이호종.PDF

Similar documents

세계 비지니스 정보

우루과이 내지-1

PDF

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


CONTENTS.HWP

INDUS-8.HWP

Berechenbar mehr Leistung fur thermoplastische Kunststoffverschraubungen

16-기06 환경하중237~246p

14.531~539(08-037).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

00-1표지

À̶õ°³È²³»Áö.PDF

<353920C0B1B1E2BFEB2DB0E6B0F1C0DCB1B320BBF3BACEB1B8C1B6C0C720C8DA2E687770>

???? 1

( )실험계획법-머리말 ok

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

12(4) 10.fm


Main Title

경제통상 내지.PS

°æÁ¦Åë»ó³»Áö.PDF


*통신1604_01-도비라및목차1~12

03 장태헌.hwp

영암군 관광종합개발계획 제6장 관광(단)지 개발계획 제7장 관광브랜드 강화사업 1. 월출산 기( 氣 )체험촌 조성사업 167 (바둑테마파크 기본 계획 변경) 2. 성기동 관광지 명소화 사업 마한문화공원 명소화 사업 기찬랜드 명소화 사업 240

<C1A4C3A5BFACB1B D3420C1A4BDC5C1FAC8AFC0DAC0C720C6EDB0DFC7D8BCD220B9D720C0CEBDC4B0B3BCB1C0BB20C0A7C7D120B4EBBBF3BAB020C0CEB1C720B1B3C0B020C7C1B7CEB1D7B7A520B0B3B9DF20BAB8B0EDBCAD28C7A5C1F6C0AF292E687770>

[96_RE11]LMOs(......).HWP

israel-내지-1-4



歯1.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대


untitled

Extended Calculations

°í¼®ÁÖ Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

KAERIAR hwp

08.hwp

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

제 출 문 중소기업청장 귀하 본 보고서를 중소기업 원부자재 구매패턴 조사를 통한 구매방식 개선 방안 연구 의 최종보고서로 제출합니다 한국산업기술대학교 산학협력단 단 장 최 정 훈 연구책임자 : 이재광 (한국산업기술대학교 부교수) 공동연구자 : 노성호

Microsoft Word - KSR2013A320

제 출 문 환경부장관 귀하 본 보고서를 폐기물관리 규제개선 방안연구 에 관한 최종보고서로 제출합니다 연구기관 한국산업폐기물처리공제조합 연구책임자 연 구 원 연구보조원 이 남 웅 황 연 석 은 정 환 백 인 근 성 낙 근 오 형 조 부이사장 상근이사 기술팀장 법률팀장 기

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

, Yard Bottom Slamming, Slamming,, 10-8 Probability Level Bottom Slamming., Bottom Slamming,, Evaluation, Allowable Criteria, Ballast Reduction, Botto

Output file

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

PJTROHMPCJPS.hwp

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

#Ȳ¿ë¼®

< C6AFC1FD28B1C7C7F5C1DF292E687770>

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

04-다시_고속철도61~80p

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

Æ÷Àå82š

08원재호( )

<313920C0CCB1E2BFF82E687770>

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

ePapyrus PDF Document

???? 1

통신1310_01-도비라및목차1~9

슬라이드 제목 없음

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),

1. KT 올레스퀘어 미디어파사드 콘텐츠 개발.hwp

*통신1802_01-도비라및목차1~11

DBPIA-NURIMEDIA

PowerPoint 프레젠테이션

감각형 증강현실을 이용한

책임연구기관

DBPIA-NURIMEDIA

<C7C1B7A3C2F7C0CCC1EE20B4BABAF1C1EEB4CFBDBA20B7B1C4AA20BBE7B7CA5FBCADB9CEB1B35F28C3D6C1BE292E687770>

06_±è¼öö_0323

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

사용자 설명서 SERVO DRIVE (FARA-CSD,CSDP-XX)

歯174구경회.PDF

femap brochure (Korean)

<4D F736F F D20B4EBBFF BFB5BEF7BAB8B0EDBCAD2E646F63>

hwp

미얀-내지-8차

기능.PDF

., (, 2000;, 1993;,,, 1994), () 65, 4 51, (,, ). 33, 4 30, 23 3 (, ) () () 25, (),,,, (,,, 2015b). 1 5,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),


À±½Â¿í Ãâ·Â

표1

< BACFC7D1B1B3C0B0C1A4C3A5B5BFC7E228B1E2BCFABAB8B0ED D D20C6EDC1FD2035B1B32E687770>

°æÁ¦Àü¸Á-µ¼º¸.PDF

Microsoft Word - KSR2013A303

<31325FB1E8B0E6BCBA2E687770>

untitled

우리들이 일반적으로 기호

-

Journal of Educational Innovation Research 2018, Vol. 28, No. 3, pp DOI: NCS : * A Study on

Transcription:

00 8 ( CAD / CAE )

00 8

00 8 3

i,,,.,, CATIA V5.6,..,,.

