Asian J. Turfgrass Sci. 25(2):138~146, 2011 pissn 1229-3253 Research Articles Asian Journal of Turfgrass Science The Turfgrass Society of Korea 국내자생한국잔디류의내한성및내염성조사 최준수 * 양근모단국대학교녹지조경학과 Low temperature and Salt Tolerances of Native Zoysiagrass (Zoysia spp.) Collected in South Korea Joon-Soo Choi* and Geun-Mo Yang Department of Green Landscape Architecture Science, Dankook Univ., Cheonan 330-714, Korea ABSTRACT. This study was carried out to select salt tolerant zoysiagrass breeding lines. Eighty two native zoysiagrasses collected from S. Korea were used in this study. Saline water were prepared by mixing sea water and tap water. ECw levels of saline water treated ranged from 2 to 3 ds m -1. Zoysiagrass planted in pot by sprigging were soaked into the plastic box containing saline water. Winter injury was investigated under the pot condition. Most of Z. japonica types did not show winter injury. But Z. tenuifolia type, Z. matrella type, and Z. sinica type showed winter injury under the pot condition at Cheonan area. NaCl level in soil was increased from 0% to 0.51% by treatment of saline water. Soil ECe measurement showed upto 170 ds m -1. Z. tenuifolia type (Z5034), Z. matrella type ( Konhee, Z4109, Semill ), Z. japonica type (Z1055, Z1040, Z1008, Zenith, Millock ) and medium leaf type zoysiagrass (Z6096, Z6118, Z6021, Z6074) resulted in below 30% leaf firing under the saline condition. This approach might be useful for selecting salt tolerant breeding lines. Key words: breeding lines, electrical conductivity, native zoysiagrass, salt tolerance 서 론 제한된수자원으로인한대체수원의개발과해안개발에따른내염성식물의수요증가로내염성식물의개발이절실한실정이다. 현재미국에서는식수의부족으로인해조경전용의급수원을생각하고있으며, 염류가포함된물을관수함에있어잔디에나타나는염해정도를관찰함으로써실제포장에이용가능성을진단해보는연구들이진행중이다. 한국에서도영종도신공항건설, 남, 서해안간척지개발사업, 김포매립지조성사업등에내염성이강한초종을선발해시공하고자하는노력이증가되고있는상황이다. 서해안간척지의염전바닥의염농도가 1.5%, 염전주위둑토양의염농도는 0.26% 로보고되고있어 (Kim et al., 1991) 이러한토양에적응할수있는내염성잔디의개발은중요한과제라고볼수있다. 한국잔디는한지형잔디들보다내염성이우수한것으로 *Corresponding author; Tel: +82-41-550-3631 E-mail : CHOI3644@dankook.ac.kr Received : Nov. 2, 2011, Revised : Nov. 16, 2011, Accepted : Nov. 22, 2011 보고되고있으며 (Kim et al., 1991), 한국잔디내에서도품종간내염성변이정도가매우높아내염성자원으로의잠재능력이높다고평가하였다 (Marcum et al., 1998). 한국잔디류의내염성조사결과염농도 0.2% 에서는한국잔디류가염해를입지않았고 0.5% 의염농도부터염해증상을보였다. 또한염농도 2% 수준에서는한국잔디류내염해에강한계통을선발할수있었으며, Z. japonica와 Z. sinica의교배종에서내염성이높게나타났다고보고하였다 (Kim et al., 1991). Kim et al. (2009) 은서해안간척지에서관수용수의전기전도도 (ECw) 가 0.28~3.3 ds m -1 의범위인물을사용하여잔디재배실험을수행한결과모세관수차단층처리구토양의전기전도도 (ECe) 는 0.55~4.29 ds m -1 의범위를보여염의집적정도가낮았고, 모세관수차단층을설치하지않은시험구에서는 1.8~9.4 ds m -1 의범위를나타내어토양내염류가집적된다고하였다. 또한차단층을설치하지않은곳에서한국잔디류인 중지, 세녹, 밀록 과크리핑벤트그래스초종은피복률이 90% 이상을보이며양호한생육을보였다고보고하였고한국잔디류와크리핑벤트그래스가켄터키블루그래스, 퍼레니얼라이그래스에비 138
