ทผ ๊ณผํ•™๊ธฐ์ˆ ์€ ๊ฑฐ๋Œ€ํ™” ๋ฐ ์œตํ•ฉํ™” ์ถ”์„ธ์™€ ๋”๋ถˆ์–ด ๊ทธ ์ˆ˜๋ช… ์ฃผ๊ธฐ๊ฐ€ ์ ์ฐจ ์งง์•„์ง€๊ณ  ์žˆ์–ด ์—ฐ ์ตœ ๊ตฌ๊ฐœ๋ฐœ ๊ณ„ํš์˜ ์ˆ˜๋ฆฝ, ์ง„ํ–‰, ํ‰๊ฐ€ ๋“ฑ์˜ ๊ณผ์ • ์ „๋ฐ˜์— ๋ณด๋‹ค ๊ฐ๊ด€์ ์ด๊ณ  ์ •๋ฐ€ํ•œ ์ž๋ฃŒ์˜ ์ค‘์š” ์„ฑ์— ์ œ๊ณ ๋˜๋Š” ๋™์‹œ์— ์น˜์—ดํ•œ ๊ตญ์ œ๊ฒฝ์Ÿ์—์„œ์˜ ์ƒ์กด์„ ์œ„ํ•ด ์†์ „์†๊ฒฐ์‹์˜ ํˆฌ์ž์™€ ์„ฑ์žฅ์ „๋žต๋ณด ๋‹ค๋Š” ์—„๋ฐ€ํ•œ ํˆฌ์žํƒ€๋‹น์„ฑ ํ‰๊ฐ€์— ๊ธฐ๋ฐ˜ํ•œ ๊ฐ๊ด€์ ์ด๊ณ  ์žฅ๊ธฐ์ ์ธ ํˆฌ์ž์ „๋žต ์ˆ˜๋ฆฝ์ด ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ

More information

<33B1C7C3D6C1BEBABB28BCF6C1A42D31313135292E687770>

<33B1C7C3D6C1BEBABB28BCF6C1A42D31313135292E687770> ์ œ 1 ๋ถ€ ์ œ1์†Œ์œ„์›ํšŒ (2) ์ถฉ๋‚จ์ง€์—ญ(1) ๋ถ€์—ญํ˜์˜ ๋ฏผ๊ฐ„์ธ ํฌ์ƒ -๋‹น์ง„๊ตฐใ†ํ™์„ฑ๊ตฐใ†์„œ์‚ฐ๊ตฐ(2)ใ†์˜ˆ์‚ฐ๊ตฐ- ๊ฒฐ์ •์‚ฌ์•ˆ 1950. 9ใ†28์ˆ˜๋ณต ํ›„~1951. 1ใ†4ํ›„ํ‡ด๊ฒฝ ์ถฉ์ฒญ๋‚จ๋„ ๋‹น์ง„ ํ™์„ฑ ์„œ์‚ฐ(2) ์˜ˆ์‚ฐ๊ตฐ์—์„œ ๊ตฐ ๊ฒฝ์— ์˜ํ•ด ๋ฐœ์ƒํ•œ ๋ถˆ๋ฒ•์ ์ธ ๋ฏผ๊ฐ„์ธ ํฌ์ƒ์œผ๋กœ ์ง„์‹ค๊ทœ๋ช…๋Œ€์ƒ์ž 33๋ช…๊ณผ ์กฐ์‚ฌ๊ณผ์ •์—์„œ ์ธ์ง€๋œ ์ž 151๋ช…์ด ํฌ์ƒ๋œ ์‚ฌ์‹ค์„ ๋˜๋Š” ์ถ”์ •ํ•˜์—ฌ ์ง„์‹ค๊ทœ๋ช…์œผ๋กœ ๊ฒฐ์ •ํ•œ ์‚ฌ๋ก€.

