fm

Similar documents
10(3)-09.fm

304.fm

605.fm

untitled

10(3)-10.fm

9(3)-4(p ).fm

69-1(p.1-27).fm

10(3)-12.fm

50(1)-09.fm

< DC1A4C3A5B5BFC7E22E666D>

12.077~081(A12_이종국).fm

10(3)-02.fm

82-01.fm

16(1)-3(국문)(p.40-45).fm

14.531~539(08-037).fm

fm

14.fm

DBPIA-NURIMEDIA

19(1) 02.fm

untitled

10.063~070(B04_윤성식).fm

11(5)-12(09-10)p fm

15.101~109(174-하천방재).fm

38(6)-01.fm

50(5)-07.fm

12(4) 10.fm

202.fm

16(5)-03(56).fm

02À±¼ø¿Á

433대지05박창용

416.fm

Microsoft PowerPoint - Lec_02 Igneous Classification_W [호환 모드]

16(2)-7(p ).fm

12(3) 10.fm

50(4)-10.fm

31(3B)-07(7055).fm

49(6)-06.fm

(163번 이희수).fm

82.fm

<312D303128C1B6BAB4BFC1292E666D>

Microsoft Word - KSR2012A038.doc

16(5)-06(58).fm

<30332DB9E8B0E6BCAE2E666D>

32(4B)-04(7455).fm

11(1)-15.fm

4.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

07.045~051(D04_신상욱).fm

12(2)-04.fm

( )-101.fm

04-46(1)-06(조현태).fm

8(3)-01.fm

201.fm

3.fm

03.fm

27(5A)-07(5806).fm

Microsoft Word - KSR2013A320

07.051~058(345).fm

10(1)-08.fm

( )-122.fm

14-10(4)-spn fm

fm

( )-113.fm

<B3EDB9AEC1FD5F3235C1FD2E687770>

50(6)-03.fm

16(5)-04(61).fm

57.fm

fm

<B3EDB9AEC1FD5F3235C1FD2E687770>

8(2)-4(p ).fm

50(6)-09.fm

14(4) 09.fm

82-02.fm

3-15(3)-05(이주희).fm

41(6)-09(김창일).fm

14.091~100(328-하천방재).fm

51(2)-09.fm

03권동희(17-26)ok

( )45.fm

8(3)-15(p ).fm

17.393~400(11-033).fm

93.fm

한 fm

( )-123.fm

13.fm

14(4)-14(심고문2).fm

11(4)-03(김태림).fm

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

26(2)-04(손정국).fm

29(4)-07(김봉채).fm

( )-83.fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

17(1)-08(06).fm

7(4)-07.fm

04.fm

°ø±â¾Ð±â±â

143.fm

415.fm

27(5A)-15(5868).fm

26(3D)-17.fm

Transcription:

Jour. Petrol. Soc. Korea Vol. 18, No., p. ~6, 009 제주도현무암에포획된 Type II 포획암 : 성인과조직적특성 p p pm np w y lw, Ÿ Textural and Genetic Implications of Type II Xenoliths Enclosed in Basaltic Rocks from Jeju Island Jae-eun Yu, Kyounghee Yang, Byoung-Hoon Hwang and Jinseop Kim Division of Earth Environmental System, Pusan National University, Busan, 609-75, Korea û» sz, Type I Type II. Type I s z Mg Ÿ (mg#=89-91) r k p w.» sz w Type I psz w. Type II sz Mg, Ni, Cr ûš Fe, Ti, {, { (mg#=77-8). Type II sz p- { - l p- l p, Ti t w { ƒ p. Type II sz s k pw ùkü ³ p p. Type II sz ùkù kj, Type II s z w» xw w. { { (š x { ), { ( x { ) p w yw sx w. { ƒ { eywš { y (enrichment) û w. Type I psz, sz, x ü w Type II sz Type I psz w x w sz x w. w p Type II sz x x w x w w (cumulates)» w. w, Type II» sz, j p, y, yw sx Abstract: Ultramafic xenoliths from southeastern part of Jeju Island can be grouped into two types: Type I and Type II. Type I xenoliths are magnesian and olivine-rich peridotite (mg#=89-91), which are commonly found at the outcrop. Most previous works have been focused on Type I xenoliths. Type II xenoliths, consisting of olivine, orthopyroxene and clinopyroxene with higher Fe and Ti components (mg#=77-8) and lower Mg, Ni, Cr, are reported in this study. They are less common with a more extensive compositional range. The studied Type II xenoliths are wehrlite, olivine-clinopyroxenite, olivine websterite, and websterite. They sometimes show ophitic textures in outcrops indicating cumulate natures. The textural characteristics, such as kink banding and more straight grain boundaries with triple junctions, are interpreted as the result of recrystallization and annealing. Large pyroxene grains have exsolution textures and show almost the same major compositions as small exsolution-free pyroxenes. Although the exsolution texture indicates a previous high-temperature history, all mineral phases are completely reequilibrated to some lower temperature. rthopyroxenes replacing clinopyroxene margin or olivine indicate an orthopyroxene enrichment event. Mineral phases of Type II are compared with Type I xenoliths, *Corresponding author Tel: 051-510-47 E-mail: yangkyhe@pusan.ac.kr