ABSTRACT This thesis investigates the theoretical calculation method of initial clamping force required for bolted structure hen the external force acts on the bolted structure. Applied force to bolted structure as calculated ith theoretical method and analytical one by settling a basic model. The results ere compared, and then researched the influence of changes in design parameter upon bolted structure. As a theoretical approaching method, settled a basic model ith general design formulas and calculated initial clamping force required against external force and force applying to bolt and member due to the increase of external force. As an analytical approaching method, calculated force applying to bolt and member due to the increase of external force by using CATIA V5.6 to a basic model. Then compared the results came from analytical method ith ones from theoretical method. There as a discrepancy beteen the results by theoretical method and the ones came from analytical method hich member as bended from analytical process. Therefore, for the design of bolted structure, shall consider that stiffness calculated in theoretical can be changed because of the bending of member hen external force is applied to bolted structure. And additional studies based on experimental method are needed. ii

------------------------------------------------------------------------ ABSTRACT ------------------------------------------------------------------- ----------------------------------------------------------------------------- ----------------------------------------------------------------------- ------------------------------------------------------------------------- ------------------------------------------------------------------- 1 1.1 ------------------------------------------------------------- 1 1. ------------------------------------------------------------- 3.1 ------------------------------------------ 3. ---------------------------------------------------- 10.3 ------------------------------------------------------------- 11.4 ---------------------------------------------------------- 1.5 Stiffness parameter & Initial Clamping Force --------------------- 1.6 Tightening torque ------------------------------------------------------ 1.7 ------------- 7 iii

3 3.1 --------------------------------------------------------------- 8 3. -------------------------------------------------------- 8 3.3 ----------------------------------------------------- 9 3.4 ------------------------------------------------------------ 9 3.5 ------------------------------------------------ 30 4 4.1 Aspect Ratio ------------------------------------------- 31 4.,, ------------------------ 31 4.3 ------------------------------------------------ 3 5 5.1 ---------- 33 5. -------- 34 6 --------------------------------------------------------------- 36 ----------------------------------------------------------------- 38 iv

Figure.1 Figure.1. Figure.1.3 Figure.1.4 Figure..1 Figure.. Figure..3 Figure.7.1 Figure.7. Figure 3.1 Figure 3. Figure 3.4 Figure 3.5.1 Figure 3.5. Figure 3.5.3 Figure 3.5.4 Figure 3.5.5 Basic model of bolted joint Bolted joint and spring schematic Bolted & joint load curves Joint Diagram Basic model of bolt Basic model of nut Basic model of Plate Resultant bolt load versus external force for each method Resultant members load versus external force for each method Modeling Mesh generation Boundary condition Comparison of resultant bolt load by method A, analysis Comparison of resultant members load by method A. analysis Comparison of resultant bolt load by method B. analysis Comparison of resultant members load by method B. analysis Comparison of resultant bolt load by method C. analysis v

Figure 3.5.6 Figure 3.5.7 Figure 3.5.8 Figure 3.5.9 Figure 3.5.10 Figure 4.1.1 Figure 4.1. Figure 4..1 Figure 4.. Figure 4.3.1 Figure 4.3. Comparison of resultant members load by method C. analysis Comparison of resultant bolt load by method D. analysis Comparison of resultant members load by method D. analysis Comparison of resultant bolt load by method E. analysis Comparison of resultant members load by method E. analysis Variation of Resultant bolt load ith aspect ratio Variation of Resultant members load ith aspect ratio Variation of Resultant bolt load ith material Variation of Resultant members load ith material Variation of Resultant bolt load ith effective area Variation of Resultant members load ith effective area vi