More information

A sudy on realizaion of speech and speaker recogniion sysem based on feedback of recogniion value

A sudy on realizaion of speech and speaker recogniion sysem based on feedback of recogniion value Maser s Thesis A sudy on realizaion of speech and speaker recogniion sysem based on feedback of recogniion value (Kim, Hyun Goo) Deparmen of Mechanical Engineering, Division of Mechanical Engineering Korea

More information

<C1DFB1DE2842C7FC292E687770>

<C1DFB1DE2842C7FC292E687770> ๋ฌด ๋‹จ ์ „ ์žฌ ๊ธˆ ํ•จ 2011๋…„ 3์›” 5์ผ ์‹œํ–‰ ํ˜•๋ณ„ ์ œํ•œ ์‹œ๊ฐ„ ๋‹ค์Œ ๋ฌธ์ œ๋ฅผ ์ฝ๊ณ  ์•Œ๋งž์€ ๋‹ต์„ ๊ณจ๋ผ ๋‹ต์•ˆ์นด๋“œ์˜ ๋‹ต๋ž€ (1, 2, 3, 4)์— ํ‘œ๊ธฐํ•˜์‹œ์˜ค. ์ˆ˜ํ—˜๋ฒˆํ˜ธ ์„ฑ ๋ช… 17. ไฟก : 1 ้ข โท ๆญฆ 3 ้ฉ 4 ๆŽˆ 18. ไธ‹ : โถ ไธ‰ 2 ็พŠ 3 ๆฑ 4 ๅฉฆ 19. ็ฑณ : 1 ๆ”น 2 ๆž— โธ ่ฒ 4 ็ต 20. ๆ–™ : 1 ้Š€ 2 ็ซ 3 ไธŠ โน ่ฆ‹ [1 5] ๋‹ค์Œ ํ•œ์ž(

More information

<32303131C7CFB9DDB1E22028C6EDC1FD292E687770>

<32303131C7CFB9DDB1E22028C6EDC1FD292E687770> ํ†ต์ผ๋ฌธ์ œ์—ฐ๊ตฌ 2011๋…„ ํ•˜๋ฐ˜๊ธฐ(ํ†ต๊ถŒ ์ œ56ํ˜ธ) ์ „์Ÿ ๊ฒฝํ—˜์˜ ์žฌ๊ตฌ์„ฑ์„ ํ†ตํ•œ ๊ตญ๊ฐ€ ๋งŒ๋“ค๊ธฐ* - ์—ญ์‚ฌ/๋‹คํ๋ฉ˜ํ„ฐ๋ฆฌ/๊ธฐ์–ต - 1)์ด ๋ช… ์ž** โ… . ๋“ค์–ด๊ฐ€๋Š” ๋ง โ…ก. ๊ณผ ์ œ์ž‘๋ฐฐ๊ฒฝ โ…ข. ๊ณผ ๋น„๊ต โ…ฃ. ์—ญ์‚ฌ/๋‹คํ๋ฉ˜ํ„ฐ๋ฆฌ/๊ธฐ์–ต ํ˜„๋Œ€ ๋‚จ๋ถํ•œ ์ฒด์ œ ํ˜•์„ฑ์—์„œ ์ฃผ์š”ํ•œ ์ „ํ™˜์ ์ธ ํ•œ๊ตญ์ „ ์Ÿ์€ ํ•ด๋ฐฉ ํ›„ ์‹œ์ž‘๋œ ์ขŒ์šฐ๋Œ€๋ฆฝ๊ณผ ์ •์น˜์ ,

More information

96๋ถ€์‚ฐ์—ฐ์ฃผ๋ฌธํ™”\(๊น€์ฐฝ์šฑ\)

96๋ถ€์‚ฐ์—ฐ์ฃผ๋ฌธํ™”\(๊น€์ฐฝ์šฑ\) 96 1 96 3 4 1 5 2 ( ),, TV,,,,, 96 5,,,, 3, ), ( :,1991) ), ), 13 1 3 96 23, 41, 4 68 (1) 11, 1223, (3/18 ) ( ) 6, 1 (4/2 ) 16, ( ), 1 (5/3 ), ( ) ( ) 1 (2) 96 8 33 41 (4/25 ), (9/24 ), ( ) 961 (5/27 )