국내자생한국잔디류의내한성및내염성조사 139 해상대적으로내염성이있는초종으로보고하였다. 난지형잔디인 zoysiagrass Emerald 품종은염처리후에도조직내 Na + 함량의증가율이적어내염성이강한초종으로보고되었다 (Dudeck & Peacock, 1993). 또한줄기의밀도와관련된잔디품질조사를통해 Z. matrella가 400 mm 염농도에서도줄기생장을계속하는데비해 Z. japonica는 200 mm 농도에서도줄기생장이억제되는현상을보였다는보고도있다 (Marcum & Murdoch, 1994). 한국잔디류계통간내염성조사에서 Diamond, DALZ8501 등이내염성이강하다고보고되고있으며 (Marcum et al., 1998), Diamond, DALZ8501 등과같이내염성이강한계통을이용해인공교배한후대에서도내염성이강하게발현되는것이확인되어, 인공교배를통해내염성품종을육성할수있다고보고되었다 (Qian et al., 2000). 잔디가체내이온집적을조절하는생리기작으로는뿌리의근관에서이온흡수의억제 (Cramer et al., 1987), 염샘 (salt gland) 을통해 Na +, Cl - 배출 (Marcum, 1999; Marcum et al, 1998), proline, glycinebetaine 등과같은단백질을생성하여과다이온흡수에따른삼투압조절 (Torello & Rice, 1986; Marcum, 1994; Lee et al., 1994; Marcum, 1999) 등이있다. 이들중저항성을나타내는기작은 proline, glycinebetaine과같은단백질을생성하여삼투압을조절하는기작과, 염생식물의경우로줄기로염의유입을최소화하는기작이며, 이경우에는생육이최소화되고한국잔디류와같이잎에염을배출하는염샘을갖고있는종류도있다 (Gorham et al., 1985). 한국잔디를포함한난지형잔디들은이상의두가지방법을모두이용해염해에대응하는것으로보고되고있다 (Marcum, 1999). 현재국내에자생하고있는한국잔디는여러종이있고또한이들종간에자연교잡종들이형성되고있다고보고되고있다 (Choi, 2010). 그러나이들자원에대한내환경성평가에대한국내연구는아직미흡한것으로판단된다. 그러므로본실험은국내에서수집된자생잔디류 (Zoysia spp.) 의내염성자원선발을위해포장조건에서바닷물을사용하여내염성자원을선발할수있는방법을확립하고자수행되었다. 재료및방법 본실험은충남천안시소재단국대학교실험포장에서실시되었다. 공시재료는 2010년도에국내에서수집된 138 개자생한국잔디를사용하였다. 수집된자생잔디를 304020 cm의사각포트에식재후시험포장에서월동시 켰으며, 이듬해월동후생존율을조사하였다. 생존율은봄철에그린업을가시적으로판단하였으며, 0은모두고사하여녹색이없는경우이며, 9는녹색정도가 90% 이상인것으로하였다. 내염성조사는수집된 138개계통중월동후생존한 73개개체와기존대조군으로보유하고있던 9개한국잔디종및품종을포함해서총 82개개체를공시재료로사용하였다 (Table 1). 잔디식재는지상포복경을취해서길이 10 cm로절단후직경 15 cm 원형포트에 2마디이상의포복경을 3개씩식재하였다. 포트는완전임의 3반복으로배치하였다. 염처리는 1.5 m 2.4 m의사각플라스틱용기에바닷물과수돗물을혼합하여공급한후포트를침지처리하는방식으로수행되었다. 한국잔디에서염해피해가예상되는수준의물전기전도도 (ECw) 는 0.28-3.3 ds m -1 수준이었다고보고되고있으며 (Kim et al., 2009), Rahayu et al. (2011) 은관수용수의전기전도도 3dS m -1 수준에서켄터키블루그래스의지상부품질이감소한다는보고가있어본실험에서도관수용수의전기전도도가 2-3 ds m -1 수준이되도록바닷물을수돗물과혼합한물에한국잔디를생육시켜염해저항성정도를파악해보았다. 바닷물은충남삽교부근에서취하여사용되었다. 사용된바닷물의전기전도도 (ECw) 는 28.9 ds m -1 로나타났으며, 바닷물을수돗물과표 2와같이혼합하여사용하였다. 8월 4일에 ECw가 2.0 ds m -1 수준 (1:20) 이되도록혼합하여 1차처리를수행하였으며, 8월 23일에 ECw 3.0 ds m -1 수준 (1:10) 의 2차처리, 9월 5일에 ECw 7.0 ds m -1 수준 (2:8) 의 3차처리, 9월 24일에 3차처리와동일한수준의 4차처리까지염처리수준을높여가며처리하였다. 염수의물량은 1회당 200 L씩제조하여사용하였다. 잔디관리를위해시비는잔디용복합비료 (11-5-7) 을질소순성분 4g m -1 씩 5월 31일, 6월 29일총 2회살포하였다. 염해피해정도는가시적으로평가하였으며, 토양 ph 와 ECe 및화학성변화를조사하였다. ph는포트내토양시료를취합하여건조기에 48시간건조처리후 50 ml 비이커에토양 10 g과물 50 ml을혼합하고혼합 30분후에 ph 측정기 (istek, ph-220l) 사용하여조사하였다. ECp 는토양과물의비율이 1:5로혼합한후 EC(TAKEMURA ELECTRIC WORKS LTD., Model CM-53) 측정기를사용하여측정하였다. 본실험에사용된토양의토성이양토이므로측정된 ECp 값에보정값 15를곱하여 ECe 로환산하였다 (Carrow and Duncan, 1998). 염해피해정도는가시적관찰을통해, 1 낮은피해수준에서 9 높은피해수
