PBS/ EVA PBS/ Compat i b i l i t y o f Po l y ( but y l ene s ucc i nat e ) / EVA bl ends and char ac t e r i za t i on o f PBS/ Cl ay nanocompos i t e s 200 1 2
PBS/ EVA PBS/ Compat i b i l i t y o f Po l y ( but y l ene s ucc i nat e ) / EVA bl ends And char ac t e r i za t i on o f PBS/ Cl ay nanocompos i t e s 200 1 2
200 1 2
PBS/ EVA PBS/ PVAc. PBS/ EVA, PBS/ PVAc.,. PBS/ EVA EVA PLLA/ EVA EVA. SEM. PBS montmorillonite Southern Clay Cloisite 30B. XRD 13.8 31.5, DSC T m H. T GA. - IV -
A b s trac t PBS w as blended with EVA and PVAc, respectively, by solution blending and m elt blending, and the morphology w as inv estigated. In m elt blending the polarity of the polym er determined the blend morphology, while in solution blends the polarity of the solv ent and the m atrix polymer w ere mor e important. In the PBS/ EVA blend impact str ength increased sharply w ith the EVA content, wher eas impact strength of the PLLA/ EVA blend w as independent of the EVA content. SEM show ed that the interfacial interaction of the blend determined the m orphology and concomit ant impact str ength. PBS w as mix ed with montmorillonite in melt and in solution, and the properties of the nanocomposit es w ere analy zed. XRD show ed the interlayer distance of the clay increased from 13.8 to 31.5 as a result of the nanocomposite formation. According to DSC the change in T m and H w as not observed. T GA clearly indicated that the thermal stability of the melt nanocomposit e w as impr oved, while that of the solution nanocomposit e w as not enhanced significantly. - V -
Li s t of T able & F ig ure s P art I T able 1. T hermal properties of PBS/ EVA and PBS/ PVAc melt blend Fig. 1. DSC curv e of PBS/ EVA and PBS/ PVAc m elt blend : (a)pbs (B)PBS/ PVA c 80/ 20 w t% (c)pbs/ EVA 80/ 20 wt%. Fig. 2. DSC curve of PBS/ EVA and PBS/ PVA c solutionblend : (a)pbs/ EVA 80/ 20 wt % (b)pbs/ PVAc 80/ 20 wt%. Fig. 3. Optical microscopy of PBS/ EVA and PBS/ PVAc solution blend : (a )PBS (b )PBS/ EVA 80/ 20 w t% (c)pbs/ PVAc 80/ 20 wt %. Fig. 4. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c melt blend : (a )PBS/ EVA (b)pbs/ PVAc. Fig. 5. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c solution blend : (a)pbs/ EVA (b )PBS/ PVAc. Fig. 6. SEM photograph s of fr actur e surface of PBS/ EVA melt blend : (a )95/ 5 w t% (b )90/ 10 wt% (c)85/ 15 w t% (d)80/ 20 wt %. Fig. 7. SEM photograph s of fr actur e surface of PBS/ PVA c melt blend : (a )95/ 5 w t% (b )90/ 10 wt% (c)85/ 15 w t% (d)80/ 20 wt %. Fig. 8. SEM photograph s of fr actur e surfaces of PBS/ EVA and PBS/ PVA c solution blend : (a )PBS/ EVA 80/ 20 w t% - VI -