4 Á Áy zá½ gabbroic xenoliths, and the host basalts. Those from Type II xenoliths show a distinct discontinuity with those from Type I mantle xenoliths, whereas they show a continuous or overlapping relation with those from gabbroic xenoliths and the host basalts. ur petrographic and geochemical results suggest that the studied type II xenoliths appear to be cumulates derived from the host magma-related system, being formed by early fractional crystallization, although these xenoliths may not be directly linked to the host basalt. Key words: Jeju Island, Type II ultramafic xenoliths, cumulate, enrichment, chemical re-equilibration 서 언 t» sz, v x (Alpine-type) r k p, v p(ophiolites) r k p, k p(kimberite) p yw / w (rheological) k ƒ š yw œwš (Xu et al., 1998; Hidas et al., 007). e x sz psz y x, sz (xenoliths) ƒ t ww w ü w wš w w š yw š w (Wilson, 1989; Irving, 1974; Kovacs et al., 00). qü(continental intra-plate) x 4» y yw qü» x p (, 1999; Tatsumi et al., 005). w w ƒ š (, 1994; Kim et al., 00; š», 004)» ƒ ew ƒ x (Andean-type) y ej- e (calc-akaline) y xw x š. x w q(amurian continental plate) ü ew w q ks q v vq q w y ƒ¾ œ (Hamdy et al., 004). w w p q y (constructive)/ (destructive), y (anorogenic)/ (orogenic) y œ œ w y w y ùküš. w w p/w ƒ, p (mantle wedge) w yw, w (geodynamic) k q y wš pw œwš. sw x w «w sz sz. w sz w «wš š š y sx š w ùküš. sw x sz sz, Ti t w {, { Type II sz wš. Type II sz w» mw Type II sz p «(metasomatism) w šw. 지 질 - û w 74 km, -ûû w km k x w d d ƒ w, ûd d ùkü š y x ùküš (Fig. 1). ƒ k x xk w, y y w» w w š (y w, 00). ƒ w»ƒ, w» w 10 m û š (»y, 004). w wš s ¾ w w 40( )~140 m( ), s³ ~5 m Ì 1~60 ƒ sw (š», 004). w» s³ 00 m sd, d w y y J. Petrol. Soc. Korea

