KAERIRR hwp

Similar documents
2013 Energy Info. Korea

歯174구경회.PDF

歯Trap관련.PDF

14.531~539(08-037).fm

2

page 1end

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

(specifications) 3 ~ 10 (introduction) 11 (storage bin) 11 (legs) 11 (important operating requirements) 11 (location selection) 12 (storage bin) 12 (i

192

Coriolis.hwp

Microsoft PowerPoint - Freebairn, John_ppt

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

PJTROHMPCJPS.hwp

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

歯국문-Heatran소개자료1111.PDF

ePapyrus PDF Document

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

1

- 2 -

레이아웃 1

에너지통계연보(2003)

12(4) 10.fm

2015 Energy Info Korea

2016년 5월호 E 세계로, 미래로 나아가는 힘. nergy 우리의 열정과 노력이 KEPCO E&C의 에너지를 만들어냅니다. C ommunication 더 현명하게, 더 여유롭게 더 건강하게, 더 적극적으로 이 세상과 소통합니다. 04 K-Message 경영 메시지

02신현화

대경테크종합카탈로그

00내지1번2번

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

,209,644 12,838, ,574,665 10,307,353 1,090,108 27,996, , ,135, ,800, ,425,279

수신

Valuation (DCF Multiple ) VIII Case Study 3 1 NOA, IBD ( 1 ) 2 ( 2 ) 3 (DCF 3 ) 4 WACC (DCF 4 ) 5 EBITDA (Multiple 3 ) 6 Multiple (Multiple 4 ) 7 ( 5

슬라이드 제목 없음

1.장인석-ITIL 소개.ppt

KAERIAR hwp

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

歯전용]

< C6AFC1FD28B1C7C7F5C1DF292E687770>

?????????????????2009-????????

KAERI/RR-2245/2001 : 원전 주기적 안전성 평가기술 개발 : 방사선 안전성능 및 환경방사선 감시기술 개발

67~81.HWP

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

농림축산식품부장관귀하 본보고서를 미생물을활용한친환경작물보호제및비료의제형화와현장적용매뉴 얼개발 ( 개발기간 : ~ ) 과제의최종보고서로제출합니다 주관연구기관명 : 고려바이오주식회사 ( 대표자 ) 김영권 (

ecorp-프로젝트제안서작성실무(양식3)

05-1Ưº°±âȹ

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

untitled

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

년AQM보고서_Capss2Smoke-자체.hwp

untitled

- 1 -

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 85~114 산업별에너지원간대체관계추정을통한탄소세의 CO 2 감축효과분석 * 85

04-다시_고속철도61~80p

DBPIA-NURIMEDIA


264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

ETC Electrolytic Technologies Corporation Electrolytic Technologies Corporation (ETC) (High Strength Sodium Hypochlorite). ETC.,. ETC,,. - (Cl2) (NaOH

본문.PDF


Product A4

e hwp

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

: : : : : : : : : : : : - 1 -

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

¿µ¾÷40p

김기남_ATDC2016_160620_[키노트].key

KEMRI_전력경제_REVIEW_제16호( ).hwp

보고서(겉표지).PDF

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

Á¶´öÈñ_0304_final.hwp

0929 °úÇбâ¼úÁ¤Ã¥-¿©¸§

untitled

[수도권대기환경청 소식] 1. 제10차 수도권 대기환경정책 연구회 년도 1/4분기 직장교육 26 제5절 환경용어 해설 교토메카니즘(Kyoto Mechanism) 라돈(Rn) 배출가스 재순환장치(EGR, Exhaust G

-

에너지경제연구 Korean Energy Economic Review Volume 11, Number 2, September 2012 : pp. 1~26 실물옵션을이용한해상풍력실증단지 사업의경제성평가 1

歯49손욱.PDF

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<C7C1B7A3C2F7C0CCC1EE20B4BABAF1C1EEB4CFBDBA20B7B1C4AA20BBE7B7CA5FBCADB9CEB1B35F28C3D6C1BE292E687770>

ÀÌÁÖÈñ.hwp

¹ÙÀÌ¿À °æÁ¦½Ã´ë °úÇбâ¼ú Á¤Ã¥ÀÇÁ¦¿Í ´ëÀÀÀü·«---.PDF


에너지경제연구 Korean Energy Economic Review Volume 18, Number 1, March 2019 : pp 에너지전환정책및고령화가국민경제에미치는영향 : 확률적중첩세대일반균형모형 (Stochastic Overlapping Genera


Buy one get one with discount promotional strategy

실적 및 전망 09년 하반 PECVD 고객 다변화에 따른 실적개선 10년 태양광 R&D 장비 매출을 반으로 본격적인 상업생산 시작 1. 09년 3Q 실적 동사는 09년 3Q에 매출과 영업이익으로 각각 142 억원(YoY 16.7%, QoQ 142%), 6 억원(흑전환)

미리보는 216 년 미국 대선 (1) 극과 극 조연주 ( ) 급진적 보수, 급진적 진보 공약이 대중의 지지률 얻어 극과 극으로 치닫는 216 년 미국 대선 216년에는 미국 대선 이벤트에 주목해야 된다. 이는 미국 대선이 흔들리는 세계 경제를 바로 잡아

Æ÷Àå½Ã¼³94š

rr_ _대한민국녹색섬울릉도.독도프로젝트(수정).hwp

에너지경제연구제 16 권제 1 호 Korean Energy Economic Review Volume 16, Number 1, March 2017 : pp. 35~55 학술 전력시장가격에대한역사적요인분해 * 35

PowerPoint 프레젠테이션


사용시 기본적인 주의사항 경고 : 전기 기구를 사용할 때는 다음의 기본적인 주의 사항을 반드시 유의하여야 합니다..제품을 사용하기 전에 반드시 사용법을 정독하십시오. 2.물과 가까운 곳, 욕실이나 부엌 그리고 수영장 같은 곳에서 제품을 사용하지 마십시오. 3.이 제품은

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

09김정식.PDF

歯140김광락.PDF

2010

Transcription:

KAERI/RR-2668/2005 원자력수소생산기술개발및실증사업 Development and Demonstration of Nuclear Hydrogen Production Technology 원자력수소생산시스템평가 Evaluation of Nuclear Hydrogen Production System

제출문 과학기술부장관귀하 본보고서를 원자력수소생산기술개발및실증사업에관한연구 과제 ( 세부과제 원자력수소생산시스템평가에관한연구 ) 의보고서로제출합니다. 2006. 4. 연구기관명 : 한국원자력연구소연구책임자 : 박원석연구원 : 박창규, 박종균, 장종화, : 이원재, 신영준, 김종호, : 김용희, 정환삼, 위명환, : 이용선, 탁남일, 민병주, : 송순자, 최재혁

보고서초록

요약문 Ⅰ. 제목 Ⅱ. 연구개발목적및필요성 Ⅲ. 연구개발내용및범위

Ⅳ. 연구개발결과

Ⅴ. 연구개발결과의활용계획

S U M M A R Y Ⅰ. The Project Title Ⅱ. The Objectives and Importance of Projects III. The Scope and Contents of the Project

IV. Results of the Study

V. Proposal for Applications

목 차 제 1 장연구개발과제의개요 1 제 1 절연구개발의배경및목적 1 1. 연구개발배경및필요성 1 2. 연구목적 2 제 2 절연구개발의내용 2 1. 수소생산실증로노형및용량평가연구 2 2. 수소생산공정평가연구 2 3. 국제협력및대국민수용성증진기반조성 3 제 3 절연구추진체계및전략 3 1. 수소생산실증로노형및용량평가연구 3 2. 수소생산공정평가연구 4 3. 국제협력및대국민수용성증진기반조성 4 제 2 장국내외기술개발현황 6 제 1 절초고온가스로기술개발현황 6 제 2 절수소생산공정개발현황 7 제 3 절해외원자력수소개발현황 9 1. 미국 9 2. 일본 11 3. 기타국가 12 제 4 절참고문헌 15 제 3 장연구개발수행내용및결과 16 제 1 절수소생산실증로노형및용량평가 16 1. 실증로기능및설계요건개발 16 가. 상위요건 16 나. 기능및설계요건 20 2. 노형및용량평가방법론개발 32 가. 노형평가방법론 32 나. 실증로용량평가방법론 57 3. 참고문헌 59

제 2 절수소생산공정평가 60 1. VHTR 열에너지와수소제조기술의양립성 60 2. 수소제조공정평가인자도출및기술성상대평가 63 가. Iodine-Sulfur(IS) 공정 63 나. Westinghouse Sulfur Process(WSP) 66 다. 고온수증기전기분해 (HTES) 공정 67 라. 평가인자도출 71 마. 기술성상대평가 72 3. 수소제조공정열효율평가 74 가. IS공정열효율평가 74 나. 고온전기분해공정열효율평가 77 4. IS 공정소요핵심장치제작성및운전제어개념예비조사 88 5. 주요상대기관별능력평가 91 가. 미국의연구개발동향과기술수준 91 나. 일본의연구개발동향및기술수준 94 다. 프랑스의연구개발동향및기술수준 94 6. 원자력수소의경제성평가 95 가. 일차에너지원별수소생산단가분석 95 나. 일차에너지원별수소이용단가분석 115 다. 원유가변동에따른에너지원별수소생산경제성 116 라. 전력변환계통의도입이수소생산경제성에미치는영향 119 마. 수소생산단가분석에사용한 Spreadsheet 자료 124 7. 참고문헌 134 제 3 절국제협력및국민수용성증진기반조성 136 1. 핵심요소기술현황및도입방안조사 136 가. 초고온가스로설계기술 136 나. TRISO 기술 136 다. IS 열화학공정기술 137 2. 제4세대원자력시스템참여방향결정 138 가. 참여방향 138 나. 수소제조분야 139 다. 재료및기기분야 143 라. 초고온가스로핵연료및핵연료주기분야 145

3. 한 중, 한 미공동연구방향설정 147 가. 한중공동연구방향설정 147 나. 한 미공동연구방향설정 148 4. 기타활동 149 가. 초고온가스로강좌실시 149 나. 산업체참여를위한설명회개최 149 다. 대국민수용성증진을위한언론홍보 149 라. 자체기획수행 150 제 4 장목표달성도및관련분야에의기여도 151 제 1 절연구개발목표달성도 151 제 2 절대외기여도 152 제 3 절연구개발실적물목록 153 제 5 장연구개발결과의활용계획 155 제 1 절실증로노형및용량평가분야 155 제 2 절수소생산공정평가분야 155 제 3 절국제협력및대국민수용성증진기반조성분야 156

표목차

그림목차

제 1 장연구개발과제개요

인허가문제점 (KINS) 기능요구서 기획자문위 제조 / 제작성 (KOPEC, 두산 ) 해외비교평가자료 (GA 등 ) SYSTEMIX F = f (a, b,c,..) 설계요건 비교인자선정 종합화방안 예비설계팀 (KAERI)

도입의향서발송 기술도입방향결정 (2005. 3) 해외기관 (NUKEM, GA, CEA 등 ) 협력의향서 후보기관별평가 (2005. 8) 기획자문위원회 협력협정체결 최종도입기관선정 (2005. 10)

제 2 장국내외기술개발현황

Bench-scaled Test Pilot Test HTTR Test nuclear demonstration Hydrogen production rate ~ 0.05 m 3 /h ~30 m 3 /h ~1000 m 3 /h Heat supply Material of chemical reactors Pressure of chemical process Time Electrical heater Glass Atmospheric pressure FY 1999-2004 Heat exchanger with helium gas (Electrical heater 0.4MW) Industrial material (SiC, coated) High pressure (up to 3MPa) FY 2005 2010 Heat exchanger with helium gas (Nuclear heat 10MW) Industrial material High pressure (up to 3MPa) FY 2009 2014 (under planning)