140 최준수 양근모 Table 1. Sites, characteristics and green-up rates of native zoysiagrasses collected in South Korea. No Collection Code Region Characteristics Green up rate z (1-9) 1 Z6005 ShinSi island, Gun San medium leaf width type 4 2 Z6006 " " 4 3 Z1008 Shinsi elementary school Z. japonica type, many seed 4 4 Z6011 Byeon San beach, BuAhn Gun medium leaf type, dune 4 5 Z1014 BuAhn, Keok-Po Observation Site. Z. japonica, road side 5 6 Z6021 Bok-ho harbor, Anja island medium leaf type 4 7 Z6022 " medium leaf type 5 8 Z1026 " road side, Z. japonica type 6 9 Z1027 Pal-gum meon,shin-ahn Gun road side, Z. japonica type 4 10 Z1029 " medium leaf type, between rock 4 11 Z2032 " medium leaf type, sandbank 5 12 Z6033 " medium leaf type, between rock 4 13 Z5034 " Z. tenuifolia type, garden wall 5 14 Z6036 Bun-gea beach, Shin-Ahn Gun medium leaf type 4 15 Z1038 " Z. japonica type, landscape area 5 16 Z1039 Back-gill beach, Shin-Ahn Gun Z. japonica type 6 17 Z1040 Pal-gum meon, Shin-Ahn Gun Z. japonica type 6 18 Z6042 No-wha island, Wan-Do between rock, no hair on leaf blade 4 19 Z1046 No-wha island, Wan-Do black color seed, many cotton 5 20 Z1048 Bo-gil Do broad leaf blade, many cotton 5 21 Z1050 " yellow color seed, Zenith type 5 22 Z1051 " beach, dune, black color seed 5 23 Z6053 Gun-Wea Meon, Wan-Do beach, gravel 4 24 Z1055 Shin-Ji Meon, Wan-Do cotton, mountain side 4 25 Z1059 beach, Cheong san island under the pine tree, dune 4 26 Z1064 Kum ho island, Yeo-soo city broad leaf width over 5mm 5 27 Z1065 Kum ho island,, Yeo-soo city under the pine tree, small size seed 7 28 Z1069 Beach, Dol San eup, Yeo-soo city small size seed, long flowering culm 6 29 Z1070 " short flowering culm 4 30 Z6074 Sum dal cheon, Yeo -soo city footpath between rice field 5 31 Z1075 " cotton hair on leaf blade 6 32 Z6079 Sea side graveyard, Geojedo broad leaf, cotton upper side 7 33 Z6079-1 " fine to medium leaf type zoysiagrass 4 34 Z6081 Nam dong, Geojedo cotton upper side, Z. japonica type 5 35 Z6083 Myong Jin reservoir, Geojedo cotton hair, dark green color 7 36 Z1084 Myong Jin reservoir, Geojedo many cotton, small size seed 5 준으로나누어조사하였다. 통계분석은 SAS 프로그램을활용하였으며평균간비교는유의수준 5% 수준에서던칸의다중분석을사용하였다. 결과및고찰 겨울철고사율조사 2010년국내에서수집한자생잔디를사각포트에식재한
국내자생한국잔디류의내한성및내염성조사 141 Table 1. continued 37 Z1084-1 Anyangarm temple, Geojedo medium leaf type 6 38 Z1085 Jandigoal, Gucheon meon, Geojedo Z. japonica type, broad leaf 6 39 Z6087 natural tree park, Geojedo high shoot density, small size seed 5 40 Z6088 Hea Gum Kang, Geojedo small size seed 5 41 Z1089 " thatch, cotton 6 42 Z6090 Sibang ri, yeoncho meon, Geojedo narrow leaf blade 5 43 Z6093 KunGeaGill 71, Tongyeongsi many cotton, wide leaf blade 5mm 8 44 Z1094 Pyong ahn road side, Tongyeongsi leaf wide 5mm, short leaf blade 8 45 Z2095 Sookook island, Tongyeongsi sea side, hill 5 46 Z6096 SooKook island, Tongyeongsi sea side, hill, under the pine tree 5 47 Z2097 Hansan island, Tongyeongsi thick node, high density 5 48 Z6098 Hansan island, Tongyeongsi look like a commercial variety 4 49 Z6101 Nam hea 2733, Namheagun similar with anyang jungi 7 50 Z1102 " leaf width 5mm, high densisty 8 51 Z1103 