고병구.PDF

Similar documents
한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26


우루과이 내지-1

세계 비지니스 정보

Statistical Data of Dementia.

歯나노용첨가제출원동향.PDF


CONTENTS.HWP

INDUS-8.HWP

israel-내지-1-4

KAERIAR hwp

00....

00-1표지

À̶õ°³È²³»Áö.PDF

정봉수.PDF

김준학97.PDF

Æ÷Àå½Ã¼³94š

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

表紙(化学)

경제통상 내지.PS

°æÁ¦Åë»ó³»Áö.PDF

표1

Subject : 귀사의 일익번창하심을 진심으로 기원합니다.

06ƯÁý

국706.fm

1. 화섬산업의 개요 1.1 화섬산업의 륵성 화 섬산 업 의 산 업 적 특 성 화섬산업은 원사,원면 둥 기초소재를 생산하는 섬유산 업의 핵심산업으로 고용창출효과와 고부가가치를 실현할 수 있음 O 세계적으로 독일,이태리,일본 등 선진국을 중심으로 M E(마이크로 일렉트

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 마한문화공원 명소화 사업 기찬랜드 명소화 사업 240


untitled

[96_RE11]LMOs(......).HWP

Microsoft Word - Report_합본__도시광산.doc

14.fm

미얀-내지-8차

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종


untitled

이수진.PDF

13 Table of Contents CEO I. Business Report , , II. Audit Report

°ø±â¾Ð±â±â

歯 PDF

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

13 2 ( 25 ) Korean J Med Hist Dec 2004 ISSN X * ( ) ( ) ( ). 1) ( ) ( ) ( ) ( ) ( ) 2) ( ) 3) 1990 ( ) 4) * 1) ( ) C

신나는_과학놀이원고[이기주].hwp

fm

342 Sei Young Choi / Elastomers and Composites Vol. 49, No. 4, pp. 341~345 (December 2014) 불구하고 광촉매는 400 nm 이하의 파장을 갖는 자외선이 조사 되어야만 활성을 나타내는 단점을 갖고 있어

10 (10.1) (10.2),,

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

특허청구의 범위 청구항 1 청구항 2 청구항 3 청구항 4 청구항 5 물과 암모니아수와 헥산 산과 히드라진 수화수용액을 포함하는 환원액을 조정하는 조액( 調 液 )공정과, 질산은 수용액을 상기 환원액에 첨가하여 반응시키는 은 반응공정과, 상기 은 반응공정의 생성물을 회

겉표지.PDF

완성09E02박은숙.PDF

¸ñÂ÷

통신1310_01-도비라및목차1~9

12.077~081(A12_이종국).fm

*통신1802_01-도비라및목차1~11


A 0 D5-a (XQD Card Type) D5-b (CF Card Type)

19(1) 02.fm

03이경미(237~248)ok

(72) 발명자 장종산 대전 중구 수침로 138, 103동 204호 (태평동, 유등 마을쌍용아파트) 박용기 대전 유성구 어은로 57, 119동 302호 (어은동, 한 빛아파트) 황동원 경기 안양시 만안구 양화로147번길 7, 102동 403호 (박달동, 박달동동원베네스

Microsoft Word - 5_ _ Organic~_박수진외4명_.doc

¸ñÂ÷

남북한교과서에서나타난 민족정체성


untitled

<30332DC0CCBFB5B0FC2E687770>

2004math2(a).PDF

<C6F7BDBAC5CD2E706466>

<4D F736F F D20B4EBBFF BFB5BEF7BAB8B0EDBCAD2E646F63>

44(3)-16.fm

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

<C1A4C3A5BFACB1B D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

< C6AFC1FD28B1C7C7F5C1DF292E687770>

歯동향3월97.PDF

(5차 편집).hwp

°æÁ¦Àü¸Á-µ¼º¸.PDF

,.,..,....,, Abstract The importance of integrated design which tries to i

< BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED D D20C6EDC1FD2035B1B32E687770>