제 3 장연구개발수행내용및결과

평가대안

순변환경우 역변환경우

0.3 0.25 0.2 중요도 0.15 0.1 0.05 0 수소생산단가 연구개발비 초기투자비 인허가성 피동안전성 기술자립성 원자로수 폐기물특성 핵확산저항성 미국노형 일본노형 중국노형 남아공노형

PMR(H2-MHR) Annual H2 Production (Ton) 247949 2005 M$ 2002 M$ Total Capital Costs 2,064.815 1,894.326 2400 MW Reactor Capital Cost 1,196.848 1,098.026 600 MW Reactor Capital Cost 299.212 274.507 H2 Plant Capital Cost 867.967 796.300 Annual Capital Cost 216.806 198.904 Reactor O&M Cost 101.711 93.313 Non-Fuel O&M Cost 28.911 26.524 Fuel Cycle Cost 72.801 66.789 H2 Plant O&M Cost 63.292 58.066 Annual Water Cost 2.432 2.232 Total Annual Cost 384.242 352.515 H2 Production Cost ($/kgh2) 1.55 1.42

PBR Annual H2 Production (Ton) 247949 2005 M$ Total Capital Costs 2,238.016 2400 MW Reactor Capital Cost 1,370.049 400 MW Reactor Capital Cost 228.342 H2 Plant Capital Cost 867.967 Annual Capital Cost 234.992 Reactor O&M Cost 105.895 Non-Fuel O&M Cost 33.095 Fuel Cycle Cost 72.801 H2 Plant O&M Cost 63.292 Annual Water Cost 2.432 Total Annual Cost 406.611 H2 Production Cost ($/kgh2) 1.64

120 100 80 60 40 20 0 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000

표 3.2.1. 고온열화학적수소생산기술 1 차평가기준표 표 3.2.2. 열화학및열화학 - 전기분해혼성사이클 1 차평가표

표 3.2.3. 2 차선별에의한최종결과표 favorable(+1), acceptable(0), unfavorable(-1)

2H 2 O + I 2 + SO 2 = 2HI + H 2 SO 4 ( 분젠반응, 약 100, 발열반응 ) (1) 2HI = H 2 + I 2 (200~500, 흡열반응 ) (2) H 2 SO 4 = H 2 O + SO 2 + 0.5 O 2 ( 약 850, 흡열반응 ) (3) ========================================= H 2 O = H 2 + 0.5 O 2 ( 종합반응 )

H 2 SO 4 H 2 O + SO 3 SO 2 + ½O 2 +H 2 O (4) 2H 2 O + SO 2 H 2 SO 4 + H 2 (electrolysis) (5)

특허제목등록번호등록일출원인청구요약 Method and apprartus for electrodialysis processing Ni-Cr-Mo-Cu alloys resistance to sulfuric acid and wet process phosphoric acid Method of reacting I2 with a liquid and a gas 6,461,491 02.10.08 6,764,646 04. 7. 20. 4,150,094 79. 4. 17 The University of Chicago, Chicago, IL (US) Haynes International Inc. General Atomic Company Oxygen recovery from gas mixture 4,208,396 80. 6. 17. General Atomic Company Mitsui Toatsu Production process for refined Hydrogen Iodine 5,693,306 97.12.2 Chemicals, Inc. Recovery of Anhydrous Hydrogen Iodide 4,330,374 82.05.18 General Atomic Company

Recovery of Hydrogen Iodide Hydrogen Iodide Decomposition Hydrogen Iodide Decomposition Process for the thermochemical production of hydrogen 4,396,591 83.08.02 4,258,026 81.03.24 4,410,505 83.10.18 4,089,940 78.05.16 GA Technologies Inc. General Atomic Company, San Diego, Calif. General Atomic Company, San Diego, Calif. General Atomic Company

Process for the production of hydrogen from water 4,089,939 78.05.16 General Atomic Company

수소생산비 자본비 고정운영비 변동운영비 탄소세 이산화탄소처분비 수소생산단가 연간수소생산비 연간수소생산량

Oil and LNG Import price 350.00 300.00 $1000/TOE 250.00 200.00 150.00 100.00 Oil LNG 50.00 0.00 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Year 우리나라연도별 LNG 및유연탄도입단가 350 300 도입단가 ( 달러 / 톤 ) 250 200 150 100 LNG 유연탄 50 0 1990 1995 1998 1999 2000 2001 2002 2003 2004 연도

LNG 가격변동에따른수소생산가격변화 6.00 5.00 5.14 수소 1kg 생산가격 ( 달러 ) 4.00 3.00 2.00 1.36 2.30 3.25 4.20 1.00 0.00 $294.0 $588.0 $882.0 $1,176.0 $1,470.0 LNG 가격 ( 톤당 294 달러기준 )

석탄가격변동에따른수소생산가격변화 3.00 2.50 2.40 수소 1kg 생산가격 ( 달러 ) 2.00 1.50 1.00 1.10 1.43 1.75 2.07 0.50 0.00 $54.0 $108.0 $162.0 $216.0 $270.0 석탄가격 ( 톤당 54 달러기준 )

우라늄가격에따른수소생산가격변화 3.00 수소 1kg 생산가격 ( 달러 ) 2.50 2.00 1.50 1.61 1.64 1.68 1.71 1.00 $46.1 $92.2 $138.3 $184.4 우라늄가격 (46.1$/kg-U 기준 )

풍력 발전단가에따른 수소생산가격 변화 6.00 5.00 수소 1kg 생산가격 ( 달러 ) 4.00 3.00 2.00 3.13 ( 미국 ) 4.08 ( 한국 ) 1.00 0.00 0.040 0.060 풍력발전단가 ( 달러 /kwhr)

이용률에따른수소생산가격변화 14.00 12.00 수소 1kg 생산가격 ( 달러 ) 10.00 8.00 6.00 4.00 6.96 6.03 2.00 0.00 12.0% 20.0% 이용률 ( 발전단가 0.098 달러 /kwh 기준 )