Table..1 Table.. Table..3 Table.3 Table.4 Table.5.1 Table.5. Table.6 Table.7.1 Table.7. Table 3.4 Table 3.5.1 Table 3.5. Table 3.5.3 Table 3.5.4 Table 3.5.5 Table 4.1.1 Dimension of bolt Dimension of nut Dimension of Plate Calculation of bolt stiffness Calculation of joint stiffness for each method Calculation of stiffness parameter for each method Calculation of preload for each method Calculation of tightening torque for each method Resultant bolt load for each method by increasing external force Resultant members load for each method by increasing external force Applied force Comparison of resultant bolt and members load by method A, analysis Comparison of resultant bolt and members load by method B, analysis Comparison of resultant bolt and members load by method C, analysis Comparison of resultant bolt and members load by method D, analysis Comparison of resultant bolt and members load by method E, analysis Variation of resultant bolt load ith aspect ratio vii

Table 4.1. Table 4..1 Table 4.. Table 4.3.1 Table 4.3. Variation of resultant members load ith aspect ratio Variation of resultant bolt load ith material Variation of resultant members load ith material Variation of resultant bolt load ith effective area Variation of resultant members load ith effective area viii

δ : A : L : Grip length P : p : P : b P : j : δ b : δ j F i : F b : F j : K b : K j : E : ix

C : A N : d N : d : α : cone dz : cone D : j X : Y : µ : ρ : µ : T : T : T t : d i : d o : x

1 1.1,..,., ( = ),, stiffness parameter..,, stiffness parameter, relaxation effects, fatigue.. Shigley (1977) 1

, Edards (1991), VDI 30 (1988),,,..,. Sneddon (1946), Greenood (1964), Nelson (196), Lardner (1965), Fernlund (1961), Gould and Mikic(197) Tang, Deng(1988). Osman (1976) 1.5 hollo cylinder. Shigley, mitchell (1983) Shigley, Mischke (1989) 30 45. Rotscher (197) cone angle. Lehnhoff Mckay (199),. iteration,, nadal point. 30

cone angle... relaxation, embedding 5% ~ 15%, Fisher Struik (1987) 5%.,. 1.,,,,..1 3

.. ( small spring ), ( large spring ). ( small spring ), ( large spring ). ( Fig.1.1).,,..,. k b, k j ( Fig.1.)., Fig.1.3. Fi (preload),. Fi Joint Diagram. (Fig.1.4) 4

Tightening the bolts compresses the joint spring Tension in bolts makes them acts like stretched springs Figure.1.1 k b k j Figure.1. 5

,..1.1 PL = AE. A= Stiffness constant L= Grip length ( ) δ - (.1.1 ) P AE k = = - (.1. ) δ L ( External load) P 'e' P = F k e - (.1.3 ) b i + P = F k e - (.1.4 ) j i b δ = - (.1.5 ) b δ = - (.1.6 ) j P k P k j j b b j. ( Fig.1.5 ) 6

F b (tension) ( compression) F j δ b(extension) δ j ( contraction) Figure.1.3 bolt & joint load curves F b (tension) ( compression) F i F j extension Figure.1.4 Joint Diagram 7

F b (tension) ( compression) F j F i + k b e P=increase in Fb & decrase in Fj F i k b e e ( = ) Figure.1.5 F b smaller _ Fb P smaller _ kb same P k b k j k j Figure.1.6 8

k P b j = - (.1.7 ) k b P P k j b Pb = Since P P j kb + k b + P j = - (.1.8 ) P = ( total external load applied) P = b P = j F = b F j = Joint Diagram.1.9. F kb = Fi + P = Fi CP - (.1.9) k + k b + b j.1.10. F j = F k e - (.1.10 ) i j kb = Fi 1 kb + k j P 9

= F i ( 1 C)P C (Stiffness parameter ) 1. C. ( Fig.1.6 ) (external force) ' 0 ',...1.10 F = 0 j F j = F ( 1 C)P - (.1.10 ) i ( Initial Clamping force ) F i..1.11. F i = ( 1 C )P - (.1.11 ).,. M11.5P. aspect ratio. 10

3. 50KN. Fig., Fig..1, Fig.., Fig..3, Table..1, Table.., Table..3..3 fillet,,.. Shigley (1977),. /.3.1. PL = AE δ - (.3.1 ).3.. A = 11

P = L = Grip length E= Young's modulus k b EA L Eπd = N = N - (.3. ) 4L A = N d N =. ( Table.3 ).4. 1 ~ 8 ( Fig.4.1) Bickford (1990).. 1