(b )PBS/ EVA 60/ 40 w t% (c)pbs/ PVAc 80/ 20 wt % (c)pbs/ PVAc 60/ 40 wt%. Fig. 9. SEM photogr aphs of PBS/ EVA, PBS/ PVAc and PBS/ PEO melt and solution coating. Fig. 10. Fig. 11. T ensile pr operties of PBS/ EVA m elt blend. Izod impact str ength of PBS/ EVA and PLLA/ EVA m elt blend. Fig. 12. SEM photogr aph s of fr actur e surface of PLLA/ EVA melt blend : (a)95/ 5 w t% (b)90/ 10 wt% (c)85/ 15 wt% (d)80/ 20 wt %. P art II T able 1. Gener al formula of commonly u sed 2:1 phyllosilicat es Fig. 1. Conv entional composites v s. nanocomposites. Fig. 2. Structur e of montmorillonite. Fig. 3. Prepar ation m ethods of polymer/ clay nanocoposites. Fig. 4. Xrd pattern of PBS/ Cloisite 30B hybrid (a)closite 30B (b )97.5/ 2.5 wt% (c)95/ 5 wt% (d)92.5/ 7.5 w t% (e)90/ 10 w t%. Fig. 5. Optical microscopy photograph s of PBS/ Cloisit e 30B hybrid : (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt% (d)92.5/ 7.5 wt % (e)90/ 10 wt%. Fig. 6. DSC curve of PBS/ Cloisite 30B hybrid (a)pbs (b )97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 w t%. Fig. 7. DSC curve of PBS/ Cloisite 30B hybrid after extr action : (a)pbs (b )Clay nanocomposites after extraction. - VII -
Fig. 8. Xrd pattern of PBS/ Cloisite 30B hybrid after extraction : (a)pbs (b)clay nanocomposites 95/ 5 wt % (c)clay nanocomposites 95/ 5 w t% after extr action (d)cloisite 30B. Fig. 9. Mechanical pr operties of PBS and clay nanocomposites. Fig. 10. T GA curve of PBS and clay nanocomposites prepar ed by melt mixing : (a)pbs (b)97.5/ 2.5 w t% (c)95/ 5 w t% (d)92.5/ 7.5 wt % (e)90/ 10 wt%. Fig. 11. XRD pattern of PBS and clay nanocomposites prepar ed by solution method : (a)cloisit e 30B (b)97.5/ 2.5 w t% (c)95/ 5 wt % (d)92.5/ 7.5 wt% (e)90/ 10 wt%. Fig. 12. T GA curve of PBS and clay nanocomposites prepar ed by solution m ethod : (a)pbs (b )97.5/ 2.5 wt % (c)95/ 5 w t% (d)92.5/ 7.5 w t% (e)90/ 10 wt %. Fig. 13. T GA curve of PBS/ clay nanocomposit es prepar ed by melt and solution m ethod afrer extr action : (a)cloisite 30B (b )solution method after extraction (c)melt mixing after extraction. - VIII -
Abstract List of T able and Figures i ii iii vi Part I. PBS EVA, PVAc 1. 1 2. 6 2. 1. 6 2. 2. 6 2. 3. 7 3. 9 4. 13 5. 15 Part II. PBS/ Clay Nanocomposite 1. 30 2. 34 2. 1. 34 2. 2. 34 2. 3. 34 3. 37 4. 41 5. 43 - IX -
P art.. P B S E V A, P V A c 1.. [1-5].. [6, 7],. [8 ]. [9 ], [10-14]. dicarboxylic acid [15-18] diol. dicarboxylic acid sebacic acid, succinic acid, adipic acid, diol ethylene glycol, 1,4- butanediol, hexanediol. - 10 -
.,. Show a High Polymer [19, 2 0] Bionolle. 1,4- butanediol succinic acid poly (butylene succinate)(pbs) polyethylene..,,.,.,.,.. - 11 -