(14-19).hwp


49(3)-01(김연철148).fm

특허청구의 범위 청구항 1 Na-알지네이트(Na-alginate), 합성 제올라이트(synthetic zeolite)와 분말활성탄(powdered activated carbon) 을 혼합하여 2 ~ 6 %의 CaCl 2 용액에서 경화시켜 만들어진 직경 1 ~ 5 mm의

歯김유성.PDF

논문수정본.PDF

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

차례.hwp

歯_ _ 2001년도 회원사명단.doc

16(5)-03(56).fm

책임연구기관

歯FFF01379.PDF

박선영무선충전-내지

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

(72) 발명자 이승원 강원도 고성군 죽왕면 오호리 정동호 강원도 고성군 죽왕면 오호리 이호생 강원도 고성군 죽왕면 오호리 이 발명을 지원한 국가연구개발사업 과제고유번호 PMS235A 부처명 국토해양부 연구사업명 해양자원개발 연구과제명

수탁연구01-09(수요자 중심1).hwp

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

歯320.PDF

최종욱.PDF

16(5)-04(61).fm

歯모유수유지침서.PDF

전립선암발생률추정과관련요인분석 : The Korean Cancer Prevention Study-II (KCPS-II)

Transcription:

PBS/ EVA PBS/ Compat i b i l i t y o f Po l y ( but y l ene s ucc i nat e ) / EVA bl ends and char ac t e r i za t i on o f PBS/ Cl ay nanocompos i t e s 200 1 2

PBS/ EVA PBS/ Compat i b i l i t y o f Po l y ( but y l ene s ucc i nat e ) / EVA bl ends And char ac t e r i za t i on o f PBS/ Cl ay nanocompos i t e s 200 1 2

200 1 2

PBS/ EVA PBS/ PVAc. PBS/ EVA, PBS/ PVAc.,. PBS/ EVA EVA PLLA/ EVA EVA. SEM. PBS montmorillonite Southern Clay Cloisite 30B. XRD 13.8 31.5, DSC T m H. T GA. - IV -

A b s trac t PBS w as blended with EVA and PVAc, respectively, by solution blending and m elt blending, and the morphology w as inv estigated. In m elt blending the polarity of the polym er determined the blend morphology, while in solution blends the polarity of the solv ent and the m atrix polymer w ere mor e important. In the PBS/ EVA blend impact str ength increased sharply w ith the EVA content, wher eas impact strength of the PLLA/ EVA blend w as independent of the EVA content. SEM show ed that the interfacial interaction of the blend determined the m orphology and concomit ant impact str ength. PBS w as mix ed with montmorillonite in melt and in solution, and the properties of the nanocomposit es w ere analy zed. XRD show ed the interlayer distance of the clay increased from 13.8 to 31.5 as a result of the nanocomposite formation. According to DSC the change in T m and H w as not observed. T GA clearly indicated that the thermal stability of the melt nanocomposit e w as impr oved, while that of the solution nanocomposit e w as not enhanced significantly. - V -

Li s t of T able & F ig ure s P art I T able 1. T hermal properties of PBS/ EVA and PBS/ PVAc melt blend Fig. 1. DSC curv e of PBS/ EVA and PBS/ PVAc m elt blend : (a)pbs (B)PBS/ PVA c 80/ 20 w t% (c)pbs/ EVA 80/ 20 wt%. Fig. 2. DSC curve of PBS/ EVA and PBS/ PVA c solutionblend : (a)pbs/ EVA 80/ 20 wt % (b)pbs/ PVAc 80/ 20 wt%. Fig. 3. Optical microscopy of PBS/ EVA and PBS/ PVAc solution blend : (a )PBS (b )PBS/ EVA 80/ 20 w t% (c)pbs/ PVAc 80/ 20 wt %. Fig. 4. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c melt blend : (a )PBS/ EVA (b)pbs/ PVAc. Fig. 5. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c solution blend : (a)pbs/ EVA (b )PBS/ PVAc. Fig. 6. SEM photograph s of fr actur e surface of PBS/ EVA melt blend : (a )95/ 5 w t% (b )90/ 10 wt% (c)85/ 15 w t% (d)80/ 20 wt %. Fig. 7. SEM photograph s of fr actur e surface of PBS/ PVA c melt blend : (a )95/ 5 w t% (b )90/ 10 wt% (c)85/ 15 w t% (d)80/ 20 wt %. Fig. 8. SEM photograph s of fr actur e surfaces of PBS/ EVA and PBS/ PVA c solution blend : (a )PBS/ EVA 80/ 20 w t% - VI -