Nam hea 2325, Namheagun similar with Z1102 8 52 Z6104 Seo meon, Namheagun similar with Z1103 7 53 Z6105 Yachon, Namheagun medium leaf type 7 54 Z6106 Bori arm, temple, Namheagun medium leaf type 8 55 Z6107 " cotton on leaf blade, many flower 8 56 Z1108 Sangjoo meon, Namheagun Z. japonica type 8 57 Z4109 Mulgun ri, Namheagun typical Z. matrella, roadside 5 58 Z2110 Dunchon, Namheagun Big size group of Z. sinica 5 59 Z1111 Kotgi beach, Ahnmeondo under the pine tree. Z. japonica type 5 60 Z6112 book ho harbor, Ahnmeondo dark green, many node 5 61 Z6113 " light green color leaf 5 62 Z6115 BeatGea beach, Ahnmeondo medium leaf type 5 63 Z6116 " medium leaf type 5 64 Z2117 Gigipo beach, Ahnmeondo group of Z. sinica 5 65 Z6118 " group of medium leaf type 4 66 Z6120 Wando medium leaf type 4 67 Z6130 Yeosoo city medium leaf type 5 68 Z6131 Yeosoo city medium leaf type 5 69 Z6135 Geojedo medium leaf type 4 70 ZK1120 Gumsan Z. japonica, coarse type 6 71 ZH6125 Hamyang Medium leaf type 6 72 ZH1128 Hamyang Z. japonica type 6 73 ZH6130 Hamyang medium leaf type 6 74 Anyang Anyang junggi medium leaf type 7 75 Senock Senock zoysiagrass fine type zoysiagarass 5 76 Millock Millock Zoysiagrass Medium type zoysiagrass 6 77 Semill SeMill zoysiagrass fine type zoysiagrass 5 78 Konhee Koonhee zoysiagrass fine type, Z. matrella type 5 79 Zenith Zenith zoysiagrass Seeded type zoysiagrass 6 80 T1Meyer T1 Meyer zoysiagrass Medium leaf type zoysiagrass 5 81 tenuifolia Z. tenuifolia fine type zoysiagrass 4 82 Bermuda Cynodon dactylon fine type bermudagrass 6 z Green-up rates based on 0 to 9 scale, where 0= completely killed, 9= no injury and showing full green up at spring (23 May).
142 최준수 양근모 Table 2. Electric conductivity and TDS of sea water and tap water used in this experiment. Item Sea water Tap water Mixing rate (SW : TW) 1:1 2:8 1:10 1:20 ECw (ds m -1 ) 28.9 0.2 15.6 7.1 3.27 1.9 TDS (ppm) 18,496 128 9,984 4,544 2,092 1,216 Table 3. Winter survival rates of native grasses under cold and dry condition at Cheonan in the winter of 2010 to 2011. Species Number of dead grass Total observation numbers Percentage of dead grass Z. matrella type 15 15 100 Medium leal type (Junggi) 10 60 16.7 Z. sinica type 17 21 81.0 Z. macrostachya type 2 2 100 Z. tenuifolia type 1 1 100 Bermudagrass 5 5 100 Seashore paspalum 1 1 100 Z. japonica type 0 33 0 Total 51 138 36.9 후봄철에그린업상태를조사한결과총 138개수집잔디중에서 36.9% 의개체가고사한것으로평가되었다 (Table 3). 특히, Z. matrella, Z. macrostachya, Z. tenuifolia, Bermudagrass (Cynodon dactylon), Seashore paspalum (Paspalum vaginatum) 은 100% 고사한것으로나타나내한성이상대적으로낮은것으로판단된다. 반면에 Z. japonica 형의수집개체들은총 33개중고사율이 0% 로나타나비교적내한성이높은것으로나타났다. 상기결과는 Choi and Yang (2005) 이한국잔디류의기본종, 상업종및육종계통들의내한성비교결과와 Z. japonica의생존율이높다고보고한결과와유사한것으로나타났다. 