...., (interphase).,. polystyrene(ps) brittleness,, PPO., PS 60. PS,. PS (high impact polystyrene ; HIPS ), - 12 -
(styrene acrylonitrile copolymer )(SAN ), SAN (acrylonitrile butadiene styrene; ABS)., PVC.,,,, PVC. chlorinated polyethylene(cpe ), ethlene/ vinylacetate copolymer (EVA ), acrylonitrile/ butadiene/ styr ene copolymer (ABS ), methacrylat e/ butadiene/ styrene copolymer (MBS), acrylonitrile/ butadiene rubber (NBR). PVC, CPE, EVA (network stucture), MBS, ABS. PVC. PVC (mobility ) PVC segment. PVC, T g. PVC migration - 13 -
,. EVA PVC, 1970. EVA vinyl acetate, 45% vinyl acetate. EVA CPE 5-8% EVA,, PVC.. PBS EVA,,,. PBS/ EVA PBS/ PVAc PLLA/ EVA. - 14 -
2. 2.1 Poly (butylene succinate) (PBS ) SK chemical. Gel Permeation Chromatography (GPC) (M n ) (M w ) 58,200 g/ mol 150,000 g/ mol. Differencial Scanning Calorimetry (DSC) PBS (T g ) (T m ) - 39.9 115.8. Ethylene vinyl acteate copolymer (EVA ) Scientific Polymer. 285,000 g/ mol vinyl acetate 70%. Poly (vinyl actate)(pvac) Aldrich 167,000 g/ mol. Poly (ethylene glycol) (PEG) Aldrich 10,000 g/ mol. 2.2 PBS/ EVA, PBS/ PVAc Brabender 145 60 rpm 5. 95/ 5, 90/ 10, 85/ 15, 80/ 20 wt%., hot press... 95/ 5. - 15 -
2.3 2.3.1 Differential Scannig Calorimetry (DSC) T hermal Gravimetry Analy sis (T GA ). DSC Perkin Elmer DSC7 T GA Polymer Laboratory T GA 1000. DSC 20 / min 150 150 1 100 / min 100 20 / min 2. 2.3.2 Hounsfield 110K - S. 10 mm 50 mm 200 20 mm/ min. Izod Yasuda Seiki Seisakusho clamping force 10 kg - cm. 2.3.3 Hot stage, 150 60 100 / min 85 Nikon polarizing optical microscope. - 16 -
2.3.4 Hitachi X- 650. - 17 -
3. T able 1 Brabender PBS/ PVAc, PBS/ EVA DSC. PVAc EVA PBS (T g ) (T m ). PBS. PVAc EVA 10 wt% Fig. 1 DSC T g T m. PBS/ EVA 85 2. PVAc EVA PBS PBS. DSC (Fig. 2) Fig. 1 PBS/ EVA T c PBS/ PVAc T c. Fig. 3 PBS PVAc PBS EVA. PBS/ PVAc PVAc PBS. DSC compatible. PBS/ EVA PBS EVA. 70, 80, 90 (Fig. 4 5), PBS/ PVAc PVAc - 18 -
PBS/ EVA EVA. PBS PVAc EVA. PVAc, EVA. PBS/ PVAc, PBS/ EVA. Fig. 6 7 PBS/ EVA, PBS/ PVAc hot press PVAc EVA SEM. PVAc EVA. PBS PVAc EVA. Fig. 8 PVAc EVA. PBS PVAc, EVA.. PBS 250 m 30 m PVAc EVA. PVAc EVA PBS 24-19 -
. PVAc EVA SEM.(Fig. 9) PVAc EVA. PBS Poly (ethylene oxide)(peo). PBS PVAc EVA.. PEO. Fig. 10 PBS/ EVA. (Young ' s modulus ) EVA EVA. EVA 10 wt %. Fig. 6 SEM, EVA 15 wt% EVA - 20 -
. Fig. 11 PBS/ EVA, PLLA/ EVA. PBS/ EVA EVA 10 wt% 10 wt%. PLLA/ EVA EVA. Fig. 6 PBS/ EVA Fig. 12 PLLA/ EVA. PBS/ EVA EVA 10 wt % EVA 10 wt % EVA. - 2 1 -
4. PBS PVAc EVA, DSC T g, T g EVA PVAc PBS. PBS/ EVA EVA, PBS/ PVAc PVAc. SEM (phase) EVA, PVAc. PBS EVA, PVAc. EVA PBS/ EVA. PBS/ EVA EVA. PLLA/ EVA EVA. - 22 -