(b )PBS/ EVA 60/ 40 w t% (c)pbs/ PVAc 80/ 20 wt % (c)pbs/ PVAc 60/ 40 wt%. Fig. 9. SEM photogr aphs of PBS/ EVA, PBS/ PVAc and PBS/ PEO melt and solution coating. Fig. 10. Fig. 11. T ensile pr operties of PBS/ EVA m elt blend. Izod impact str ength of PBS/ EVA and PLLA/ EVA m elt blend. Fig. 12. SEM photogr aph s of fr actur e surface of PLLA/ EVA melt blend : (a)95/ 5 w t% (b)90/ 10 wt% (c)85/ 15 wt% (d)80/ 20 wt %. P art II T able 1. Gener al formula of commonly u sed 2:1 phyllosilicat es Fig. 1. Conv entional composites v s. nanocomposites. Fig. 2. Structur e of montmorillonite. Fig. 3. Prepar ation m ethods of polymer/ clay nanocoposites. Fig. 4. Xrd pattern of PBS/ Cloisite 30B hybrid (a)closite 30B (b )97.5/ 2.5 wt% (c)95/ 5 wt% (d)92.5/ 7.5 w t% (e)90/ 10 w t%. Fig. 5. Optical microscopy photograph s of PBS/ Cloisit e 30B hybrid : (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt% (d)92.5/ 7.5 wt % (e)90/ 10 wt%. Fig. 6. DSC curve of PBS/ Cloisite 30B hybrid (a)pbs (b )97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 w t%. Fig. 7. DSC curve of PBS/ Cloisite 30B hybrid after extr action : (a)pbs (b )Clay nanocomposites after extraction. - VII -

Fig. 8. Xrd pattern of PBS/ Cloisite 30B hybrid after extraction : (a)pbs (b)clay nanocomposites 95/ 5 wt % (c)clay nanocomposites 95/ 5 w t% after extr action (d)cloisite 30B. Fig. 9. Mechanical pr operties of PBS and clay nanocomposites. Fig. 10. T GA curve of PBS and clay nanocomposites prepar ed by melt mixing : (a)pbs (b)97.5/ 2.5 w t% (c)95/ 5 w t% (d)92.5/ 7.5 wt % (e)90/ 10 wt%. Fig. 11. XRD pattern of PBS and clay nanocomposites prepar ed by solution method : (a)cloisit e 30B (b)97.5/ 2.5 w t% (c)95/ 5 wt % (d)92.5/ 7.5 wt% (e)90/ 10 wt%. Fig. 12. T GA curve of PBS and clay nanocomposites prepar ed by solution m ethod : (a)pbs (b )97.5/ 2.5 wt % (c)95/ 5 w t% (d)92.5/ 7.5 w t% (e)90/ 10 wt %. Fig. 13. T GA curve of PBS/ clay nanocomposit es prepar ed by melt and solution m ethod afrer extr action : (a)cloisite 30B (b )solution method after extraction (c)melt mixing after extraction. - VIII -

Abstract List of T able and Figures i ii iii vi Part I. PBS EVA, PVAc 1. 1 2. 6 2. 1. 6 2. 2. 6 2. 3. 7 3. 9 4. 13 5. 15 Part II. PBS/ Clay Nanocomposite 1. 30 2. 34 2. 1. 34 2. 2. 34 2. 3. 34 3. 37 4. 41 5. 43 - IX -