에너지원별수소생산단가 ( 한국 ) 14 12 2004 년현재 미래기술 (2020 년이후 ) 수소생산단가 ( 달러 /kg) 10 8 6 4 2 0 8.29 1.59 2.30 a 1.36 2.78 a 1.43 a 1.64 a 1.61 2.35 1.10 천연가스전기분해천연가스석탄원자력바이오매스전기분해풍력태양광 에너지원 5.41 6.96 1 6.03 2 4.57 * 4.08

14 에너지원별수소생산단가 ( 미국 ) Nas. The Hydrogen Economy 12 수소생산단가 ( 달러 /kg) 10 8 6 4 2 1.12 0.95 1.63 2.28 4.14 2.86 6.18 0 천연가스석탄원자력바이오매스전기분해풍력태양광 에너지원

수소이용단가 수소생산단가 수송단가 보급단가

에너지원별수소이용단가 ( 한국 ) 수소이용단가 ( 달러 /kg) 14 12 10 8 6 4 2 0 4.18 a 미래기술 (2020년이후 ) 6.96 1 6.03 2 a 5.41 4.57 * 3.31 a 3.75 4.08 2.06 2.18 1.80 2.31 천연가스 석탄 원자력 바이오매스 전기분해 풍력 태양광 에너지원 14 에너지원별수소이용단가 ( 미국 ) 12 수소이용단가 ( 달러 /kg) 10 8 6 4 2 1.82 1.65 2.33 3.68 4.13 2.86 6.18 0 천연가스석탄원자력바이오매스전기분해풍력태양광 에너지원

원유가격변동에따른수소생산경제성분석 생산가격 ( 원 /kg) 6100 5100 4100 3100 바이오매스 풍력 태양광 2100 천연가스 ( 탄소세무시 ) 천연가스 ( 탄소세포함 ) 원자력석탄 (2004 년 ) 석탄 (2005 년 5 월 ) SK 생산단가 (2004) SK 생산단가 (2002) Current Oil Price 20 30 40 50 60 70 원유가 ($/Barrel)

2400 MWth 300 MWth PCU Reactor 2400 MWth IHX IS Plant Reactor 2400 MWth IHX 2100 MWth IS Plant

GT-MHR 850C PH-MHR 850C H2MHR 950C Structures & Improvements 132 132 132 Reactor Plant Equipment 442 254 311 Turbine Plant Equipment 91 0 0 Electric Plant Equipment 62 50 50 Miscellaneous Plant Equipmen 28 28 28 Heat Rejection System 33 0 0 IHX 0 56 69 Primary Circulator 0 33 40 IHX Circulator 0 22 27 Reactor-Process Ducting 0 38 38 Total Direct Costs 789 613 695 Total Indirect Costs 275 213 242 Base Construction Costs 1063 827 937 Contingency 53 41 47 Overnight Plant Construction 1116 867 984 Interest During Construction 129 100 114 Total Capital Investment 1245 968 1098

Bare Module Cost + Adders Subtotal for Section 1 71 Subtotal for Section 2 132 Subtotal for Section 3 271 Total Bare Module Cost with Adders 473 Contingency & Fee 85 Total Module Cost 558 Aux. Facilities Cost 14 Fixed Capital Investment 572 Initial Chemical Inventory Cost 115 Overnight Capital Investment 686 Interest During Construction 79 Total Capital Investment 766 Without PCU With PCU Total Capital Costs (M$) 1894 1887 Nuclear Reactor Capital Cost (M$) 1098 1098 Hydrogen Plant Capital Cost (M$) 796 729 Added Captial Cost from PCU (M$) 0 60 Capital Charges (M$/yr) 199 198 Annual Nuclear Reactor Capital Cost (M$/yr) 115 115 Annual H2 Plant Capital Cost (M$/yr) 84 77 Annual PCU Capital Cost (M$/yr) 0 6 Variable Cost 154 150 Annual Nuclear Reactor Non-Fuel O&M Cost (M$/yr) 27 28 Annual Nuclear Fuel Cycle Costs (M$/yr) 67 67 Annual Chemical Plant O&M Cost (M$/yr) 58 53 Annual Water Cost (M$/yr) 2 2 Electricity from Grid (M$/yr) 81(67) 0 Total Annual Cost (M$/yr) 433 348 H2 Production Cost ($/kgh2) 1.75(1.69) 1.60

Item Account M$ Remark Added Direct Costs 136.243 Land and Land Rights 0.000 Added Structures & Improvem 0.227 H2MHR-GTMHR Reactor Plant Equipment 0.000 Turbine Plant Equipment 91.474 GTMHR Added Electric Plant Equipmen 11.928 H2MHR-GTMHR Miscellaneous Plant Equipeme 0.000 Heat Rejection System 32.614 GTMHR Added Indirect Costs 69.334 Construction Sevices 20.941 GTMHR*(H2MHR/PHMHR)-H2MHR Home Office Engr. & Services 6.411 GTMHR*(H2MHR/PHMHR)-H2MHR Field Office Engr. & Services 7.146 GTMHR*(H2MHR/PHMHR)-H2MHR Owner's Cost 34.837 GTMHR*(H2MHR/PHMHR)-H2MHR Added Construction Costs 205.577 Added Contingency 10.279 5% of Construction cost Added Overnight Construction Cost 215.856 Added Interest During Construction 24.953 APR 7% composite, 3 yrs Total Added PCU Capital Cost (M$) 240.8