염해조사염수처리후염해정도를평가한결과각개체간에피해정도가다르게나타나는것을확인할수있었다 (Table 4). 9월 30일조사결과 82개수집개체들이서로다른정도의염해가나타나는것을확인할수있었다 (Fig. 1). 염해를받은잔디잎은끝이말리는증상을보였다 (Fig. 2). 30% 수준의염해를받은개체는총 18% 로나타났으며, 대부분 40-50% 의피해수준을나타낸개체가전체잔디중에서각각 42.2%, 33.8% 로대부분을차지하고있었다. 또한 60% 이상피해를받은개체는총 5.6% 수준으로낮게나타났다. 가시적평가결과 30% 이하의피해수준을보인개체로는 Z. tenuifolia 형인 Z5034 그리고, Z. matrella 형인 Konhee, Z.4109, Semill 등이었으며, Z. japonica 형의잔디중에서는 Z1055, Z1040, Z1008, Zenith, Millock, 등으로나타났다. 또한중엽형잔디중에서는 Z6096, Z6118, Z6021, Z6074 등의염해정도가낮게조사되었다. Dueck & Peacock (1993) 은난지형잔디중 zoysiagrass 세엽형품종인 Emerald 는염처리후에도조직내 Na + 함량의증가율이적어내염성이높은초종으로보고하였는데, 본연구에서도엽폭이좁은세엽형잔디들의피해정도가낮게조사되었다. 또한 Marcum & Murdoch (1994) 의연구결과역시, 세엽형인 Z. matrella가 400 mm 염농도에서도줄기생장을계속하였지만광엽형인 Z. japonica는 200 mm 농도에서도줄기생장이억제되는현상을보였다고보고하였는데, 본연구결과에서도세엽형인 Z. tenuifolia나 Z. matrella형잔디가 Z. japonica형잔디에비해내염성이상대적으로높았었다. 수집잔디중에서 60% 이상의염해피해를보인개체로는 Z6093, Z6097과같은중지형잔디와 Z2010과같은 Z. sinica형잔디, 그리고 Z7011, bermudagrass 등으로나타났다. Kim et al. (1991) 은한국잔디가 0.5% 수준의염농도에서염해증상을보였고, 염농도 2% 수준에서한국잔디류내염해에강한계통을선발할수있었으며, Z. japonica 와 Z. sinica의교배종에서내염성이높게나타났다고보고하였으나본연구에서는 Z. matrella 형, Z. tenuifolia
국내자생한국잔디류의내한성및내염성조사 143 Table 4. Salt injury ratings of 80 native zoysiagrasses and 2 bermudagrasses. Lines Date Observation date 9/9 9/16 9/23 9/30 10/7 10/14 10/21 Z6006 2.5 cdef 2.5 defg 3.5 efgh 4.0 efgh 5.0 defg 5.5 defg 6.5 defg Z1008 1.5 gf 1.5 g 3.0 fgh 3.5 gh 5.0 defg 6.0 cdef 6.5 defg Z6011 3.0 bcde 3.5 cde 4.5 cde 5.0 cdef 6.0 bcd 6.0 cdef 7.0 bcdef Z1014 2.7 cdef 3.0 cdef 4.0 cdefg 5.0 cdef 5.7 cde 6.3 bcde 7.0 bcdef Z6021 2.3 def 3.0 cdef 3.7 defgh 3.7 fgh 5.0 defg 5.0 efgh 5.3 gh Z6022 3.0 bcde 3.5 cde 4.5 cde 5.0 cdef 5.5 cdef 6.5 bcd 7.0 bcdef Z1026 3.0 bcde 3.0 cdef 4.0 cdefg 5.0 cdef 6.0 bcd 7.0 abc 7.0 bcdef Z1027 2.3 def 3.0 cdef 4.3 cdef 4.7 cdefg 5.3 cdef 6.0 cdef 6.7 cdefg Z1029 3.0 bcde 3.7 cd 4.3 cdef 4.7 cdefg 5.0 defg 6.3 bcde 6.7 cdefg Z2032 3.3 bcd 4.0 bc 5.0 bcd 5.3 cde 6.3 bc 7.0 abc 8.0 abc Z5034 2.0 efg 3.0 cdef 3.0 fgh 3.0 h 4.0 g 4.0 h 4.0 i Z1038 2.0 efg 2.0 fg 2.5 h 4.0 efgh 5.5 cdef 6.0 cdef 6.0 efgh Z1039 1.7 gf 2.3 efg 3.3 efgh 4.0 efgh 5.0 defg 5.7 cdefg 6.3 defgh Z1040 2.0 efg 2.5 defg 3.0 fgh 3.5 gh 4.5 efg 5.5 defg 5.5 gh Z6042 2.0 efg 3.0 cdef 3.7 defgh 4.0 efgh 5.0 defg 6.0 cdef 6.7 cdefg Z1046 2.7 cdef 3.3 cde 4.0 cdefg 4.7 cdefg 5.3 cdef 6.3 bcde 6.3 defgh Z1050 3.3 bcd 3.3 cde 3.3 efgh 4.3 defgh 4.7 efg 4.7 fgh 5.0 hi Z1055 1.5 gf 1.5 g 2.5 h 3.5 gh 4.5 efg 5.0 efgh 5.5 egh Z1064 2.5 cdef 3.0 cdef 4.5 cde 4.5 defg 5.5 cdef 6.0 cdef 6.5 defg Z1065 3.7 bc 3.7 cd 4.7 cde 5.0 cdef 6.0 bcd 6.7 abcd 7.0 bcdef Z1069 2.5 cdef 2.5 defg 3.5 efgh 5.0 cdef 6.5 bc 7.0 abc 7.5 abcd Z6074 2.3 def 3.0 cdef 3.7 defgh 3.7 fgh 5.0 defg 5.7 cdefg 6.3 defgh Z1075 3.0 bcde 3.0 cdef 3.5 efgh 5.0 cdef 6.0 bcd 6.0 cdef 6.0 efgh Z6079 