x sz Type II sz : p 5 Fig. 1. Geological map of Jeju Island showing the sampling site for the type II xenoliths(after Lee, 198).» y z sw y, w w û wû- w (, 1994; Kim et al., 00). y d w sd l, ù y y wù y y š š, 4 (Lee, 198; š», 004).» x» 1» sd n œ w y y x w w s w x l ¾ x w» x y w 40 Ar- 9 Ar 1.7~0.5 Ma š. g -{ x y x, d š.» 0.6~0.4 Ma x w sw - x s sw» x».» 0.~0. Ma w x w» x w w w. 4» 0.15 Ma z l y y w, w w x» p (Fig. 1). sw Si ƒ 46-6 wt%, Mg 9-1 wt% x ¾ Ÿ w ùkü (, 004). w, û Mg Ni w ùk ü x p w» xw. w e p, ƒ x p» w w -r k p p ƒ x w š ( «k, 1996; z, 00). w Type II psz szwš x e w z,»œ 5-15 vol% wš x t w { ƒ š w. x Si 49-50 wt%, Na +K 4.6-5.4 wt% e w Mg# 57-61 ùküš (, 007).» t w ùkùš, e x p (McBirney, 199). x r k p, { sz { szwš. Type II 포획암 / k type II sz p q w» w rÿx mw» m r r w w. 0 t 7 ƒ x w» w k (Table 1). yw p q w» w Type II wš Ÿ (, {, { ) w w œ x CAMECA SX100 x» mw. ƒ 15 kv, v 0 na, 1µm ƒ 10 w. w t v. ±1%, y ±0.%. wù ü BSE w ƒ w w ù yw ƒ ³ w. w x y { š Type I psz, sz wš, {, { w (Table ). Vol. 18, No., 009

6 Á Áy zá½ Table 1. Major element composition (wt%) of the rock forming minerals from the Type II xenoliths livine SS1- (n=9)* SS1 (n=5) SS1-1 (n=10) 06SS (n=4) 07SS1 n=6 09SS1 (n=4) Sample Type IIb Type IIc Type IIa (livineclinopyroxenite) -websterite) (olivine (wehrlite) (Wehrlite) (Wehrlite) (Wehrlite) Si 8.8 8.59 8.4 8.8 9.17 8.5 Fe a 18. 18.79 18.56 18.58 16.8 19.1 Mn 0. 0.4 0.19 0. 0.17 0. Mg 4.81 4.5 4.71 41.1 4.80 41.90 Ca 0.18 0.08 0.08 0.09 0.1 0.18 Ni 0. 0.4 0.8 0.6 0.5 0.0 Total 100.58 100.47 100.16 99.18 100. 100. Mg# b 080 80 80 80 8 79 Sample SS1-1 SS1 SS1- SS1-09SS1 09SS1 Inclusion in cpx Host baslt Si 8.88 9.0 9.1 7. 6.47 9.4 Fe a 18.51 16.91 15.8 5.66 9.16 19.05 Mn 0.1 0. 0.1 0.7 0. 0. Mg 4.81 4.74 44.58 6.5.90 41.6 Ca 0.08 0.1 0.19 0.7 0.18 0.16 Ni 0.5 0. 0.7 0.1 0.1 0.8 Total 100.74 100.61 100.8 100.16 99.15 100.7 Mg# b 0.80 0.8 0.8 0.71 0.67 0.79 a All Fe given as Fe. b mg# = 100 [Mg/(Mg + Fe t )]in atomic ratio. n=number of analysis Table 1. Continued rthopyroxene SS1- n=6 SS1 n=4 SS1-1 n=9 06SS n= 07SS1 n=6 09SS1 n=11 09SS n=5 Type IIa Type IIb Type IIc Si 5.11 5.17 5.41 5.4 5.9 5.9 5.40 Ti 0.4 0.7 0.0 0.6 0. 0. 0.7 Al.66.1.11.47 4.06.77.94 Fe a 11.64 11.90 11.71 11.61 10.86 1.18 1.94 Mn 0.1 0. 0.1 0.0 0.19 0.1 0.4 Mg 9.5 9.94 9.97 8.6 9.76 8.9 6.87 Ca 1.59 1.04 1.06 1.14 1.14 1.5 1.4 Na 0.08 0.0 0.05 0.07 0.06 0.08 0.10 Cr 0.19 0.18 0.17 0.18 0.4 0.19 0.16 Ni 0.08 0.04 0.06 0.07 0.05 0.10 0.06 Total 100.4 100.0 100.05 99.0 99.7 99.44 99.41 Mg# b 0.8 0.8 0.8 0.81 0.8 0.81 0.77 W EN 79 80 80 80 81 78 75 FS 18 18 18 18 17 19 J. Petrol. Soc. Korea