P art.. P B S E V A, P V A c 1.. [1-5].. [6, 7],. [8 ]. [9 ], [10-14]. dicarboxylic acid [15-18] diol. dicarboxylic acid sebacic acid, succinic acid, adipic acid, diol ethylene glycol, 1,4- butanediol, hexanediol. - 10 -

.,. Show a High Polymer [19, 2 0] Bionolle. 1,4- butanediol succinic acid poly (butylene succinate)(pbs) polyethylene..,,.,.,.,.. - 11 -

...., (interphase).,. polystyrene(ps) brittleness,, PPO., PS 60. PS,. PS (high impact polystyrene ; HIPS ), - 12 -

(styrene acrylonitrile copolymer )(SAN ), SAN (acrylonitrile butadiene styrene; ABS)., PVC.,,,, PVC. chlorinated polyethylene(cpe ), ethlene/ vinylacetate copolymer (EVA ), acrylonitrile/ butadiene/ styr ene copolymer (ABS ), methacrylat e/ butadiene/ styrene copolymer (MBS), acrylonitrile/ butadiene rubber (NBR). PVC, CPE, EVA (network stucture), MBS, ABS. PVC. PVC (mobility ) PVC segment. PVC, T g. PVC migration - 13 -

,. EVA PVC, 1970. EVA vinyl acetate, 45% vinyl acetate. EVA CPE 5-8% EVA,, PVC.. PBS EVA,,,. PBS/ EVA PBS/ PVAc PLLA/ EVA. - 14 -

2. 2.1 Poly (butylene succinate) (PBS ) SK chemical. Gel Permeation Chromatography (GPC) (M n ) (M w ) 58,200 g/ mol 150,000 g/ mol. Differencial Scanning Calorimetry (DSC) PBS (T g ) (T m ) - 39.9 115.8. Ethylene vinyl acteate copolymer (EVA ) Scientific Polymer. 285,000 g/ mol vinyl acetate 70%. Poly (vinyl actate)(pvac) Aldrich 167,000 g/ mol. Poly (ethylene glycol) (PEG) Aldrich 10,000 g/ mol. 2.2 PBS/ EVA, PBS/ PVAc Brabender 145 60 rpm 5. 95/ 5, 90/ 10, 85/ 15, 80/ 20 wt%., hot press... 95/ 5. - 15 -

2.3 2.3.1 Differential Scannig Calorimetry (DSC) T hermal Gravimetry Analy sis (T GA ). DSC Perkin Elmer DSC7 T GA Polymer Laboratory T GA 1000. DSC 20 / min 150 150 1 100 / min 100 20 / min 2. 2.3.2 Hounsfield 110K - S. 10 mm 50 mm 200 20 mm/ min. Izod Yasuda Seiki Seisakusho clamping force 10 kg - cm. 2.3.3 Hot stage, 150 60 100 / min 85 Nikon polarizing optical microscope. - 16 -

2.3.4 Hitachi X- 650. - 17 -

3. T able 1 Brabender PBS/ PVAc, PBS/ EVA DSC. PVAc EVA PBS (T g ) (T m ). PBS. PVAc EVA 10 wt% Fig. 1 DSC T g T m. PBS/ EVA 85 2. PVAc EVA PBS PBS. DSC (Fig. 2) Fig. 1 PBS/ EVA T c PBS/ PVAc T c. Fig. 3 PBS PVAc PBS EVA. PBS/ PVAc PVAc PBS. DSC compatible. PBS/ EVA PBS EVA. 70, 80, 90 (Fig. 4 5), PBS/ PVAc PVAc - 18 -

PBS/ EVA EVA. PBS PVAc EVA. PVAc, EVA. PBS/ PVAc, PBS/ EVA. Fig. 6 7 PBS/ EVA, PBS/ PVAc hot press PVAc EVA SEM. PVAc EVA. PBS PVAc EVA. Fig. 8 PVAc EVA. PBS PVAc, EVA.. PBS 250 m 30 m PVAc EVA. PVAc EVA PBS 24-19 -