Figure.4.1 Lines of equal compressive stress in joint.4.1 Shigley (1977) - Hollo cylinder model < Method A > shigley hollo cylinder., 3 hollo cylinder. A A * ( d ) = π d * 3d N 4 = equ d N equ k j π = 4 A ( 9d d ) = πd N N E πd N E = L L equ = - (.4.1 ) shigley.4.1 N 13

. ( Table.4.).4. Mischke (1989) - Truncated cone model < Method B > Hollo cylinder. Mischke.( Fig.4.). d dz α d z L z tanα + d Figure.4. Truncated cone model d = α = cone 14

dz = cone p = d = L = Grip length cone.4..1. Pdz d = AE δ - (.4..1 ) A.4... A = π ( r o r i d = π z tanα+ = ) d d + d d z tanα + z tanα + d π - (.4..) d Pdz = d + d d πe z tanα + z tanα + δ - (.4..3) d 15

.4..3 L/. P δ = πe L / 0 dz d + d d z tanα + z tanα+ d P = ln πed tanα ( t tanα + d d )( d + d ) ( t tanα + d + d )( d d ) - (.4..4 ) P k = δ = ln πed tanα ( t tanα + d d )( d + d ) ( t tanα + d + d )( d d ) - (.4..5).4..5..4..6. 1 k 1 1 + k k = ( k = ) 1 1 k k k m = - (.4..6 ).4..7 16

Mischke fixed angle =30. k m P = = δ ln πed tanα ( t tanα+ d d )( d + d ) ( t tanα+ d + d )( d d ) ο Mische α = 30 - (.4..7).4..7. ( Table.4 ).4.3 VDI ( Verein Deutscher Ingenieure 1988) 30 < Method C > VDI 30 d ).( Fig.4.3) ( b A equ = π ( D d ) ( ) 4 j d - (.4.3.1 ) D j A equ π = 4 D j d ( ) L L d + 1 d + d 5 100 ( d < D 3d, L d ) j 8 - (.4.3. ) A equ π L = d + d ( D j 3 d, L < 8d ) 4 10 > - (.4.3.3 ) 17

d = d = 1.5d b D j = d D j,.4.3.1,. grip length 8 D j 3 d.4.3....4.3.3. Grip length 8 D j 3 d. ( D 3 d, L < d ) >, j 8.4.3.3 ( Table 4. ) 18

3d d deq ( D > 3 d, L < d ) j 8 Dj d deq ( d < D 3d, L d ) j 8 Dj deq L ( d D j ) Figure.4.3 Equivalent joint area for stiffness (VDI 30) 19

.4.4 Edards (1991 ) Conical shape model < Method D > Edards VDI, Conical Shape. A equ [ 1] π ( d d ) + d ( D d ) ( + 1) π = h j X 4 8 - (.4.4. ) Ld X = d Dj d + L D 3 j..4.4 ( Table 4. ).4.5 Juvinall & Marshek (1991) < Method E> Juvinall Marshek Conical effective Area Effective stress Area. standard 60. A equ = d N + 0.68d N L + 0.065L - (.4.5 ) L = Grip length 0

d N =.4.5 ( Table 4. ).5 Stiffness parameter & Initial Clamping Force,.1.5.1. F i = ( 1 C )P C k k + k b = P 50KN b j = - (.5.1 ) C (stiffness parameter ). 50KN.. ( Table.5.1 ) 50KN. ( Table.5. ).6 Tightening torque 1

.....6.1. (Fig.5.1) X Y. (Helical angle)β, X, Y XY.6.1.1.6.1.. X cos β X Y sin β X sin β p Y cos β β Y π d Figure.6.1

F n Y cos β + X sin β = - (.6.1.1 ) F t = X cos β Y sin β - (.6.1. ).6.1.3. F = 0 ; F t µ Fn = 0 - (.6.1.3 ) µ 0.1. ρ µ tan ρ = X.6.1.4. X tan ρcos β + sin β tan ρ + tan β = Y = Y cos β tan ρsin β 1 tan ρtan β = tan ( β + ρ ) Y - (.6.1.4 ) T 3

.6.1.5. d 1 = X = Yd tan ( β + ρ) T - (.6.1.5 ).6.1.6. F n Y µ = µ ' Y cosα = - (.6.1.6 ) µ µ ' = = tan ρ' cosα.6.1.7. d 1 µ T = X = Yd tan( β + ρ' ) µ ' = tan ρ' cosα = - (.6.1.7 ).6. Y,.6..1. 4