SEM PBS/ EVA PLLA/ EVA,. - 23 -
5. 1. R. Naray an, K unstoff e, 79 (10), 1022 (1989). 2. R. Narayan, S. Bloembergen, P oly m. P rep., 32 (2), 119 (1991). 3. J. T ramper, H.C. v an der Plas, P. Linko Eds., Biocataly sis in Or ganic Syntheses, Elsevier Science, Am sterdam, 1985. 4. N.J. T urner, Chem I nd., 15, 592(1994). 5. J. S. Dordick, TIB TE CH, 10, 287(1992). 6. A. Calmon - Decriaud, V. Gellon - Maurel and F. Silvestre, :Advances in polym er science, Springer, Verlag, p. 208, 1998. 7. A. J. Domb. J. Kost and D.M. Wiseman, Handbook of biodegradable polymer s, OPA, Au stralia, 473 (1997). 8. A. Pruter, M ar. P ollut. B ull., 18 (6B ), 305 (1987). 9. J. Mayer, A. L. Allen, P. A. Dell, D.L., P oly m. P rep., 34, 910 (1994). 10. S. J. Holland, B. J. T ighe and P.L. Gould, J. Control. R el., 4, 155 (1986). 11. S. M. Li and M.Vert, Degradable Polym er s : Principles and Application s, G. Scott and D. Gilead Eds., Chapman & Hall, London, p. 43, 1995. 12. G. S. Kum ar, Biodegradable Polymer s: Prospect s and Progress, Mar cel Dekker, New York, pp. 3, 1987. 13. S. J. Huang, Encyclopedia of Polym er Science and Engineering, Vol. 2(Eds A. Kling sgerg, J. Muldoon and A. - 24 -
Salv adore), Wiley, New York, pp. 220-243. 14. W. Schnabel, Polymer Degradaton: Principles and Practical Application s, Hanser, Munich, pp. 154-177. 15. R. L. Dunn, Biom edical Application s of Synthetic Biodegradable Polymer s, edited by J. O. Hollinger, Chap. 2, CRC Pr ess, 1995. 16. Y. Kimur a, Biom edical Applications of Polym eric Materials, edited by T. Hayashi, K. Kataoka, K. Ishihara, and Y. Kimura, Chap. 3, CRC Press, 1993. 17. S. J. Huang and P. G. Edelman in Degradable Polym er s edited by G. Scott and D. Gilead, Chap. 2, Chapman & Hall, 1995. 18. K. A. M. T hakur, R. T. Kean, J. M. Zupfer, N. U. Buehler, M. A. Doscotch, and E. J. Munson, M acrom olecules, 29, 8844 (1996). 19. K. Kasuya, K. T akagi. S. Ishiw atari, Y. Yoshida and Y. Doi, P oly m. D eg rad. S tab., 59, 327, (1998). 20. E. T akiyama and T. Fujimaki, Biodegradable Plastics and Polym er s, ed Y. Doi and K. Fukuda, Elservier, Amat erdam, p. 150, 1994. - 25 -
Sample Tg( ) Tc( ) Tm ( ) PBS -39.9-5.9 115.4 a EVA -25.0 - - EVA05-39.4 a -6.7 a 114.8 a PBS/EVA EVA 10-39.2 a -12.6 a 114.6 a EVA 15-38.6 a -12.6 a 114.1 a EVA20-38.1 a -12.5 a 114.3 a PVAc 38.4 - - PVAc05-39.9 a -5.0 a 114.4 a PBS/PVAc PVAc 10-45.7 a -5.1 a 114.1 a PVAc 15-42.9 a -4.3 a 113.6 a PVAc20-40.7 a -4.4 a 112.8 a T able 1. T hermal properties of PBS/ EVA and PBS/ PVAc melt blend - 26 -
Fig. 1. DSC curve of PBS/ EVA and PBS/ PVAc melt blend (a)pbs (B)PBS/ PVAc 80/ 20 wt% (c)pbs/ EVA 80/ 20 wt% - 27 -