. PVAc EVA SEM.(Fig. 9) PVAc EVA. PBS Poly (ethylene oxide)(peo). PBS PVAc EVA.. PEO. Fig. 10 PBS/ EVA. (Young ' s modulus ) EVA EVA. EVA 10 wt %. Fig. 6 SEM, EVA 15 wt% EVA - 20 -

. Fig. 11 PBS/ EVA, PLLA/ EVA. PBS/ EVA EVA 10 wt% 10 wt%. PLLA/ EVA EVA. Fig. 6 PBS/ EVA Fig. 12 PLLA/ EVA. PBS/ EVA EVA 10 wt % EVA 10 wt % EVA. - 2 1 -

4. PBS PVAc EVA, DSC T g, T g EVA PVAc PBS. PBS/ EVA EVA, PBS/ PVAc PVAc. SEM (phase) EVA, PVAc. PBS EVA, PVAc. EVA PBS/ EVA. PBS/ EVA EVA. PLLA/ EVA EVA. - 22 -

SEM PBS/ EVA PLLA/ EVA,. - 23 -

5. 1. R. Naray an, K unstoff e, 79 (10), 1022 (1989). 2. R. Narayan, S. Bloembergen, P oly m. P rep., 32 (2), 119 (1991). 3. J. T ramper, H.C. v an der Plas, P. Linko Eds., Biocataly sis in Or ganic Syntheses, Elsevier Science, Am sterdam, 1985. 4. N.J. T urner, Chem I nd., 15, 592(1994). 5. J. S. Dordick, TIB TE CH, 10, 287(1992). 6. A. Calmon - Decriaud, V. Gellon - Maurel and F. Silvestre, :Advances in polym er science, Springer, Verlag, p. 208, 1998. 7. A. J. Domb. J. Kost and D.M. Wiseman, Handbook of biodegradable polymer s, OPA, Au stralia, 473 (1997). 8. A. Pruter, M ar. P ollut. B ull., 18 (6B ), 305 (1987). 9. J. Mayer, A. L. Allen, P. A. Dell, D.L., P oly m. P rep., 34, 910 (1994). 10. S. J. Holland, B. J. T ighe and P.L. Gould, J. Control. R el., 4, 155 (1986). 11. S. M. Li and M.Vert, Degradable Polym er s : Principles and Application s, G. Scott and D. Gilead Eds., Chapman & Hall, London, p. 43, 1995. 12. G. S. Kum ar, Biodegradable Polymer s: Prospect s and Progress, Mar cel Dekker, New York, pp. 3, 1987. 13. S. J. Huang, Encyclopedia of Polym er Science and Engineering, Vol. 2(Eds A. Kling sgerg, J. Muldoon and A. - 24 -

Salv adore), Wiley, New York, pp. 220-243. 14. W. Schnabel, Polymer Degradaton: Principles and Practical Application s, Hanser, Munich, pp. 154-177. 15. R. L. Dunn, Biom edical Application s of Synthetic Biodegradable Polymer s, edited by J. O. Hollinger, Chap. 2, CRC Pr ess, 1995. 16. Y. Kimur a, Biom edical Applications of Polym eric Materials, edited by T. Hayashi, K. Kataoka, K. Ishihara, and Y. Kimura, Chap. 3, CRC Press, 1993. 17. S. J. Huang and P. G. Edelman in Degradable Polym er s edited by G. Scott and D. Gilead, Chap. 2, Chapman & Hall, 1995. 18. K. A. M. T hakur, R. T. Kean, J. M. Zupfer, N. U. Buehler, M. A. Doscotch, and E. J. Munson, M acrom olecules, 29, 8844 (1996). 19. K. Kasuya, K. T akagi. S. Ishiw atari, Y. Yoshida and Y. Doi, P oly m. D eg rad. S tab., 59, 327, (1998). 20. E. T akiyama and T. Fujimaki, Biodegradable Plastics and Polym er s, ed Y. Doi and K. Fukuda, Elservier, Amat erdam, p. 150, 1994. - 25 -