Central Hydrogen Plant Summary of Input Inputs Boxed are the key input variables you must choose, current inputs are just an example Key Variables Inputs Notes Hydrogen Production Inputs 1kgH2 is the same energy content as 1 gallon of gasoline Design hydrogen production 1,200,000 kg/d H2 design 497,400,000 scf/d H2 CS range 500,000 to 2,500,000 kg/d Annual average load factor 90% of design 32,850,000 kg/month actual or 394,200,000 kg/yr actual Use in vehicle FCV gasoline eqiuv mileage 65 mpg 28 km/liter 432 kg/d average FCV miles per year 12000 mile/yr 185 kg/yr H2 for each FCV or 2,135,250 FCV Typical gasoline sales/month per station 150,000 mile/yr 100,000-250,000 gallons/month is typical or 4,932 gal/d Hydrogen as % of gasoline at each station 75,000 kg/ H2/month per stations or 2,466 kg/d/station Capital Cost Buildup Inputs from process unit costs All major utilities included as process units General Facilities 20% of process units 20-40% typical for SMR + 10% more for gasification Engineering,Permitting & Startup 10% of process units 10-20% typical Contingencies 10% of process units 10-20% typical, should go down as many units are built Working Capital, Land & Misc. 7% of process units 5-10% typical Site specific factor 110% of US gulf Coast 90-130% typical; sales tax, labor rates & weather issues Product Cost Buildup Inputs Non-fuel Variable O&M 1.00% /yr of capital 0.5-1.5% is typical Fuels Natural Gas $4.50 /MM Btu HHV $2.50-4.50/MM Btu typical industrial rate commercial rate Electricity $0.0045 /kwh $0.04-0.05/kWh typical industrial rate Electricity generation eff 50% 50% 65% future: incremental efficiency of new plants Electricity CO2 emissions 0.32 kg/hr CO2/kWe Based on NGCC, coal and current grid at 0.75kg/hr CO2/kWe Biomass production costs $500 /ha/yr gross revenues $400-600/ha/yr typical in U.S. lower in developing nations or wastes biomass yield 10 tonne/ha/yr bone dry 8-12 ton/hr/yr typical if farmed, 3-5 ton/hr/yr if forestaion or wastes coal $1.22 /million Btu dry HHV $0.75-1.25/million Btu coal utility delivered Carbon tax $50 /tonne C Carbon price for Carbon Vented $50 $/tonne C CO2 disposal cost $10 /tonne CO2 From plant gate at high pressure to injection Fixed Operating Cost 5.00% /yr of capital 4-7% typical for refiners: labor, overhead, insurance, taxes, G&A Capital Charges 15.90% /yr of capital 20-25%/yr CC typical for refiners & 14-20%/yr CC for utilities 20% /yrcc is about 12% IRR DCF on 100% equity where as 15%/yr CC is about 12% IRR DCF on 50% equity & debt at 7%

Midsize Hydrogen Plant Summary of Inputs and Outputs Inputs Boxed are the key input variables you must choose, current inputs are just an example Key Variables Inputs Notes Hydrogen Production Inputs 1kgH2 is the same energy content as 1 gallon of gasoline Design hydrogen production 24,000 kg/d H2 design 9,948,000 scf/d H2 size range of 10,000 to 100,000 kg/d Annual average load factor 90% of design 657,000kg/month actual or 7,884,000 kg/yr actual Distribution distance to forecourt 17 miles average distance 25-200 miles is typical FCV gasoline eqiuv mileage 65 mpg 28 km/liter FCV miles per year 12000 mile/yr 185 kg/yr H2 for each FCV or 42,705 FCV Typical gasoline sales/month per station 150,000 mile/yr 100,000-250,000 gallons/month is typical or 4,932 gal/d Hydrogen as % of gasoline at each station Capital Cost Buildup Inputs from process unit costs 75,000 kg/ H2/month per stations or 2,466 kg/d/station All major utilities included as process units General Facilities 20% of process units 20-40% typical for SMR + 10% more for gasification Engineering, Permitting & Startup 10% of process units 10-20% typical Contingencies 10% of process units 10-20% typical, should go down as many units are built Working Capital, Land & Misc. 7% of process units 5-10% typical Site specific factor 110% of US gulf Coast 90-130% typical; sales tax, labor rates & weather issues Product Cost Buildup Inputs Non-fuel Variable O&M 1.00% /yr of capital 0.5-1.5% is typical Fuels Natural Gas $4.50 /MM Btu HHV $2.50-4.50/MM Btu typical industrial rate commercial rate Electricity $0.0045 /kwh $0.04-0.05/kWh typical industrial rate Electricity generation eff 50% incremental grid efficiency Electricity CO2 emissions 0.32 kg/hr CO2/kWe Based on NGCC, coal and current grid at 0.75kg/hr CO2/kWe Biomass production costs $500 /ha/yr gross revenues $400-600/ha/yr typical in U.S. lower in developing nations or wastes biomass yield 10 tonne/ha/yr bone dry 8-12 ton/hr/yr typical if farmed, 3-5 ton/hr/yr if forestaion or wastes coal $1.22 /million Btu dry HHV $0.75-1.25/million Btu coal utility delivered Carbon tax $50 /tonne C Carbon price for Carbon Vented $50 $/tonne C CO2 disposal cost $10 /tonne CO2 From plant gate at high pressure to injection Fixed Operating Cost 5.00% /yr of capital 4-7% typical for refiners: labor, overhead, insurance, taxes, G&A Capital Charges 15.90% /yr of capital 20-25%/yr CC typical for refiners & 14-20%/yr CC for utilities 20% /yrcc is about 12% IRR DCF on 100% equity where as 15%/yr CC is about 12% IRR DCF on 50% equity & debt at 7%