x sz Type II sz : p 7 Table 1. Continued Sample SS1 SS1-1 09SS1 09SS1 Exsolution lamella in cpx Si 5.4 5.67 5.1 5.19 Ti 0.6 0.0 0.8 0.1 Al.79.86.78.9 Fe a 11.9 11.7 1.11 1.0 Mn 0.4 0.7 0.4 0.19 Mg 9.86 0.6 8.95 9.05 Ca 1.0 1. 1.1 1.9 Na 0.10 0.07 0.09 0.06 Cr 0.1 0.15 0.19 0.15 Ni 0.10 0.06 0.08 0.09 Total 99.41 100. 99.4 99.6 Mg# b 0.8 0.8 0.81 0.8 W EN 80 81 79 79 FS 17 17 19 18» p Type II sz -10 cm j», xk x, ¼ w x, ³e w x w (Fig. ). x w,»œ w. Type I Type II sz w ƒ p Type II Ti ƒ t w { š, Type I Cr t w {. w Type I, r y. Type II. w Type II sz p(wehrlite), { (olivine clinopyroxenite), l p(olivine websterite), l p(websterite), ù» (Fig. ). Type IIa 70-80 vol%, { 5-10 vol%, { 15-0 vol% p (Fig. a). j» SS1- n=6 SS1 n=11 SS1-1 n=4 Table 1. Continued Clinopyroxene 06SS n=5 07SS1 n=6 09SS1 n=14 09SS n=10 Sample SS1 Type IIa Type IIb Type IIc Host Si 51. 51.19 50.84 50.79 49.9 50.66 49.60 49.5 Ti 0.74 0.74 0.8 0.74 1.0 0.89 1.0 1.48 Al.06 4.07 4.4 4.88 5.6 4.8 5.96 5.51 Fe a 6.8 6.11 6.0 6.18 6. 6.59 7.61 9.99 Mn 0.1 0.1 0.14 0.1 0.1 0.14 0.15 0.19 Mg 16.94 16.1 16.0 15.6 15.10 15.84 14.40 14.0 Ca 19.68 0.46 0.1 0.41 0.1 19.64 18.9 18.96 Na 0.4 0.78 0.7 0.8 0.8 0.7 0.95 0.70 Cr 0.57 0.0 0.6 0.8 0.58 0.4 0.7 0.01 Ni 0.04 0.04 0.05 0.04 0.04 0.05 0.04 0.0 Total 99.0 99.8 99.54 99.7 99.9 99.15 99.09 100.16 Mg# b 0.8 0.8 0.8 0.8 0.81 0.81 0.77 0.7 W 40 4 4 4 4 41 40 40 EN 48 45 46 45 44 46 4 41 FS 10 10 10 10 11 11 1 16 Ac 4 Vol. 18, No., 009