Fig. 2. DSC curve of PBS/ EVA and PBS/ PVAc solution blend (a)pbs/ EVA 80/ 20 wt % (b)pbs/ PVAc 80/ 20 wt % - 28 -
Fig. 3. Optical microscopy of PBS/ EVA and PBS/ PVAc solution blend (a)pure PBS (b)pbs/ EVA 80/ 20 wt % (c)pbs/ PVAc 80/ 20 wt % - 29 -
(a) Fig. 4. (b) Spherulite growth rate of PBS/ EVA and PBS/ PVAc melt blend (a)pbs/ EVA (b)pbs/ PVAc - 30 -
(a) Fig. 5. Spherulit e growth rate of PBS/ EVA and PBS/ PVA c (b) solution blend (a )PBS/ EVA (b)pbs/ PVAc - 3 1 -
Fig. 6. SEM photographs of fracture surface of PBS/ EVA melt blend (a)95/ 5 wt% (b)90/ 10 wt % (c)85/ 15 wt % (d)80/ 20 wt % - 32 -
Fig. 7. SEM photographs of fracture surface of PBS/ PVAc melt blend (a)95/ 5 wt% (b)90/ 10 wt% (c)85/ 15 wt% (d)80/ 20 wt% - 33 -
Fig. 8. SEM photogr aphs of fr actur e surface of PBS/ EVA and PBS/ PVA c solution blend (a)pbs/ EVA 80/ 20 wt% (b )PBS/ EVA 60/ 40 wt% (c)pbs/ PVAc 80/ 20 w t% (c)pbs/ PVAc 60/ 40 wt % - 34 -
Fig. 9. SEM phot ogr aphs of PBS/ EVA, PBS/ PVAc and PBS/ PEO melt and solution coating - 35 -
Fig. 10. T ensile properties of PBS/ EVA melt blend - 36 -
Fig. 11. Izod impact strength of PBS/ EVA and PLLA/ EVA melt blend - 37 -
Fig. 12. SEM photogr aph s of fr actur e surface of PLLA/ EVA melt blend (a)95/ 5 w t% (b)90/ 10 wt % (c)85/ 15 w t% (d)80/ 20 wt% - 38 -
. P B S / Clay N an oc om p o s it e 1.,,,.,. stiffness toughness. 10 2 nm., montmorillonite [1,2].. [3-2 1]. /,,. 1 10 wt % - 39 -
. [3 ].. smectite montmorillonite, hectorite saponite. [5 ] T able 1 montmorillonite Fig. 1. silica. interlayer gallery gallery Na + K +... alkylammonium onium ion Na + K +. [4, 6-8 ] /,,,.(Fig. 2) [9, 10 ] tactoid. - 40 -
gallery... [12] /.(Fig. 3),.. [3]..,.. /. 6-4 1 -
2 HDT 80. [1 1] poly (butylene succinate)(pbs). - 42 -
2. 2.1 PBS SK chemical. 58,000 g/ mol 150,000 g/ mol. 39.9 115.8. Southern clay montmorillonite Cloisite 30B. methyl tallow bis- 2- hydroxyethyl ammonium modifier concentration 90 meq/ 100 mg. 2.2 PBS/ twin - screw extruder 145 60 rpm. die. PBS/ clay. 600 ml PBS 48 clay. 24 24 25. 2.3-43 -
2.3.1 X Guinier focusing Philips PW - 1847 x - ray crystallographic unit 1.5 o 35 o (2 ). 40 kv, 20mA Ni- filtered Cu - k radiation. 2.3.2 Perkin Elmer DSC7 Polymer Laboratory T GA 1000. DSC 20 / min 150 150 1 100 / min 100 20 / min 2. 2.3.3 Hot stage 150 60 100 / min 85 Nicon polarizing optical microscope. 2.3.4 Hounsfield 110K - S. 10 mm ( ) 50 mm ( ) 200 ( ) 20 mm/ min. Izod Yasuda Seiki Seisakusho clamping force 10 kg - cm. - 44 -
2.3.5. Hitachi X- 650-45 -