T - (.6..1 ) = rdfn F N Y. p.6... T = p rda µ - (.6.. ).6..3. ( πr ) T = µ p rd - (.6..3 ) = πµ p r r i o r dr = πµ p 3 3 3 ( r r ) o i p = Y A Y = π r o r i ( ).6..4. 5

1 T = µ Yd = µ Y 3 1 = µ Y 3 3 ( ro ri ) ( r r ) o 3 i 3 3 ( do di ) ( d d ) o i d 3 3 3 ( d o di ) ( d d ) = - (.6..4 ) o i µ : T : r : i r o : d : i d : o d :.6.3..6.3. T T + = - (.6.3 ) t T 6

T = 1 Y ' µ [ d tan ( β + ρ ) + ] T t : Yd T : T :. ( Table.6 ).7, 50KN,., 0 ~ 50KN 10KN,..1.7.1.7.. Table.7.1, Table.7., Fig.7.1, Fig.7. F = F CP - (.7.1 ) b i + F = F ( 1 C)P - (.7. ) j i 7

3 3.1,,., 3.., slotting. Boolean operation.,,, Assembly.,, Coincidence Constraint.,,, Surface Contact Constraint. ( Fig 3.1 ) 3. OCTREE TETRAHEDRON Method. OCTREE TETRAHEDRON Method solid modeling part. 589, 44. 8

Contact Connection mesh. Contact Connection mesh mesh. 455. ( Fig 3. ) 3.3,, steel 1.1 material.,, steel 1.1 Aluminium. Table 3.3. Table 3.3 defining material 3.4, Surface slider. Surface slider supports 9

.,. ( Fig 3.4 ) 3.5 Force Method A,B,C,D,E bolt tightening, 50KN 0 50KN 10KN (Table 3.5) 4.. 30

. Aspect Ratio,,,. method A, Aspect Ratio,,, d. 4.1 Aspect Ratio Aspect Ratio..,, Aspect Ratio.0 ~ 3.0 0.. 0 ~ 50KN 10 KN. Table 4.1.1, Table 4.1., Fig 4.1.1, Fig 4.1. 4.., 31

,,. 3..,. ( Table 4..1, Table 4.., Fig 4..1, Fig 4.. )..,,..,,. 3... 1d,1.5d,d,3d,4d. ( Table 4.3.1, Table4.3., fig 4.3.1, fig4.3.) d. 3

., 5.,.. 5.1, Method A,B,C,D,E,., 0 ~ 50KN 10KN. 33

,,.. 3 method A.,,. 5. aspect ratio,.0.,.4,.6,.8, 3.0 Aspect Ratio,. Aspect Ratio.0. Aspect Ratio. Aspect Ratio. Aspect Ratio 0. 60N.,,,,, 40KN, 34

40KN.,.. 50KN.. 1d 1.5d. 1d 50KN preload. 35

6,,.,,.,,.,. Aspect Ratio,,,. Aspect Ratio,,,,.,,, 36

.,,.,, aspect ratio,,,. 37

1. Shigley, Joseph E., Mechanical Engineering Design, Mc-Gra Hill, 1977.. Edards, Kenneth S. Jr. and Mckee, Robert B., Fundamentals of Mechanical Component Design, McGra-Hill, Inc., 1991 3. Verein Deutscher Ingenieure, VDI 30, Systematic Calculation of High duty bolted Joints, VDI Society for Product Development, Design and marketing, Committee for bolted Joints, Dusseldorf, 1988 4. Juvinall, Robert C., and Marshek, Kurt M., Fundamentals of Machanical Component Design, John Wiley & Sons, Inc., 1991. 5. Bickford, Jogn H., An Introduction to the Design and Behavior of bolted Joints, d ed. Marcel Dekker, Inc, Ne York, 1990 6. Kulak, Geoffrey L., Fisher, John W., Struik, John H.A., Guide to Design Criteria for Bolted and Riveted Joints, Second Edition, John Wiley & Sons, 1987. 7. Gould,H.H., and Mikic,B.B., Areas of contact and pressure distribution in bolted joints.asme Journal of engineering for Industry,. Vol.94, no.3, pp864-870. 197 8. Lehnhoff,Terry.F., Ko,Kang II-Ko, Mckay Matthe L., Member stiffness and contact pressure distribution of bolted joints. Private Communication. 199 38