8 Á Áy zá½ Table. The range of major element composition of the rock forming minerals in Type I, Type II. gabbroic xenoliths and the host basalt livine Sample Phenocryst in the host Type I xenolith* Type II xenolith Gabbroic xenolith** basalt*** Si 9.4-41.0 8.-9. Not Found 6.5-40.9 Fe a 9.0-11. 16.8-19. 15.8-9. Mn 0.10-0. 0.17-0.4 0.17-0.7 Mg 48.4-5. 41.-4.8.9-45.7 Ca 0.0-0. 0.08-0.18 0.16-0.7 Ni 0.0-0.44 0.-0,0 0.1-0. Total 100.4-101.6 99.-100.6 99.1-100.9 Mg# b 89-91 79-8 67-85 Sample rthopyroxene Type I xenolith Type II xenolith Gabbroic xenolith Phenocryst in the host basalt Si 54.1-55.4 5.4-5.4 51.-5. Not Found Ti 0.0-0.14 0.6-0.7 0.4-0.59 Al.46-4.98.77-4.06.5-.7 Fe a 6.05-7.15 10.9-1.94 14.6-15.7 Mn 0.07-0.6 0.19-0.4 0.16-0.1 Mg.4-5.5 6.9-0.0 6.0-6.7 Ca 0.67-0.76 1.04-1.59 1.64-1.75 Ni 0.00-0.16 0.04-0.10 0.05-0.11 Cr 0.8-0.51 0.16-0.4 0.07-0.0 Total 99.0-101.9 99.0-100. 99.1-100. Mg# b 89-91 77-8 75-77 Sample Clinopyroxene Type I xenolith Type II xenolith Gabbroic xenolith Phenocryst in the host basalt Si 49.6-5. 49.6-51. 48.-49.5 48.7-49. Ti 0.14-0.71 0.74-1.0 1.1-1.66 1.0-1.48 Al 4.4-6.9.06-5.96.87-7.6 4.50-5.51 Fe a.85-.7 6.0-7.61 7.74-10.58 9.99-10. Mn 0.06-0.18 0.1-0.15 0.09-0. 0.19-0.4 Mg 15.7-17.4 14.4-16.9 1.7-15.4 14.0-14.4 Ca 18.9-1.8 18.9-0.5 18.-1.1 18.9-18.6 Na 0.46-1.54 0.4-0.95 0.4-0.76 0.59-0.70 Ni 0.00-0.11 0.04-0.05 0.06-0.46 0.01-0.05 Cr 0.61-1.08 0.0-0.57 0.05-0.17 0.00-0.0 Total 98.7-100. 99.1-99.8 99.0-99.7 98.9-100. Mg# b 89-91 77-8 70-77 71-75 * data from Yang et al.(009); ** data from Um et al.(007); *** data from this study plus from Yang and Hwang(005). (5 mm) ¾ rp š, ³ew ù f x x (triple junction) (annealing) p ùkü (Fig. ). j»ƒ ƒwš kj (kink band) q J. Petrol. Soc. Korea

x sz Type II sz : p 9 Fig.. Type II xenoliths from Jeju Island. (a1, a) A yellowish wehrlite xenolith consisting mainly of olivine with a minor amount of clinopyroxene and orthopyroxene(sample SS1-). (b1, b) A olivine clinopyroxenite xenolith consisting of mainly black clinopyroxene and yellowish olivine(07ss1). (c1, c) A websterite xenolith consisting of clinopyroxene and orthopyroxene(09ss). Photos a, b and c are enlarged polished sections of a1, b1 and c1, respectively. The scale bar in c is also applied to photos a and b. Each photo also shows the greenish Type I mantle xenolith nearby. Fig.. Photomicrographs of textural features of Type IIa xenoliths(wehrlite) from the Jeju Island(sample SS1-). Photos a1 and b1 were taken under plain-polarized light and a and b under cross-polarized light for the same spot as a1 and a. (a1, a) Irregular orthopyroxene is crosscutting or replacing olivines. (b1, b) Sieve-textured clinopyroxene containing olivine in a melt pocket surrounded by olivine. ol=olivine, opx=orthopyroxene, and cpx=clinopyroxene. Vol. 18, No., 009

0 Á Áy zá½ Fig. 4. Photomicrographs of textural features of Type IIb xenoliths(olivine clinopyroxenite). (a, b) Polished sections showing cumulate textures from samples 07SS1 and SS1-1, respectively. Photos c1 and d1 were taken under plain-polarized light and c and d under cross-polarized light. (c1, c) Large clinopyroxene with orthopyroxene exsolution lamella surrounded by fine-grained olivine grains(ss1-1). Note a olivine inclusion in the lamella-free marginal area indicating GBM (grain boundary migration) recrystallization. rthopyroxene occurs as replacement product along the margin of cpx. (d1, d) Large clinopyroxene with exsolution lamella in the center and exsolutionfree margin(07ss1). rthopyroxene occurs as replacement product. ol=olivine, opx=orthopyroxene, and cpx= clinopyroxene. Ÿ ùkù, w. sz ùkù k j x sz» š k w. { w, e w ƒ ù (Fig. a1 and a). { p sf(melt pocket) ü (sieve) (Fig. b1 and b). { psfx v r. psf û w wš, psf, y. psf ü { š, n Ÿ š. Type IIb { J. Petrol. Soc. Korea