Distributed Plant, ONSITE Hydrogen Summary of Input Inputs Boxed are the key input variables that can change for specific situations Key Variables Inputs Notes Hydrogen Production Inputs 1kgH2 is the same energy content as 1 gallon of gasoline Design hydrogen production 480 kg/d H2 design 198,960 scf/d H2 100 to 10,000 kg/d range for forecourt Annual average load factor 90% of design 13,140 kg/month actual or 157,680 kg/yr actual High pressure H2 storage 3 hr at peak surge rate "plug & play" 24 hr process unit replacement for high availability FCV gasoline eqiuv mileage 65 mpg 28 km/liter 432 kg/d average FCV miles per year 12000 mile/yr 185 kg/yr H2 for each FCV Capital Cost Buildup Inputs from process unit costs All major utilities included as process units General Facilities 20% of process units 20-40% typical, should be low for small "plug & play" units Engineering,Permitting & Startup 10% of process units 10-20% typical, assume low eng. Of multiple standard designs Contingencies 10% of process units 10-20% typical, should be low after the first few Working Capital, Land & Misc. 5% of process units 5-10% typical, high land costs for urban onsite Site specific factor 110% of US gulf Coast 90-130% typical; sales tax, labor rates & weather issues Product Cost Buildup Inputs Road tax or (subsidy) - /gal gasoline equivalent may need subsidy like EtOH to get it going Gas Station mark-up - /gal gasoline equivalent may be needed if H2 sales drops total station revenues Non-fuel Variable O&M 1.00% /yr of capital 0.5-1.5% is typical Fuels Natural Gas $0.65 /MM Btu HHV $4-7/MM Btu typical commercial rate Electricity $0.07 /kwh $0.06-0.09/kWh typical commercial rate Electricity generation eff 50% Incremental future efficiency, current average grid is only 30% Electricity CO2 emissions 0.32 Electricity CO2 emissions 0.32 kg/hr CO2/kWe kg/hr CO2/kWe Based on NGCC, coal and current grid at 0.75kg/hr CO2/kWe Based on NGCC, coal and current grid at 0.75kg/hr CO2/kWe Carbon tax $50 /tonne include C from power $ 27.27 / tonne CO2 equivalent Fixed Operating Cost 2.00% /yr of capital 4-7% typical for refiners: labor, overhead, insurance, taxes, G&A Capital Charges 14.00% /yr of capital 20-25%/yr CC typical for refiners & 14-20%/yr CC for utilities 20% /yrcc is about 12% IRR DCF on 100% equity where as 15%/yr CC is about 12% IRR DCF on 50% equity & debt at 7%

CS 규모 Plant ( 수소1200톤 /d) : 시간당수소 50톤 CS size Hydrogen via Steam Reforming of Nature Gas Plus CO 2 Capture with Future Optimism 연간수소생산량 394200 톤연간 39 만톤 C0 2 방출량 512620 톤연간 51 만톤 1.30 일반전기에서 CO 2 방출 0.32 kg/kwh 21100.16 플랜트의총 Process Units 가격 263(C5) 백만불 Electric Power Compress 20,000 SMR & Misc. 10,363 CO2 Compress 35,575 50,000 kg/hr H2, 75atm H2 compress 0.4kW/kg/h 1,200,000 design kg/d H2 Natural Gas 7,296 MM Btu/h LHV 8,098 MM Btu/h HHV ATR/SMR 78% LHV effic 3Atm CO2 Compressor 35,575 kwe 395,281 kg/hr CO2 to gelogic disposal 발전소당자본비계산 백만불 일반설비 General Facilities 53 C5의 20% Engineering 인허가및시운전 Permitting & Startup 26 C5의 10% 예비비 Contingencies 26 C5의 10% 운전자금, 부지, Working Capital, 기타 Land & Misc. 18 C5의 7% U.S. Gulf Coast Capital Coasts 387(C13) Total Capital Costs 425(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 4 0.01 C15의 1% Natural gas 373 0.95 톤당 294.3달러기준 Electricity 31.31 0.08 kwhr당 60.23원 Variable Operating Cost 408 1.04 Fixed Operating Cost 21 0.05 Capital Charges 68 0.17 15.9% C0 2 탄소세 7 0.02 톤당50불 CO 2 Disposal 31 0.08 톤당10불 총수소생산단가 ( 탄소세무시 ) 총수소생산단가 ( 탄소세포함 ) 528 1.34 535 1.36

CS size Hydrogen via Caol Gasification Plus CO 2 Capture with Future Optimism CS 규모 Plant ( 수소1200톤 /d) 연간수소생산량 394200 톤 연간 39만톤 : 시간당수소 50톤 CO 2 방출량 872100 톤 연간87만톤 2.21 플랜트의총 Process Units 가격 515(C5) 백만불 CO 2 Compressor 포함 Coal 7,698 MM Btu/h LHV 7,929 MM Btu/h HHV Coal gasifier 80.0% LHV effic 6,159 MM Btu/hr CO shift cool & clean 1% membrame Electric Power ASU 78,229 Misc. 16,673 CO2 51,928 Total gross 146,830 kw Advanced ASU 0.29 kwh/kg O2 CO2 Compressor 51,928 kwe 1,200,000 design kg/d H2 741,826 kg/hr CO2 to gelogic disposal 발전소당자본비계산 백만불 일반설비 General Facilities 155 C5의 30% 인허가및시운전 Engineering Permitting & Startup 52 C5의 10% 예비비 Contingencies 52 C5의 10% Working Capital, Land & 운전자금, 부지, 기타 Misc. 36 C5의 7% U.S. Gulf Coast Capital Coasts 809(C13) Total Capital Costs 889(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 9 0.02 C15의 1% Coal 175 0.44 톤당 54달러기준 Electricity 41.83 0.11 kwhr당 60.23원 Variable Operating Cost 226 0.57 Fixed Operating Cost 44 0.11 Capital Charges 141 0.36 15.90% CO 2 탄소세 12 0.03 톤당50불 CO 2 Disposal 58 0.15 톤당10불 총수소생산단가 ( 탄소세무시 ) 총수소생산단가 ( 탄소세포함 ) 470 1.19 1.22

CS 규모 Plant ( 수소1200톤 /d) : 시간당수소 50톤 CS size Hydrogen via Nuclear Thermal Splitting of Water with Future Optimism 연간수소생산량 394200 톤연간 39 만톤 연간산소생산량 3153600 톤 600 MWth 원자로개수 5.5 연간생산에너지 (MW-hr) 수소생산소요총에너지 (MW-hr) 4730400 수소 1 톤소요에너지 25885800 39.4 MW-hr 플랜트의총 Process Units 가격 1674(C5) 백만불 ` Electric Power 50,000 kg/hr H2, 75atm H2 compress 0.0kW/kg/h 1,200,000 design kg/d H2 발전소당자본비계산 400,000 kg/hr O2 Water 450,000 kg/hr 20,725,000 scf/hr H2 at 75atm Nuclear Thermal 60% efficiency 백만불 General Facilities 167 C5의 10% Engineering Permitting & Startup 167 C5의 10% Contingencies 117 C5의 7% Working Capital, Land & Misc. 117 C5의 7% U.S. Gulf Coast Capital Coasts 2243(C13) Total Capital Costs 2467 (C15) C13 에 Site Specific Factor 110% 수소생산단가계산 Non-fuel Variable O & M 플랜트연간소요액 백만불 kg 수소당가격 25 0.06 C15 의 1% Oxygen byproduct -32-0.08 Nuclear Fuel 101 0.26 Decommission fund 25 0.06 톤당 10불판매 MWhr당 4.61불 Variable Operating Cost Fixed Operating Cost 119 0.30 123 0.31 Capital Charges 392 1.00 15.9% 총수소생산단가 635 1.61

