PowerPoint 프레젠테이션

Similar documents
<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

김기남_ATDC2016_160620_[키노트].key

Delving Deeper into Convolutional Networks for Learning Video Representations - Nicolas Ballas, Li Yao, Chris Pal, Aaron Courville arXiv:

RNN & NLP Application

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

02( ) SAV12-19.hwp

R을 이용한 텍스트 감정분석

(JBE Vol. 24, No. 1, January 2019) (Special Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287-

DIY 챗봇 - LangCon

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

09권오설_ok.hwp

정보기술응용학회 발표

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

Ch 1 머신러닝 개요.pptx

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

Microsoft PowerPoint - 실습소개와 AI_ML_DL_배포용.pptx

<4D F736F F D20C3D6BDC C0CCBDB4202D20BAB9BBE7BABB>

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

PowerPoint 프레젠테이션

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

기술 Roadmap

4 : CNN (Sangwon Suh et al.: Dual CNN Structured Sound Event Detection Algorithm Based on Real Life Acoustic Dataset) (Regular Paper) 23 6, (J

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

슬라이드 1

1. 서 론

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

프로덕트 아이덴티티의 유형별 특성에 관한 연구

Reinforcement Learning & AlphaGo

untitled

PowerPoint Presentation

07.045~051(D04_신상욱).fm

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3.

용어사전 PDF

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

다중 곡면 검출 및 추적을 이용한 증강현실 책

歯제7권1호(최종편집).PDF

광운소식-68호F

°í¼®ÁÖ Ãâ·Â

Manufacturing6

Social Network

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

Data Industry White Paper

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

融合先验信息到三维重建 组会报 告[2]

(JBE Vol. 23, No. 4, July 2018) (Special Paper) 23 4, (JBE Vol. 23, No. 4, July 2018) ISSN

Electronics and Telecommunications Trends 인공지능을이용한 3D 콘텐츠기술동향및향후전망 Recent Trends and Prospects of 3D Content Using Artificial Intelligence Technology

I&IRC5 TG_08권

1217 WebTrafMon II

Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식


기획 1 서울공대생에게 물었다 글 재료공학부 1, 이윤구 재료공학부 1, 김유리 전기정보공학부 1, 전세환 편집 재료공학부 3, 오수봉 이번 서울공대생에게 물었다! 코너는 특별히 설문조사 형식으로 진행해 보려고 해 요. 설문조사에는 서울대학교 공대 재학생 121명, 비

_KrlGF발표자료_AI

PowerPoint Presentation

Microsoft Word - 1-차우창.doc

6 : (Gicheol Kim et al.: Object Tracking Method using Deep Learing and Kalman Filter) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May 2019) http

Visual recognition in the real world SKT services

第 1 節 組 織 11 第 1 章 檢 察 의 組 織 人 事 制 度 등 第 1 項 大 檢 察 廳 第 1 節 組 대검찰청은 대법원에 대응하여 수도인 서울에 위치 한다(검찰청법 제2조,제3조,대검찰청의 위치와 각급 검찰청의명칭및위치에관한규정 제2조). 대검찰청에 검찰총장,대

Output file

Disclaimer IPO Presentation,. Presentation...,,,,, E.,,., Presentation,., Representative...

SchoolNet튜토리얼.PDF

23

특허청구의 범위 청구항 1 헤드엔드로부터 복수의 단위 셀로 구성되며 각 단위 셀에 방송 프로그램 및 편성 시간정보가 상호 매칭되어 설 정된 상기 EPG(Electronic Program Guide)와, 상기 각 단위 셀에 대응하는 방송 프로그램 컨텐츠를 수신하는 통 신


UNIST_교원 홈페이지 관리자_Manual_V1.0

Oracle Apps Day_SEM

Gray level 변환 및 Arithmetic 연산을 사용한 영상 개선

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

ecorp-프로젝트제안서작성실무(양식3)

초보자를 위한 분산 캐시 활용 전략

2

(JBE Vol. 22, No. 2, March 2017) (Special Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

기사전기산업_33-40


딥러닝 첫걸음

소프트웨어개발방법론

PCServerMgmt7

BMP 파일 처리

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

PowerPoint 프레젠테이션

GEAR KOREA

빅데이터_DAY key

歯 PDF


PowerPoint 프레젠테이션

1 - OZ Viewer / 상권분석

KCC2011 우수발표논문 휴먼오피니언자동분류시스템구현을위한비결정오피니언형용사구문에대한연구 1) Study on Domain-dependent Keywords Co-occurring with the Adjectives of Non-deterministic Opinion

19_9_767.hwp

6주차.key

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

목차 AI Boom Chatbot Deep Learning Company.AI s Approach AI Chatbot In Financial service 2

63-69±è´ë¿µ

Transcription:

Visual Search At SK-Planet sk-planet Machine Intelligence Lab. 나상일

1. 개발배경 2. 첫접근방법 3. 개선된방법 A. Visual recognition technology B. Guided search C. Retrieval system

개발배경

개발배경 상품검색을좀더쉽게 Key-word 트렌치코트버튺벨트

개발배경 개발목표 - 영상을 Query 로상품을검색

본내용에앞서

사전지식 Deep 더자세핚 learning 설명은 Tech Planet 정의 2015 Deep Learning 기반모바일싞용카드번호자동인식기참고최찬규 / Deep 매니저 Artificial, SK planet Neural Network + Machine Learning http://readme.skplanet.com/?p=11744 Artificial Neural Network 사람의싞경망을모방핚컴퓨터 학습을핛수있음 최고성능의 Machine Learning 알고리즘 특징 학습을위해많은데이터가필요함 학습시갂도오래걸림 GPU로병렬처리가능 종류 DBN, RNN, CNN,

접근방법 첫시작

Visual Search 개발 Deep learning 기술적용 티셔츠, 가방, 싞발등카테고리예측 카테고리예측 카테고리 : 티셔츠 관심영역추출 Grab-cut + Saliency HoG+SVM 를통한검증 특징추출 Pattern feature Color feature

Visual Search 개발 카테고리예측 동의어처리 정확한카테고리? Convolution Relu activation Subsample pooling Fully connected layer Dropout Softmax covolution kernel Deng, Jia, et al. "Hedging your bets: Optimizing accuracy-specificity tradeoffs in large scale visual recognition." Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.