x sz Type II sz : p 1 p- { { 5vol% (Fig. b). p { w w ù w w w wù. x w p w r w vp(ophitic) (Fig. 4a, b). Ÿ type IIa wù, ùkù kj q Ÿ w w. Type IIa psf, { Type IIa x w wù w ƒ (Fig. 4). { ƒ, š x( { ƒ ) x( ƒ ) ù, x { š x { ƒ, y x (Fig. 4c, d). ƒ { ƒ s (Fig. 4c1, c) { x w (GBM: grin boundary migration) û w. { Type IIa { w w š, w { ƒ eywš (Fig. 4c, d). Type IIc 0-10 vol%, { 5-5%, { 55-75 vol% l p- l p (Fig. c). ƒ j {, j» ¾ rp š Type IIa IIb w y/ y w (Fig. 5). { Type IIb ƒ š ù, q y ƒ j» { { s ƒƒ w (Fig. 5). Type IIa, IIb j kj Fig. 5. Photomicrographs of textural features of Type IIc xenoliths(websterite). Photos a1 and b1 were taken under plain-polarized light and a ans b under cross-polarized light. (a1, a) livine websterite showing large clinopyroxene grain containing orthopyroxene along the fracture and smaller orthopyroxene showing light-brownish pleochroism(09ss1). (b1, b) Websterite showing relatively equigranular fine-grained texture(09ss). ol=olivine, opx=orthopyroxene, and cpx=clinopyroxene. Vol. 18, No., 009

Á Áy zá½ Fig. 6. Comparison diagram between Type II and Type I, gabbroic xenoliths and phenocryst in the host basalt. (a) mg# of olivine, orthopyroxene, and clinopyroxene. (b) Ni and Mn contents in olivine. (c and d) Cr, and Ti contents in orthopyroxene and clinopyroxene, respectively. š, wš. Type II sz wš, {, { mg#[=100 Mg/ (Mg + Fe t )] w ( : 79-8; { : 77-8; { : 77-8)(Table 1). sz Type I psz, {, { mg# 89-91 ùkü, sz, { 75-77, { 70-77 (Table ). w x (? y?) mg#ƒ 67-85, { 71-75 w Ÿ w. mg# Type II sz Type I p sz w š (Table ). : Type II Ni Mn ƒ ƒ 0.-0.0 wt%, 0.17-0.4 wt%, Type IIa, IIb, IIc w (Table 1). l p(09ss1)ƒ ƒ û mg#(79) š, j q ù p (09SS1)ƒ ƒ mg#(8). { ü s j w. Type I psz x Ni ƒƒ 0.0-0.44 wt% 0.1-0. wt%, Mn ƒƒ 0.10-0. wt% 0.17-0.7 wt% Type II sz Ni Type I Ni w (Table, Fig. 6). x (? y?) w w m ù w ù w w. x (0.- J. Petrol. Soc. Korea