Sample Tg( ) Tc( ) Tm ( ) PBS -39.9-5.9 115.4 a EVA -25.0 - - EVA05-39.4 a -6.7 a 114.8 a PBS/EVA EVA 10-39.2 a -12.6 a 114.6 a EVA 15-38.6 a -12.6 a 114.1 a EVA20-38.1 a -12.5 a 114.3 a PVAc 38.4 - - PVAc05-39.9 a -5.0 a 114.4 a PBS/PVAc PVAc 10-45.7 a -5.1 a 114.1 a PVAc 15-42.9 a -4.3 a 113.6 a PVAc20-40.7 a -4.4 a 112.8 a T able 1. T hermal properties of PBS/ EVA and PBS/ PVAc melt blend - 26 -

Fig. 1. DSC curve of PBS/ EVA and PBS/ PVAc melt blend (a)pbs (B)PBS/ PVAc 80/ 20 wt% (c)pbs/ EVA 80/ 20 wt% - 27 -

Fig. 2. DSC curve of PBS/ EVA and PBS/ PVAc solution blend (a)pbs/ EVA 80/ 20 wt % (b)pbs/ PVAc 80/ 20 wt % - 28 -

Fig. 3. Optical microscopy of PBS/ EVA and PBS/ PVAc solution blend (a)pure PBS (b)pbs/ EVA 80/ 20 wt % (c)pbs/ PVAc 80/ 20 wt % - 29 -

(a) Fig. 4. (b) Spherulite growth rate of PBS/ EVA and PBS/ PVAc melt blend (a)pbs/ EVA (b)pbs/ PVAc - 30 -

(a) Fig. 5. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c (b) solution blend (a )PBS/ EVA (b)pbs/ PVAc - 3 1 -

Fig. 6. SEM photographs of fracture surface of PBS/ EVA melt blend (a)95/ 5 wt% (b)90/ 10 wt % (c)85/ 15 wt % (d)80/ 20 wt % - 32 -

Fig. 7. SEM photographs of fracture surface of PBS/ PVAc melt blend (a)95/ 5 wt% (b)90/ 10 wt% (c)85/ 15 wt% (d)80/ 20 wt% - 33 -

Fig. 8. SEM photogr aphs of fr actur e surface of PBS/ EVA and PBS/ PVA c solution blend (a)pbs/ EVA 80/ 20 wt% (b )PBS/ EVA 60/ 40 wt% (c)pbs/ PVAc 80/ 20 w t% (c)pbs/ PVAc 60/ 40 wt % - 34 -

Fig. 9. SEM phot ogr aphs of PBS/ EVA, PBS/ PVAc and PBS/ PEO melt and solution coating - 35 -

Fig. 10. T ensile properties of PBS/ EVA melt blend - 36 -

Fig. 11. Izod impact strength of PBS/ EVA and PLLA/ EVA melt blend - 37 -

Fig. 12. SEM photogr aph s of fr actur e surface of PLLA/ EVA melt blend (a)95/ 5 w t% (b)90/ 10 wt % (c)85/ 15 w t% (d)80/ 20 wt% - 38 -

. P B S / Clay N an oc om p o s it e 1.,,,.,. stiffness toughness. 10 2 nm., montmorillonite [1,2].. [3-2 1]. /,,. 1 10 wt % - 39 -

. [3 ].. smectite montmorillonite, hectorite saponite. [5 ] T able 1 montmorillonite Fig. 1. silica. interlayer gallery gallery Na + K +... alkylammonium onium ion Na + K +. [4, 6-8 ] /,,,.(Fig. 2) [9, 10 ] tactoid. - 40 -

gallery... [12] /.(Fig. 3),.. [3]..,.. /. 6-4 1 -

2 HDT 80. [1 1] poly (butylene succinate)(pbs). - 42 -

2. 2.1 PBS SK chemical. 58,000 g/ mol 150,000 g/ mol. 39.9 115.8. Southern clay montmorillonite Cloisite 30B. methyl tallow bis- 2- hydroxyethyl ammonium modifier concentration 90 meq/ 100 mg. 2.2 PBS/ twin - screw extruder 145 60 rpm. die. PBS/ clay. 600 ml PBS 48 clay. 24 24 25. 2.3-43 -