Mid-size Hydrogen via Biomass Gasification Plus CO 2 Capture with Future Optimism Mid-Size 규모 Plant 연간수소생산량 7884 톤연간 7천9백톤 ( 수소24톤 /d) : 시간당수소 1톤 CO 2 방출량 -122774 톤 -15.57 플랜트의총 Process Units 가격 35.1(C5) 백만불 1517.44 17090 Biomass 198 MM Btu/h LHV 210 MM Btu/h HHV Biomass gasifier 70.0% LHV effic 139 MM Btu/hr Hot raw syngas CO shift cool & clean 1% PSA loses 5,954 kg/hr O2 24 square miles of land to grow biomass ASU Electric Power 0.370 ASU 2,203 kwh/kg O2 Misc. 1,000 CO2 1,538 Total gross 4,742kW CO2 Compressor 1,538 kwe 49% overall effic raw bio to H2 1,000 kg/hr H2 17,094kg/hr CO2 21.2 kg CO2/kg H2 발전소당자본비계산 일반설비 General Facilities 10.5 인허가및시운전 Engineering Permitting & Startup 3.5 예비비 Contingencies 3.5 운전자금, 부지, 기타 Working Capital, Land & Misc. U.S. Gulf Coast Capital Coasts 2.5 55.1(C13) 백만불 C5의 30% C5의 10% C5의 10% C5의 7% Total Capital Costs 60.6(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 0.6 0.08 Delivered biomass(286 톤 /d) 3.3 0.42 Electricity 2.25 0.29 C15의 1% 톤당 35.58불 kwhr 당 60.23 원 Variable Operating Cost 6.2 0.79 Fixed Operating Cost 3.0 0.38 Capital Charges 9.6 1.22 15.9% CO 2 탄소세 (1.7) -0.21 톤당50불 CO 2 Disposal 1.3 0.17 톤당10불 2.39 총수소생산단가 ( 탄소세무시 ) 20.2 2.56 총수소생산단가 ( 탄소세포함 ) 18.5 2.35

Distributed size Onsite Hydrogen via Electrolysis of Water with Future Optimism Distri-Size 규모 Plant ( 수소 480kg/d) 연간수소생산량 157.68 톤연간 7 천 9 백톤 CO 2 방출량 2387 톤 15.14 산소 Byproduct 1261.44 톤 302.72 플랜트의총 Process Units 가격 0.36(C5) 백만불 Electric Power Compress 19 Misc. 9 Electrolysis 926 20 kg/hr H2 gas H2 compress 1.0kW/kg/h 400 atm HP H2 Storage 7 Hr at peak Total 946kW 160 kg/hr O2 Water 180kg/hr 135 atm Electrolysis 85% Electric efficiency 72% LHV H2 efficiency HP H2 dispenser 48 Kg/hr/dis 480 design kg/d H2 발전소당자본비계산 백만불 일반설비 General Facilities 0.07 C5의 20% 인허가및시운전 Engineering Permitting & Startup 0.04 C5의 10% 예비비 Contingencies 0.04 C5의 10% 운전자금, 부지, 기타 Working Capital, Land & Misc. 0.02 C5의 5% U.S. Gulf Coast Capital Coasts 0.52(C13) Total Capital Costs 0.57(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 0.006 0.04 C15의 1% 산소부산물 0.000 0.00 Electricity 0.722 4.58 kwhr당 96.85원 ( 가정용전기요금 ) Variable Operating Cost 0.728 4.62 Fixed Operating Cost 0.011 0.07 2% Capital Charges 0.080 0.51 14.00% CO 2 탄소세 0.033 0.21 톤당50불 CO 2 Disposal 0.000 0.00 톤당10불 5.20 총수소생산단가 ( 탄소세무시 ) 0.820 5.20 총수소생산단가 ( 탄소세포함 ) 0.852 5.41

Distributed규모 Plant ( 수소1.2톤 /d) : 시간당수소 50kg Distributed size Onsite Hydrogen via Wind-Turbine-Based Electrolysis with Future Optimism 연간수소생산량 122.64 톤 이용률 28%( 영덕 ) 2 CS규모소소요부지기준소요부지 0.105 km 요부지 :0.062 km 2, 1MW, 258 평 / 톤 20% 플랜트의총 Process 0.56(C5) 백만불 Units 가격 28% 337 Electric Power Compress 49 Misc. 15 Electrolysis 2316 50 kg/hr H2 gas H2 compress 1.0kW/kg/h 400 atm HP H2 Storage 7 Hr at peak Total 2365kW 400 kg/hr O2 Water 450kg/hr 135 atm Electrolysis 85% 72% Electric LHV H2 efficiency efficiency HP H2 dispenser 48 Kg/hr/dis 1,200design kg/d H2 발전소당자본비계산 백만불 일반설비 General Facilities 0.11 C5의 20% 인허가및시운전 Engineering Permitting & Startup 0.06 C5의 10% 예비비 Contingencies 0.06 C5의 10% 운전자금, 부지, 기타 Working Capital, Land & Misc. 0.03 C5의 5% U.S. Gulf Coast Capital Coasts 0.81(C13) Total Capital Costs 0.89(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 0.009 0.07 C15의 1% 0.0 0.00 ( 이용률 28%) 풍력Electricity생산단가 0.348 2.84 Variable Operating Cost 0.357 2.91 Fixed Operating Cost 0.018 0.15 Capital Charges 0.125 1.02 15.90% CO 2 탄소세 0.0 0.00 톤당50불 CO 2 Disposal 0.0 0.00 톤당10불 4.08 총수소생산단가 ( 탄소세무시 ) 0.500 4.08 총수소생산단가 ( 탄소세포함 ) 0.500 4.08