3. Fig. 4 twin - screw extruder PBS/ XRD. (Cloisite 30B) 4.81 o twin- screw extruder 2.8 o. PBS clay c. (1) Bragg ' s equation 18.3 31.5. n = 2dsin (1) n : inter ger : w avelength of X- ray radiation d : the spacing bet w een diffractional lattice planes : diffraction angle. PBS (Fig. 5) PBS. Fig. 6 PBS/ DSC. DSC (T c ) PBS. - 46 -
. Orgata et al [2 2 ]. / T m H m T m H m. [8 ] T m H m. PBS T c - 40 PBS. T m H m. PBS die, T m H m. Fig. 7 thimble filter DSC. T m. XRD.(Fig. 8) PBS. - 47 -
. DSC. Fig. 9. 5 wt%. 5 wt%. Fig. 10 PBS T GA.. PBS 2.5 wt% 20. PBS OH COOH Cloisite 30B metlyl tallow bis- 2- hydroxyethyl ammonium, PBS. PBS/ XRD (Fig. 11) PBS.(Fig. 12) PBS Cloisite 30B twin- screw extruder. PBS Cloisite 30B. - 48 -
thimble filter. T GA PBS Cloisite 30B. Fig. 14. Fig. 13 PBS.. - 49 -
4. PBS Southern clay montmorillonite Cloisite 30B twin - screw extruder. XRD Cloisite 30B 4.81 o PBS 2.8 o. Bragg ' s equation 13.8 PBS 31.5.. DSC T m H. PBS.. PBS Closite 30B T GA - 50 -
. PBS/ 5 wt%. 5 wt% PBS. 5 wt% PBS. - 5 1 -
5. 1. B. K. G. T heng, T he Chemistry of Clay - Organic Reactions, Wiley, New York, 1974. 2. M. Ogaw a, K. Kur oda, Prepar ation of inor ganic- organic nanocomposites through intercalation of organoammonium ion s int o layer ed silicat es, Bull. Chem. Soc, Jpn, 70, 2593, (1997). 3. E. P. Giannelis, A dv. M ater., 8, 29, (1996). 4. L. Liu, Z. Qi, and X. Zhu, J ournal of A pp lied P oly m er science, 7 1, 1133, (1999). 5. E. P. Giannelis, R. Krishnamoorti, and E. Manias, A dv. P oly m. S ci 118, 108, (1999). 6. Y. Kojim a, A. Usuki, M. kaw asumi, A. Okada, and T. Kurauchi, J ournal of P oly m er S cience, P art B : Polymer Phy sics, 33, 1039, (1995). 7. K. Yano, A. U suki, A. Okada, T. Kurauchi, and O. Kamigaito, J ournal of P olym er S cience P art A : P oly m er Chem is try, 3 1, 2493, (1993). 8. P. B. Messersmith, and E. P. Giannelis, J ournal of P oly m er S cience : Part A : P oly m er Chem is try, 33, 1047, (1995). 9. Z. Wang, and T. J. Pinnavaia, Chem. M ater., 10, 1820, (1998). 10. M. B. Ko, S. H. Lim, J. K. Kim, C. R. Choe, M. S. Lee, and M. G. Ha, K orea P oly m er J ournal, 7, No. 5, 310, (1999). 11. A. Okada, M. Kaw asumi, T. Kurauchi, and O. Kamigaito, - 52 -
P oly m er P rep rints, 28, 447, (1987). 12. T. Lan, P. D. Kaviratna and T. J. Pinnavaia, Chem. M ater., 8, 1728, (1996). 13. Y. Ly at skay a, and A. C. Balazs, M acrom olecules, 3 1, 6676, (1998). 14. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, M acrom olecules, 30, 6333, (1997). 15. Y. Kojim a, A. Usuki, M. Kaw asumi, A. Okada, T. Kur auchi, and O. K am igaito, J ournal of P olym er S cience P art A : P oly m er Chem is try, 3 1, 983, (1993). 16. Y. Kur okaw a, H. Yasuda, M. Kaw asumi, and A. Oyo, J ournal of m aterial science letters, 16, 1670, (1997). 