More information

๋ ˆ์ด์•„์›ƒ 1

๋ ˆ์ด์•„์›ƒ 1 Disability & Employment 11. 8. ์ œ1๊ถŒ ์ œํ˜ธ(ํ†ต๊ถŒ 7ํ˜ธ) pp.97~118 ์ค‘์ฆ์žฅ์• ์ธ์ง์—…์žฌํ™œ์ง€์›์‚ฌ์—…์ˆ˜ํ–‰์‹œ์„ค์˜ ํšจ์œจ์„ฑ๋น„๊ต* ์–‘์ˆ™๋ฏธ ๋‚จ์„œ์šธ๋Œ€ํ•™๊ต ์‚ฌํšŒ๋ณต์ง€ํ•™๊ณผ ๋ถ€๊ต์ˆ˜ ์ „๋™์ผ ๊ฐ€ํ†จ๋ฆญ๋Œ€ํ•™๊ต ๋ฐ•์‚ฌ๊ณผ์ • ์š” ์•ฝ ๋ณธ ์—ฐ๊ตฌ๋Š” ์ง์—…์žฌํ™œ์‹œ์„ค์˜ ์ค‘์ฆ์žฅ์• ์ธ ์ง์—…์žฌํ™œ์ง€์›์‚ฌ์—…์— ๋Œ€ํ•œ ํšจ์œจ์„ฑ์„ ํ‰๊ฐ€ํ•˜์—ฌ ํšจ ์œจ์ ์ธ ์šด์˜๋ฐฉ์•ˆ์„ ์ œ์‹œํ•˜๋Š”๋ฐ ๋ชฉ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ์œ„ํ•ด

More information

001์ง€์‹๋ฐฑ์„œ_4๋„

001์ง€์‹๋ฐฑ์„œ_4๋„ White Paper on Knowledge Service Industry Message Message Contents Contents Contents Contents Chapter 1 Part 1. Part 2. Part 3. Chapter

More information

???? 1

???? 1 ์ œ 124 ํ˜ธ 9 3 ์™€ ์‹ ์‹œ๊ฐ€์ง€๋ฅผ ์–ด๋Š ์ •๋„ ํŒŒ์•…ํ•˜๊ณ  ๋‚˜๋ฉด ์ œ์ผ ๋จผ์ € ์ด ๋„์‹œ์—์„œ ์–ธ์ œ๋‚˜ ํ™œ๊ธฐ๊ฐ€ ๋„˜ ์ณ๋‚˜๋Š” ์‹ ์‹œ๊ฐ€์ง€๋กœ ๊ฐ€๊ฒŒ ๋œ๋‹ค. ๊ทธ ์ค‘์‹ฌ์— ๋Š” ํ‹ฐ๋ฌด๋ฅด ๊ณต์›์ด ์žˆ๋‹ค. ์ด ๊ณต์›์„ ์ค‘์‹ฌ์œผ ๋กœ ํ‹ฐ๋ฌด๋ฅด ๋ฐ•๋ฌผ๊ด€๊ณผ ์‡ผํ•‘ ๊ฑฐ๋ฆฌ๊ฐ€ ๋ฐ€์ง‘๋ผ ์žˆ๋‹ค. ๊ณต์› ์ค‘์‹ฌ์—๋Š” ์šฐ์ฆˆ๋ฒ ํ‚ค์Šคํƒ„์˜ ์˜ ์›…, ํ‹ฐ๋ฌด๋ฅด ๋Œ€์ œ์˜ ๋™์ƒ์ด ์„œ ์žˆ๋‹ค. ์šฐ์ฆˆ๋ฒ  ํ‚ค์Šคํƒ„์„ ์—ฌํ–‰ํ•˜๋‹ค ๋ณด๋ฉด ์–ด๋Š ๋„์‹œ์—์„œ๋‚˜ ํ‹ฐ๋ฌด๋ฅด์˜ ๋™์ƒ์ด๋‚˜

More information