2.7 cdef 3.7 cd 4.0 cdefg 5.3 cde 6.0 bcd 6.3 bcde 6.7 cdefg Z6079-1 2.5 cdef 3.0 cdef 4.5 cde 5.0 cdef 6.0 bcd 6.0 cdef 6.0 efgh Z6081 2.5 cdef 3.5 cde 4.0 cdefg 4.0 efgh 5.0 defg 6.0 cdef 6.5 defg Z6083 2.7 cdef 3.0 cdef 4.0 cdefg 4.7 cdefg 5.3 cdef 6.3 bcde 6.7 cdefg Z1084 3.0 bcde 3.5 cde 4.5 cde 5.0 cdef 6.5 bc 6.5 bcd 7.5 abcd Z1084-1 3.0 bcde 3.3 cde 4.0 cdefg 4.3 defgh 5.0 defg 5.7 cdefg 5.7 fgh Z1085 3.0 bcde 3.5 cde 4.0 cdefg 5.5 bcd 6.5 bc 6.5 bcd 7.0 bcdef Z6087 3.0 bcde 3.3 cde 3.7 defgh 4.3 defgh 6.3 bc 6.3 bcde 6.7 cdefg Z6088 3.3 bcd 3.7 cd 5.3 bc 5.7 bcd 6.3 bc 7.0 abc 7.0 bcdef Z1089 3.0 bcde 3.0 cdef 4.0 cdefg 4.3 defgh 5.3 cdef 5.3 defgh 5.3 gh Z6090 2.7 cdef 3.3 cde 4.3 cdef 5.3 cde 6.0 bcd 7.0 abc 8.3 ab Z6093 3.0 bcde 3.7 cd 5.0 bcd 6.0 bc 7.0 ab 7.7 ab 8.3 ab 형에서도내염성개체를선발하였다. 염처리후토양화학성변화염수처리후토양전기전도도 (ECp) 를조사한결과처리전 0.12 ds m -1 이었던토양의전기전도도가 9월 30일조 사결과 4.57 ds m -1 로증가하는결과를보였다 (Table 5). 또한포화용액의전기전도도인 ECe는 68.55 ds m -1 로매우높은결과를보였다. Carrow & Duncan (1998) 은한국잔디가 50% 의염해피해를받는수준에서토양의 ECe가 4~40 ds m -1 범위라고보고한결과보다더높은수치를나
144 최준수 양근모 Table 4. Continued Lines Date Observation date 9/9 9/16 9/23 9/30 10/7 10/14 10/21 Z1094 3.0 bcde 3.0 cdef 4.0 cdefg 4.0 efgh 5.0 defg 5.5 defg 5.5 gh z Z6096 2.0 efg 2.0 fg 3.0 fgh 3.0 h 4.3 efg 4.3 gh 5.0 hi Z6098 2.7 cdef 3.3 cde 4.3 cdef 5.3 cde 6.3 bc 7.0 abc 7.7 abcd Z6101 2.0 efg 3.0 cdef 4.5 cde 4.5 defg 5.5 cdef 5.5 defg 6.5 defg Z1102 2.7 cdef 3.0 cdef 4.7 cde 5.0 cdef 6.0 bcd 6.3 bcde 6.7 cdefg Z1103 3.0 bcde 3.0 cdef 4.0 cdefg 4.3 defgh 5.0 defg 6.0 cdef 6.3 defgh Z6104 2.5 cdef 3.0 cdef 4.0 cdefg 4.5 defg 5.5 cdef 5.5 defg 6.0 efgh Z6105 2.7 cdef 3.3 cde 3.7 defgh 4.0 efgh 5.0 defg 5.7 cdefg 6.0 efgh Z6106 2.5 cdef 3.0 cdef 4.0 cdefg 4.0 efgh 5.0 defg 6.0 cdef 7.0 bcdef Z1108 3.0 bcde 3.7 cd 4.3 cdef 5.0 cdef 6.3 bc 7.0 abc 7.7 abcd Z4109 2.3 def 2.7 def 2.7 gh 3.0 h 4.7 efg 4.7 fgh 5.0 hi Z2110 1.0 g 2.3 efg 4.3 cdef 4.7 cdefg 5.3 cdef 6.3 bcde 7.0 bcdef Z1111 3.3 bcd 3.3 cde 4.3 cdef 5.0 cdef 5.7 cde 6.7 abcd 6.7 cdefg Z6112 3.3 bcd 3.7 cd 4.3 cdef 5.3 cde 7.0 ab 7.0 abc 7.3 abcde Z6115 2.5 cdef 3.0 cdef 3.5 efgh 4.0 efgh 5.5 cdef 6.0 cdef 6.5 defg Z6116 2.5 cdef 2.5 defg 3.5 efgh 4.0 efgh 5.0 defg 5.5 defg 6.0 efgh Z6118 2.0 efg 2.5 defg 3.5 efgh 3.5 gh 5.5 cdef 6.0 cdef 6.5 defg Z6120 3.0 bcde 3.0 cdef 4.0 cdefg 4.3 defgh 5.7 cde 6.3 bcde 7.0 bcdef Z6130 2.5 cdef 2.5 defg 5.0 bcd 5.0 cdef 5.5 cdef 6.5 bcd 6.5 defg Z6131 2.7 cdef 2.7 def 3.3 efgh 4.3 defgh 5.3 cdef 6.3 bcde 7.0 bcdef Z6135 2.0 efg 2.3 efg 3.7 defgh 4.0 efgh 5.0 defg 5.3 defgh 6.3 defgh ZK1120 3.3 bcd 3.3 cde 3.7 defgh 5.0 cdef 5.3 cdef 6.7 abcd 7.0 bcdef ZH6125 2.3 def 3.0 cdef 3.3 efgh 4.3 defgh 5.0 defg 5.7 cdefg 6.0 efgh ZH1128 2.7 cdef 3.0 cdef 4.0 cdefg 5.3 cde 6.0 bcd 7.0 abc 