2.3.1 X Guinier focusing Philips PW - 1847 x - ray crystallographic unit 1.5 o 35 o (2 ). 40 kv, 20mA Ni- filtered Cu - k radiation. 2.3.2 Perkin Elmer DSC7 Polymer Laboratory T GA 1000. DSC 20 / min 150 150 1 100 / min 100 20 / min 2. 2.3.3 Hot stage 150 60 100 / min 85 Nicon polarizing optical microscope. 2.3.4 Hounsfield 110K - S. 10 mm ( ) 50 mm ( ) 200 ( ) 20 mm/ min. Izod Yasuda Seiki Seisakusho clamping force 10 kg - cm. - 44 -

2.3.5. Hitachi X- 650-45 -

3. Fig. 4 twin - screw extruder PBS/ XRD. (Cloisite 30B) 4.81 o twin- screw extruder 2.8 o. PBS clay c. (1) Bragg ' s equation 18.3 31.5. n = 2dsin (1) n : inter ger : w avelength of X- ray radiation d : the spacing bet w een diffractional lattice planes : diffraction angle. PBS (Fig. 5) PBS. Fig. 6 PBS/ DSC. DSC (T c ) PBS. - 46 -

. Orgata et al [2 2 ]. / T m H m T m H m. [8 ] T m H m. PBS T c - 40 PBS. T m H m. PBS die, T m H m. Fig. 7 thimble filter DSC. T m. XRD.(Fig. 8) PBS. - 47 -

. DSC. Fig. 9. 5 wt%. 5 wt%. Fig. 10 PBS T GA.. PBS 2.5 wt% 20. PBS OH COOH Cloisite 30B metlyl tallow bis- 2- hydroxyethyl ammonium, PBS. PBS/ XRD (Fig. 11) PBS.(Fig. 12) PBS Cloisite 30B twin- screw extruder. PBS Cloisite 30B. - 48 -

thimble filter. T GA PBS Cloisite 30B. Fig. 14. Fig. 13 PBS.. - 49 -

4. PBS Southern clay montmorillonite Cloisite 30B twin - screw extruder. XRD Cloisite 30B 4.81 o PBS 2.8 o. Bragg ' s equation 13.8 PBS 31.5.. DSC T m H. PBS.. PBS Closite 30B T GA - 50 -

. PBS/ 5 wt%. 5 wt% PBS. 5 wt% PBS. - 5 1 -

5. 1. B. K. G. T heng, T he Chemistry of Clay - Organic Reactions, Wiley, New York, 1974. 2. M. Ogaw a, K. Kur oda, Prepar ation of inor ganic- organic nanocomposites through intercalation of organoammonium ion s int o layer ed silicat es, Bull. Chem. Soc, Jpn, 70, 2593, (1997). 3. E. P. Giannelis, A dv. M ater., 8, 29, (1996). 4. L. Liu, Z. Qi, and X. Zhu, J ournal of A pp lied P oly m er science, 7 1, 1133, (1999). 5. E. P. Giannelis, R. Krishnamoorti, and E. Manias, A dv. P oly m. S ci 118, 108, (1999). 6. Y. Kojim a, A. Usuki, M. kaw asumi, A. Okada, and T. Kurauchi, J ournal of P oly m er S cience, P art B : Polymer Phy sics, 33, 1039, (1995). 7. K. Yano, A. U suki, A. Okada, T. Kurauchi, and O. Kamigaito, J ournal of P olym er S cience P art A : P oly m er Chem is try, 3 1, 2493, (1993). 8. P. B. Messersmith, and E. P. Giannelis, J ournal of P oly m er S cience : Part A : P oly m er Chem is try, 33, 1047, (1995). 9. Z. Wang, and T. J. Pinnavaia, Chem. M ater., 10, 1820, (1998). 10. M. B. Ko, S. H. Lim, J. K. Kim, C. R. Choe, M. S. Lee, and M. G. Ha, K orea P oly m er J ournal, 7, No. 5, 310, (1999). 11. A. Okada, M. Kaw asumi, T. Kurauchi, and O. Kamigaito, - 52 -