Distributed규모 Plant ( 수소2.4톤 /d) : 시간당수소 100kg kw당 10m 2, 12% 이용률 Distributed size Onsite Hydrogen via PV Solar-Based Electrolysis with Future Optimism 연간수소생산량 175.2 톤이용률 20% 2 CS규모소소요부지 0.028374 km 64 요부지 49 평 / 톤 19 플랜트의총 Process 0.9(C5) 백만불 Units 가격 Electric Power Compress 97 Misc. 30 Electrolysis 4632 50 kg/hr H2 gas H2 compress 1.0kW/kg/h 400 atm HP H2 Storage 9 Hr at peak Total 4729kW 800 kg/hr O2 Water 900kg/hr 135 atm Electrolysis 85% 72% Electric LHV H2 efficiency efficiency HP H2 dispenser 48 Kg/hr/dis 2,400design kg/d H2 발전소당자본비계산 백만불 일반설비 General Facilities 0.18 C5의 20% 인허가및시운전 Engineering Permitting & Startup 0.09 C5의 10% 예비비 Contingencies 0.09 C5의 10% 운전자금, 부지, 기타 Working Capital, Land & Misc. 0.05 C5의 5% U.S. Gulf Coast Capital Coasts 1.31(C13) Total Capital Costs 1.44(C15) C13 에 Site Specific Factor 110% 수소생산단가계산 플랜트연간소요액 백만불 kg 수소당가격 Non-fuel Variable O & M 0.014 0.08 C15의 1% 0.0 0.00 ( 이용률 20%) Solar Electricity 생산단가 0.812 4.63 0.098달러 ( 미국값그대로이용 ) Variable Operating Cost 0.826 4.72 Fixed Operating Cost 0.029 0.16 Capital Charges 0.201 1.15 14.00% CO 2 탄소세 0.0 0.00 톤당50불 CO 2 Disposal 0.0 0.00 톤당10불 6.03 총수소생산단가 ( 탄소세무시 ) 1.056 6.03 총수소생산단가 ( 탄소세포함 ) 1.056 6.03

TASK 1 Task Start Date Task End Date Graphite Selection and Acquisition Strategy Task Description: Participating GIF members shall coordinate the acquisition, management and traceability of candidate nuclear graphites. Data development activities shall be coordinated such that participating nations utilize similar graphites. A selection coordination meeting was held in France in January 2005. The USA, EU and France will acquire grades PCEA, NBG-17 and 18 from the same lots. South Africa shall use NBG-18 or 17 (depending upon outcome of pre-production trials). TASK 2 Task Start Date Task End Date TASK 3 Task Start Date Task End Date Graphite Mechanical & Physical Properties Task Description: Data are needed for the following properties: Strength (tensile, compressive, flexural); Elastic constants (E, G, υ); Stress-strain relationship; Thermal conductivity; Coefficient of thermal expansion; Emissivity; Specific Heat; Density; Chemical Purity; Fatigue Strength; Tribological Properties (friction coefficient, wear rate etc., in Helium). Data are needed as a function of temperature from 25-1600 C. The variations of properties with specimen volume, orientation, position within billet, between billets, and between lots are needed. Data from task 2 supports activities in task 6 Graphite Fracture Behavior Task Description: Data are needed for the Critical Stress Intensity Factor (KIc) and the Fracture Toughness (GIc). Data are needed as a function of temperature from 25-1600 C. The variations of properties with specimen volume, orientation, position within billet, between billets, and between lots are needed. Data from task 3 supports activities in task 6 TASK 4 Task Start Date Task End Date Graphite Oxidation Behavior Task Description: Data are needed for graphite oxidation kinetics and the effects of oxidation on relevant mechanical and physical properties. Oxidation kinetics data are required over the temperature range 25-1600 C in He-coolant gas (specification needed) and over the temperature range 25-tdb C in air. The degradation of properties

with oxidative burn-off (weight loss) in air and He- coolant are needed. Development of oxidation models should be considered. Maximum temperature during fault conditions is design dependent and should be considered when determining the upper temperature for oxidation studies. TASK 5 Task Start Date Task End Date Graphite Component Testing Task Description: Testing of sub-scale components is needed to validate designs and design methodologies (e.g., ASME code). The data may also be used to validate FE codes. Section 6.5 is TBD. Nobody is doing component testing until the designs are further along. TASK 6 Task Start Date Task End Date Graphite Irradiation Effects Task Description: Data are needed on the effects of neutron irradiation on dimensional changes and properties over relevant dose and temperature ranges. Data are needed for the following: Dimensional changes (with grain and against grain); Strength (tensile, compressive, flexural); Elastic constants (E, G, υ); Stress-strain relationship; Fracture Toughness; Thermal conductivity; Coefficient of thermal expansion; Specific Heat; Electrical Resistivity. TASK 7 Task Start Date Task End Date Graphite Irradiation Induced Creep Task Description: Data are needed for the irradiation induced creep rate and creep coefficients for compressive and tensile loading states over relevant dose and temperature ranges. TASK 8 Task Start Date Task End Date TASK 9 Task Start Date Task End Date Graphite Codes & Standards Development Task Description: Consensus design codes (ASME) are needed for graphite core structures and consensus test methods (ASTM) are needed for nuclear graphite property determinations. Codes and Standards development are ongoing. Graphite Behavior Model Development Mathematical models and are needed to allow interpolation and Task Description: extrapolation of irradiation effects data. Models are needed for irradiation induced dimensional changes, thermal conductivity, strength (including Weibull statistics), fracture behavior, and irradiation induced creep. stress analysis codes and FE models are needed for modeling the stress states in components and predicting failure. Such code may incorporate the property effects models. The technical approach to model development will be defined by participating GIF member nations and their subordinate institutions in 2005-2006.

제 4 장목표달성도및관련분야에의기여도

제 5 장연구개발결과활용계획