9. Wileman,J., and Choudhury,M., Green,I., Computation of member stiffness of bolted connections, Transactions of ASME,vol.113, Dec 1991, pp 43 437 10. Tand,J.,and Deng,Z., Better Stress and Stiffness estimates for bolted joints, Machanical design,1988 11. Young Gon Kim., A Parametric Study of Bolt Nut Joints by the Method of Finite Element Contact Analysis,Korea Advanced Institute of Science and Technology, 1989 1. CATIA Training Finite Element Analysis., DASSAULT SYSTEMS,1998 39

40 Table...1 Dimension of Bolt

Table... Dimension of Nut Table..3 Dimension of Plate 41

Figure.1 Basic model of Bolted joint Figure..1 Basic model of bolt 4

Figure.. Basic model of Nut Figure..3 Basic model of Plate 43

Calculation of bolt stiffness Equation : bolt stiffness k b EA = L N = Eπd 4L N TABLE.3 : Calculation of bolt stiffness 44

Calculation of joint stiffness Equation : joint stiffness Method A : k j = A equ L E πd = L N E Method B : k j P = = δ ln πed tanα ( t tanα + d d )( d + d ) ( t tanα + d + d )( d d ) ο Mische α = 30 Method C : k j = A equ L E A equ π L = d + d ( D j > 3 d, L < 8d ) 4 10 Method D : k A L E π 4 [ 1] equ j = Aequ = ( d dh ) + d ( D j d ) ( X + 1) π 8 Method E : k j = A equ L E A equ = d N +.68d N L + 0 0.065L TABLE.4 Calculation of joint stiffness for each method 45

Calculation of stiffness parameter Equation : stiffness parameter kb C = k + k b j TABLE.5.1 Calculation of stiffness parameter for each method Calculation of preload Equation: preload F i = ( 1 C )P P = 50KN TABLE.5. Calculation of preload for each method 46

Calculation of tightening torque Equation : Tightening torque T = 1 Y ' µ [ d tan ( β + ρ ) + ] Yd TABLE.6 Calculation of Tightening torque for each method 47

Equation : Resultant bolt load : F = F CP b i + TABLE.7.1 Resultant bolt load for each method by increasing external force ( : N) Figure.7.1 Resultant bolt load versus external force for each method 48

Calculation of resultant members load for each method by increasing external force Equation : Resultant members load : F = F ( 1 C)P j i TABLE.7. Resultant members load for each method by increasing external force ( : N) Figure.7. resultant members load versus external force for each method 49

Figure 3.1 Modeling Figure 3. Mesh Generation 50

Table 3.4 Applied Force Figure 3.4 Boundary Condition 51

Table 3.5.1 Comparison of resultant bolt and members load by Method A,analysis ( : N) Figure 3.5.1 comparison of resultant bolt load by method A, analysis Figure 3.5. comparison of resultant Members load by method A, analysis 5

Table 3.5. Comparison of resultant bolt and members load by Method B,analysis ( : N) Figure 3.5.3 comparison of resultant bolt load by method B, analysis Figure 3.5.4 comparison of resultant Members load by method B, analysis 53

Table 3.5.3 Comparison of resultant bolt and members load by Method C,analysis ( : N) Figure 3.5.5 comparison of Resultant bolt load by method C, analysis Figure 3.5.6 comparison of Resultant members load by method C, analysis 54

Table 3.5.4 Comparison of resultant bolt and members load by Method D,analysis ( : N) Figure 3.5.7 comparison of Resultant bolt load by method D, analysis Figure 3.5.8 comparison of resultant members load by method D, analysis 55

Table 3.5.5 comparison of resultant bolt and members load by Method E, analysis ( : N) Figure 3.5.9 comparison of Resultant bolt load by method E, analysis Figure 3.5.10 comparison of resultant members load by method E,analysis 56

Table 4.1.1 Variation of resultant bolt load ith aspect ratio ( : N) Figure 4.1.1 Variation of Resultant bolt load ith aspect ratio 57

Table 4.1. variation of resultant members load ith aspect ratio ( : N) Figure 4.1. variation of resultant members load ith aspect ratio 58

Table 4..1 variation of resultant bolt load ith material Figure 4..1 variation of resultant bolt load ith material 59

Table 4.. variation of members load ith material Figure 4.. variation of resultant members load ith material 60

Table 4.3.1 variation of resultant bolt load ith effective area Figure 4.3.1 variation of resultant members load ith effective area 61

Table 4.3. variation of resultant members load ith effective area Figure 4.3. variation of resultant members load ith effective area 6

,..,,.,,,. 00 8 63