x sz Type II sz : p 0.5 mm) mg#ƒ 79-85, p ƒx x (0.1-0. mm) mg#ƒ 77-71 ùküš. j ( mm) q û mg# 67. { : Type II { Ti Cr ƒƒ 0.6-0.7 wt%, 0.16-0.4 wt% ƒ (Table 1). l p(09ss) mg#ƒ ƒ û ùkù. { { w. Type I psz sz wš { Ti ƒƒ 0.0-0.14 wt% 0.4-0.59 wt%, Cr ƒƒ 0.8-0.51 wt%, 0.07-0.0 wt%. Type II sz ü { Ti Cr Type I sz { ewš (Table, Fig. 6). { : Type II { Ti Cr ƒƒ 0.74-1.0 wt%, 0.0-0.57 wt% ƒ (Table 1). Type I psz, sz, x { Ti ƒƒ 0.14-0.71, 1.1-1.66, 1.0-1.48 wt% ùkü, Cr ƒƒ 0.61-1.08, 0.05-0.17, 0-0.0. (09SS) { mg#ƒ û ùkù. Type II sz Ti Cr Type I { ewš (Table, Fig. 6). 토 의 e x sz t» sz j, Type I II. Type I sz mg#ƒ {, j t w { psz y ƒ v (Frey and Prinz, 1978). Type II sz mg#ƒ û, Al Ti t w { w. Type I sz x, x w p szw, Type II w ³ w (Frey and Prinz, 1978; Kovacs et al., 00). Type II sz w» w ƒ w š. (1) ƒw q w x (Sachs and Hansteen, 000), () p x (Mukasa and Shervais, 1999), () x ƒ w x (segregations)(chen et al., 001), y (4) w ƒ qr (Allegre and Turcotte, 1986). wù Type I Type II t w ƒ Type I w Type II sz Ÿ w w wš. w.» sz w Type I psz (mg#=89-91) w ( z, 1998; Choi et al., 00; Lee and Walker, 006;, 009). š Type II sz p {, l p, l p w (Fig. ). p mw Type II sz» w šw. Type II sz (dynamic recrystallization)± (static recrystallization) xw wš. ù ƒ w ù y(equigranulation) w. Type II sz kj q Ÿ ƒ x p w r y w y w, r w ³ w, x x (Passchier and Trouw, 1996). w ƒ x j»ƒ ƒ w Type II sz š xw w (Fig., 4, 5). p psf. x œ ù, p/ (metasomatic melts/fluids)» w w. Vol. 18, No., 009

4 Á Áy zá½ p/w ƒsz w» xw, ù ƒ w w (Lloyd et al., 1997). ƒ py x óùš ùz w ú, p v «ù psz w w (Mercier and Nicolas, 1975; Vauchez and Garrido, 001, Xu et al., 00). Type II sz wš, {, { Type I psz w x w., sz x ü w ù eš. x ü ù» w. mg# Type II w Type I (Fig. 6a). Type II wš Ni { Cr Type I { w v, w x ü e (Fig. 6b, d). Ti w Type II { { Ti Type I (Fig. 6c, d). w Type I sz Type II y x w. š { REE ql Type I sz w ql š ( t l). Type II sz x w x w w j p(cumulates) w, e(batch) y -š ysz r ùküš. j p» y w ƒ w s k p(poikilitic) (Frey and Prinz, 1978; Winter, 001). x sz» sz sz t w q sz w. Type II sz, { š x r ùkù { s k p (Fig. 4a, b). w x w { yw (interlocking) x (Fig. 5). s k p wù j ü k { ƒ sw.» { y ù { y w š. ù wù j ü { sw x s k p r { ü s y j p ùküš (Fig. 4a, b). ³ p» w p- j q ù p w s k p w»ƒ š š ù s k p šw š (Frey and Prinz, 1978; Zoltan et al., 007). w w s k p w Type II sz p x š w» w (Frey and Prinz, 1978). Type II sz { { y (enrichment) xw ùkù. Type II sz wš { {. { e w ƒ ù, (Fig. a) y { ƒ eyw (Fig. 4c, d). { x 1 { yƒ û w. w { psfü ƒ (Fig. b) sz t w / y ƒ y. {. Si ƒ t w p w { yƒ û š. y { y(enrichment)ƒ ûš { y (Fig. 4)., { { y J. Petrol. Soc. Korea