P oly m er P rep rints, 28, 447, (1987). 12. T. Lan, P. D. Kaviratna and T. J. Pinnavaia, Chem. M ater., 8, 1728, (1996). 13. Y. Ly at skay a, and A. C. Balazs, M acrom olecules, 3 1, 6676, (1998). 14. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, M acrom olecules, 30, 6333, (1997). 15. Y. Kojim a, A. Usuki, M. Kaw asumi, A. Okada, T. Kur auchi, and O. K am igaito, J ournal of P olym er S cience P art A : P oly m er Chem is try, 3 1, 983, (1993). 16. Y. Kur okaw a, H. Yasuda, M. Kaw asumi, and A. Oyo, J ournal of m aterial science letters, 16, 1670, (1997). 17. X. Kornm ann, L. A. Ber glund, and J. Sterte, P olym er E ng ineering and S cience, 38, 8, (1998). 18. T. Lan, and T. J. Pinnavaia, Chem. M ater., 6, 2216, (1994). 19. R. A. Vaia, B. B. Sauer, O. K. T se, and E. P. Giannelis, J ournal of P oly m er S cience Part B : P olym er P hy sics, 35, 59, (1997). 20. Y. Kojim a, A. Usuki, M. Kaw asumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. M ater. R es., 8, 5, 1185, (1993). 21. H. Shi, T. Lan, and T. J. Pinnavaia, Chem. M ater., 8, 1584, (1996). 22. N. Ogata, G. Jimenez, H. Kawai, T. Ogihara. J ournal of P oly m er S cience P art B : P oly m er P hy s ics, 35, 389, (1997). - 53 -

- 54 -

2:1 Lay er ed silicates General form ula M ontm orillonit e M x (Al4 - x M gx )Si8O20 (OH )4 Hectorit e M x (M g 6 - x Lix )Si8O2 0 (OH )4 S aponit e M x M g 6 (Si8 - x Alx )Si8O2 0 (OH )4 a M =monovalent cation; x =degree of isomorphous substitution(between 0.5 and 1.3) T able 1. Chemical structure of commonly used 2:1 phyllosilicates - 55 -

Fig. 1. Conventional composites v s. nanocomposites - 56 -

Fig. 2. Structure of montmorillonite - 57 -

Fig. 3. Preparation methods of polymer/ clay n anocoposites - 58 -

Fig. 4. XRD pattern of PBS/ Cloisite 30B hybrid (a)closite 30B (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 59 -

Fig. 5. Optical microscopy photographs of PBS/ Cloisite 30B hybrid (a)pbs (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 60 -

Fig. 6 DSC curve of PBS/ Cloisite 30B hybrid (a)pbs (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 6 1 -

Fig. 7. DSC curve of PBS/ Cloisite 30B hybrid after extraction (a)pbs (b)clay nanocomposites after extraction - 62 -

Fig. 8. XRD pattern of PBS/ Cloisite 30B hybrid after extraction (a)pbs (b)clay nanocomposites 95/ 5 wt % (c)clay nanocomposites 95/ 5 wt % after extraction (d)cloisite 30B - 63 -

Fig. 9. Mechanical properties of PBS and clay n anocomposites - 64 -

F ig, 10. T GA curv e of PBS and clay n anocomposites by melt mixing (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt % (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 65 -

Fig. 11. Xrd pattern of PBS and clay n anocomposites by solution method (a)cloisite 30B (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt % - 66 -

Fig. 12. Xrd pattern of PBS and clay n anocomposites by solution method (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt % (d)92.5/ 7.5 wt % (e)90/ 10 wt % - 67 -

Fig. 13. T GA curve of PBS/ clay nanocomposites by melt and solution method afrer extraction (a)cloisite 30B (b)solution method after extraction (c)melt mixing after extraction - 68 -

- - 2..,,,,,.,,.,,,. LG T/ G,,,,,,.. 2000 12-69 -