17. X. Kornm ann, L. A. Ber glund, and J. Sterte, P olym er E ng ineering and S cience, 38, 8, (1998). 18. T. Lan, and T. J. Pinnavaia, Chem. M ater., 6, 2216, (1994). 19. R. A. Vaia, B. B. Sauer, O. K. T se, and E. P. Giannelis, J ournal of P oly m er S cience Part B : P olym er P hy sics, 35, 59, (1997). 20. Y. Kojim a, A. Usuki, M. Kaw asumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. M ater. R es., 8, 5, 1185, (1993). 21. H. Shi, T. Lan, and T. J. Pinnavaia, Chem. M ater., 8, 1584, (1996). 22. N. Ogata, G. Jimenez, H. Kawai, T. Ogihara. J ournal of P oly m er S cience P art B : P oly m er P hy s ics, 35, 389, (1997). - 53 -
- 54 -
2:1 Lay er ed silicates General form ula M ontm orillonit e M x (Al4 - x M gx )Si8O20 (OH )4 Hectorit e M x (M g 6 - x Lix )Si8O2 0 (OH )4 S aponit e M x M g 6 (Si8 - x Alx )Si8O2 0 (OH )4 a M =monovalent cation; x =degree of isomorphous substitution(between 0.5 and 1.3) T able 1. Chemical structure of commonly used 2:1 phyllosilicates - 55 -
Fig. 1. Conventional composites v s. nanocomposites - 56 -
Fig. 2. Structure of montmorillonite - 57 -
Fig. 3. Preparation methods of polymer/ clay n anocoposites - 58 -
Fig. 4. XRD pattern of PBS/ Cloisite 30B hybrid (a)closite 30B (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 59 -
Fig. 5. Optical microscopy photographs of PBS/ Cloisite 30B hybrid (a)pbs (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 60 -
Fig. 6 DSC curve of PBS/ Cloisite 30B hybrid (a)pbs (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 6 1 -
Fig. 7. DSC curve of PBS/ Cloisite 30B hybrid after extraction (a)pbs (b)clay nanocomposites after extraction - 62 -
Fig. 8. XRD pattern of PBS/ Cloisite 30B hybrid after extraction (a)pbs (b)clay nanocomposites 95/ 5 wt % (c)clay nanocomposites 95/ 5 wt % after extraction (d)cloisite 30B - 63 -
Fig. 9. Mechanical properties of PBS and clay n anocomposites - 64 -
F ig, 10. T GA curv e of PBS and clay n anocomposites by melt mixing (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt % (d)92.5/ 7.5 wt% (e)90/ 10 wt% - 65 -
Fig. 11. Xrd pattern of PBS and clay n anocomposites by solution method (a)cloisite 30B (b)97.5/ 2.5 wt % (c)95/ 5 wt% (d)92.5/ 7.5 wt% (e)90/ 10 wt % - 66 -
Fig. 12. Xrd pattern of PBS and clay n anocomposites by solution method (a)pbs (b)97.5/ 2.5 wt% (c)95/ 5 wt % (d)92.5/ 7.5 wt % (e)90/ 10 wt % - 67 -
Fig. 13. T GA curve of PBS/ clay nanocomposites by melt and solution method afrer extraction (a)cloisite 30B (b)solution method after extraction (c)melt mixing after extraction - 68 -
- - 2..,,,,,.,,.,,,. LG T/ G,,,,,,.. 2000 12-69 -