Visual Search 개발 관심영역검출 영역검증 Dense HoG + SVM

Visual Search 개발 관심영역검출결과

Visual Search 개발 검색결과 질의영상 결과

개선

Visual Search 의개선 기존 system 평가 잘됐나? 잘됐다. - 단, Single Object에대해 - 단순한배경에대해 - 진짜잘됐나? 실제 DB 는 - Multi-Object - 야외촬영 유사상품? 유사상품?

Visual Search 의개선 개선방향 - 여러상품이있어도모두검색할수있도록 Detection 기술적용 - 야외에서촬영한것도검색이잘되도록 Deep learning 을적용한특징추출 - 누구나유사하다느낄수있도록 속성기반의인식

Detection

Visual recognition technology RPN 을 CNN 이후에적용 RoI Pooling layer 를이용각 Region Proposal 에대해 classification 수행 Ren et al, Faster R-CNN: Towards Real- Time Object Detection with Region Proposal Networks, NIPS 2015

Feature

Visual recognition technology 특징추출 - 딥러닝을이용핚특징추출 Deep feature

Visual recognition technology Deep feature 실험 - 유사상품에대핚 Ground truth를만드는것은매우어려움 검색결과가명확핚공개 DB를대상으로가능성평가 - UkBench Dataset 대상검색실험 map 0.929 Deep-feature is more suitable for a sort of semantic similarity retrieval application.

Visual recognition technology Feature Extractor Extract Feature Szegedy, Christian, et al. "Going deeper with co nvolutions." Proceedings of the IEEE Confe rence on Computer Vision and Pattern Recogni tion. 2015.

Visual recognition technology Feature Extractor Residual learning He, Kaiming, et al. "Deep residual l earning for image recognition." arxiv preprint arxiv:1512.03385 (2015).

Visual recognition technology Feature Extractor X 2 grid size: 8 X 1 X 4 grid size: 17 X 1 grid size: 35 X 3

Visual recognition technology Feature Extractor

Attribute

Visual recognition technology Attribute Classifier 어떤것이비슷핚것인가? 동일핚속성이있는의류를검색하자!

Visual recognition technology Fashion-attribute dataset Maximum 100 man-months Almost 1 year More than 90 attributes (thousands of unique fashion-styles by their combination) includes ROIs for a fashion item (For detection) Almost 1 million images

Visual recognition technology Fashion Attribute Dataset GREAT CATEGORY (3CLASSES) FASHION CATEGORY (19CLASSES) GENDER (2CLASSES) SILHOUETTE (14CLASSES) COLLAR (18CLASSES) SLEEVE LENGTH (6CLASSES) Bottom T-shirts Male Normal Shirt Long Multi-label classification task Top Pants Female A-line Turtle A half Others Bags H-line Round Sleeveless

Visual recognition technology Attribution Classification Multi-label classification 은 conditional probability 로표현가능 RNN 으로접근가능!

Visual recognition technology Attribution Classification Vinyals, Oriol, et al. "Show and tell: A neural image caption generator." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

Visual recognition technology Attribution Classification Feed-forward Neural Networks get way deeper by using the residual shortcut path Recurrent Neural Networks get way of preserving long-term dependency in their hidden context by using the residual short cut path

Visual recognition technology Attribution Classification Result

Visual recognition technology Attribution Classification Result

Visual recognition technology Attribution Classification Result

Visual recognition technology Attribution Classification Result

Visual recognition technology Attribution Classification Result

Guided Search

Visual recognition technology Guided fashion product recognition Problem - 판매자의 tag 정보는정제되어있지않다! Tag: brend-new/women's shirts, blouse 검색되기를원하는상품은? - 사용자 / 판매자가검색되기원하는상품을선택하도록하자 - 판매의경우입력된 Tag 정보를이용

Visual recognition technology Natural Language Processing Parsing and Morphological Analysis Post-process Synonym dictionary and Stopword dictionary Output women, cardigan, knit, round-neck women, blouse

검색시스템

Visual recognition technology 검색시스템

Visual recognition technology 검색결과

Visual recognition technology 검색결과 User guide search Guide: jacket

Visual recognition technology 검색결과 User guide search Guide: shoes

Visual recognition technology 검색결과 User guide search Guide: bag

Visual recognition technology Demo Video

분산검색시스템적용

검색시스템개선 Problem - 검색대상이많은데 - DB 관리도되야하는데 Solution - System Software 개발팀의분산처리솔루션적용

검색시스템개선 분산처리 Redis 기반의분산인메모리기반병렬처리기술적용 - 효율적인 DB 관리 - 검색속도개선

For More details, checkout our paper! http://arxiv.org/abs/1609.07859

sang.il.na79@gmail.com