7.0 bcdef ZH6130 2.0 efg 3.5 cde 4.0 cdefg 5.5 bcd 7.0 ab 7.5 ab 7.5 abcd Anyang 2.7 cdef 3.3 cde 4.0 cdefg 4.7 cdefg 5.7 cde 7.0 abc 7.7 abcd Senock 3.0 bcde 3.3 cde 3.7 defgh 4.3 defgh 6.0 bcd 6.7 abcd 8.0 abc Millock 2.0 efg 2.3 efg 2.7 gh 3.7 fgh 5.3 cdef 5.3 defgh 5.7 fgh Semill 1.5 gf 2.0 fg 3.0 fgh 3.5 gh 4.5 efg 5.0 efgh 5.0 hi Konhee 1.7 gf 2.7 def 2.7 gh 3.0 h 4.0 g 4.3 gh 5.0 hi Zenith 2.0 efg 2.7 def 3.0 fgh 3.7 fgh 4.7 efg 5.0 efgh 6.0 efgh T1Meyer 2.0 efg 2.5 defg 4.0 cdefg 4.5 defg 6.0 bcd 6.5 bcd 7.0 bcdef Bermuda 6.3 a 7.0 a 7.3 a 7.7 a 8.0 a 8.0 a 8.7 a B7011 3.7 bc 4.0 bc 5.3 bc 6.0 bc 7.0 ab 8.0 a 8.0 abc Z2010 4.0 b 5.0 b 6.0 b 6.7 ab 7.7 a 7.7 ab 8.0 abc Z2011 3.7 bc 4.0 bc 5.0 bcd 5.3 cde 5.7 cde 6.0 cdef 6.3 defgh z Means with the same letter within column are not significantly different at P=0.05 level by Duncan's multiple range test. 타낸것으로보아한국잔디의내염성수준에대한재평가가수행되어야할것으로판단되었다. 염수처리후토양의화학성을조사한결과유기물함 량, 질소, 인산, 치환성가리, 치환성마그네슘등의함량은큰변화를보이지않았다 (Table 6). 그러나치환성칼슘, 치환성나트륨의함량은각각 0.7배, 119배증가하는
국내 자생 한국잔디류의 내한성 및 내염성 조사 145 Table 5. Change of soil ECs after saline water treatment. Fig. 1. Percentages of visual leaf firing by the saline water treatment among 80 native zoysiagrasses and 2 bermudagrasses collected in S. Korea. (Soil ECp and ECe were 4.57 ds m-1 and 68.5 ds m-1, respectively). Before treatment 09/09 09/16 09/23 09/30 10/07 ECp (ds m-1) ECe (ds m-1) 0.12 1.8 2.15 1.77 2.08 4.57 6.15 32.25 26.55 31.2 68.55 92.25 결과를 보였다. NaCl 농도는 처리전 0.00067%이었으나 염 처리 후 0.51%로 증가하는 결과를 보였다. Kim et al., (1991)은 한국잔디가 0.5%의 염 농도부터 염해 증상을 보 였다고 보고한 결과와 같이 본 실험조건에서도 염해 피해 정도를 판단할 수 있는 수준이었다고 판단된다. 요 Fig. 2. Pictures of zoysiagrass leaf firing by saline treatment. After treatment Conductivity 약 본 연구는 국내 자생 잔디 중 내염성 계통을 선발하고자 수행되었다. 공시재료는 국내에서 수집된 자생 한국잔디 (Zoysia spp.)류 및 버뮤다그래스와 시쇼파스팔룸(seashore paspalum) 등 82 개체 였다. 염 처리는 바닷물과 수돗물을 혼합하여 전기전도도가 2-3 ds m-1 수준이 되는 물에 시험포 트를 침지처리 하는 방식으로 수행되었다. 조사는 염 처리 전 동해, 염 처리 후 염해, 그리고 염 처리 후 토양의 화학 성을 조사하였다. 월동 후 피해조사에서는 대부분 Z. japonica 형이 피해 없이 천안지역에서 월동이 되었으며, 비단잔디, 금잔디, 갯잔디 등은 대부분 고사하였다. NaCl 농도 0.51% 수준에서 염해가 관찰 되었으며, 토양의 전기전도도(ECe) 는 170 ds m-1 수준까지 높게 나타났다. 82개 개체 중 30% 수준으로 염해를 낮게 받는 초종은 Z. tenuifolia 형인 Z5034, Z. matrella 형은 Konhee, Z4109, Semill 등, 그리고 Z. Table 6. Change of soil chemical characteristics after saline water treatment. Items Organic matter Total nitrogen Phosphate Exchangeable-K Exchangeable-Ca Exchangeable-Mg Exchangeable-Na CEC NaCl ph ECp Unit Before saline water treatment After saline water treatment % % ppm me/100 g me/100 g me/100 g me/100 g Cmol/kg % (1:5) (1:5) 0.27 0.11 31.44 0.16 7.41 1.08 0.08 6.12 0.0067 7.3 0.12 0.29 0.014 35.09 0.12 12.82 1.9 9.61 5.5 0.51 6.41 6.15
146 최준수 양근모 japonica 형은 Z1055, Z1040, Z1008, Zenith, Millock 등으로나타났으며, 중지류중에서는 Z6096, Z6118, Z6021, Z6074 등으로나타났다. 상기방법은앞으로내염성유전자원평가를위한유용한방법으로활용될것이다. 주요어 : 전기전도도, 육종계통, 자생한국잔디, 내염성 감사의글 본연구는국립산림과학원의연구비지원에의해수행되었으며, 이에감사드립니다. 참고문헌 Carrow, R.N. and R.R. Duncan. 1998. Salt-affected turfgrass sites: assessment and management. John Wiley & Sons, Inc. New Jersey. p. 185. Choi, J.S. 2010. Morphological characteristics of medium-leaf type zoysiagrass (Zoysia spp.) and their classification using RAPDs. Kor. Turfgrass Sci. 24(2):88-96. Choi, J.S. and G.M. Yang. 2005. Comparison of growth rate and cold tolerance with basic species, commercial lines, and breeding lines of zoysiagrass. Kor. Turfgrass Sci. 19(2):131-140. Choi, J.S., B.J. Ahn, and G.M. Yang. 1997. Classification of zoysiagrass (Zoysia spp.) native to the southwest coastal regions of Korea using RAPDs. J. Kor. Soc. Hort. Sci. 38(4):399-407. Cramer, G.R., J. Lynch, A. Lauchli, and E. Epstein. 1987. Influx of Na +, K +, and Ca 2+ into roots of salt-stressed cotton seedlings. Plant Physiol. 83:510-516. Dudeck, A.E. and C.H. Peacock. 1993. Salinity effects on growth and nutrient uptake of selected warm-season turf. p.680-686. In: R.N. Carrow, N.E. Christians, and R.C. Shearman (eds.). 7th International Turfgrass Society Research Journal. Gorham, J., R.G. Wynjones, and E. Mcdonnell. 1985. Some mechanisms of salt tolerance in crop plant. Plant and Soil 89:15-40. Lee, G.J., Y.K. Yoo, and K.S. Kim. 1994. Comparative salt tolerance study in zoysiagrasses. J. Kor. Soc. Hort. Sci. 35(3):241-250. Kim, K.S., Y.K. Yoo, and G.J. Lee. 1991. Comparative salt tolerance study in Korean lawngrasses. J. Kor. Soc. Hort. Sci. 32(1):118-124. Kim, J.B., G.M. Yang, and J.S. Choi. 2009. Effects of capillary water interruption layer on the growth of zoysiagrasses and cool-season turfgrasses in reclaimed land. Kor. Turfgrass Sci. 23(1):35-44. Marcum, K.B. 1999. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop Sci. 39:1153-1160. Marcum, K.B., S.J. Anderson, and M.C. Engelke. 1998. Salt gland ion secretion: A salinity tolerance mechanism among five zoysiagrass species. Crop Sci. 38:806-810. Marcum, K.B. and C.L. Murdoch. 1994. Salinity tolerance mechanisms of six C4 turfgrasses. J. Amer. Soc. Hort. Sci. 119(4):779-784. Qian, Y.L., M.C. Engelke, and M.J.V. Foster. 2000. Salinity effects on zoysiagrass cultivars and experimental lines. Crop Sci. 40:488-492. Rahayu, G.M. Yang, and J.S. Choi. 2011. Effects of salinity level and irrigation rate on Kentucky bluegrass (Poa pratensis L.) growth and salt accumulation in sand growing media established over the reclaimed saline soil. Asian J. Turfgrass Sci. 25(1):79-88. Torello, W.A. and L.A. Rice. 1986. Effects of NaCl stress on proline and cation accumulation in salt sensitive and tolerant turfgrasses. Plant and soil 93:241-247.