x sz Type II sz : p 5 w x (external)» y y ùkü. y k y w w ¾ l ƒ w w. š x { ( ƒ ) ù ƒ ƒ x { x sx (Fig. 4). ù w yw sx w. Type IIa, IIb, IIc s z w ³ w y s. w e sz ewš «w «p» y, yw sx» w. w š w w w l,,, s w. 결 론 Type II sz p, {, l p, l p w p w šw. 1. Type II sz Mg, Ni, Cr ûš Fe, Ti, {, { (mg#=77-8). s k pw. Type II sz p w { { y xw Û x w.. Type II sz wš Ÿ Type I psz w x w sz x ü w ù e š. Type I sz Type II sz x œ wš.. Type II sz x w x w» wš. 사 사 w Ì ¾ ý. 008 w ( w» ) w w» (No. C00069). 참고문헌 š»,,, 004, w s 40 Ar- 9 Ar. 004 w wz w, w wz, 9-50. û x,,, Karoly Hidas, Csaba Szabo, 007, x psz w Ÿ, 007 w Ÿ wzáw wz œ w tz, 176-179.»y, 004, x, 004 w wz w, w wz, 1., «k, 1996, p y y. wz, 5, 66-8.,»y,, š», 1999, 4» y yw. wz, 5, 5-64.,, û x, y z, ½, 007, e x sz sz, Ÿ wz, 0, 10-114. z, š,, 1998, e x ü v - p sz, y wz, 1, 447-458. z, š,, 00, û k w w. wz, 11, 17-9.,,, x, ½, 1994, y y d w. wz, 0, 51-541.. û x, ½, Szab, C., 009, x sz p r k p sz p. Ÿ wz,, 1-11., 004, w y y. w wz w s, w y y, w wz, 10-104. y w,, 00,, 1z w s, y», y, 1-6. Allegre, C.J. and Turcotte, D.L., 1986, Implications of a two-component marble-cake mantle. Nature,, 1-17 Chen, S., 'Reilly, S.Y., Zhou, X., William, L.G., Zhang, G., Sun, M. and Feng, J., Zhang, M., 001, Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths. Vol. 18, No., 009

6 Á Áy zá½ Lithos, 56, 67-01. Choi, S.H., Lee, J.I., Park, C.H. and Moutte, J., 00, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea, The Island Arc, 11, 1-5. Frey, F.A. and Prinz, M., 1978, Ultramafic inclusions from San Carlos, Arizona; petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 8, 19-178. Hamdy, A.M., Park P.H., Lim H.C. and Park K.D., 004, Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations. Earth Planets Space, 56, 97-91. Irving, A.J., 1974, Megacrysts from the newer basalts and other basaltic rocks of southeastern Australia. Geol. Soc. Am. Bull., 85, 150-1514. Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I. and Foldes, T., 007, Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony- Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 4, 484-50. Kim, K.H., Nagao, K., Suzuki, K., Tanaka, T. and Park, E.J., 00, Evidences of the presence of old continental basement in Jeju volcanic Island, South Korea, revealed by Radiometric ages and Nd-Sr isotopes of granitic rocks. Journal of Geochemical Exploration, 6, 41-441. Kovacs, I., Zajacz, Z. and Szabo, C., 004, Type-II xenoliths and metasomatism beneath the Nograd-Gomor volcanic field, Carpathian-Pannonian region (northern Hungarysouthern Slovakia). Tectonophysics, 9. 19-161. Hidas, K., Falus, G., Szabo, C., Szabo, P.J., Kovacs, I. and Foldes, T., 007, Geodynamic implications of flattened tabular equigranular textured peridotites from the Bakony- Balaton Highland Volcanic Field (Western Hungary). Journal of Geodynamics, 4, 484-50. Lee, M.W., 198, Petrology and geochemistry of Jeju volcanic island, Korea. The Science Report of the Tohoku Imperial University Section SeriesIII, 15, 177-56. Lee, S.R. and Walker, R.J., 006, Re-s isotope systematics of mantle xenoliths from South Korea: Evidence for complex growth and loss of lithospheric mantle beneath East Asia. Chem. Geol., 1, 90-101. Lloyd, G.E., Farmer, A.B. and Mainprice, D., 1997, Misorientation analysis and orientation of subgrain and grain boundaries. Tectonophysics, 79, 55-78. McBirney R.B., 199, Igneous petrology (nd ed), Jones and Bartlett, 508p. Mercier, J.C.C. and Nicolas, A., 1975, Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths form basalts. Journal of Petrology, 16, 454-487. Mukasa, S.B. and Shervais, J.W., 1999, Growth of subcontinental lithosphere: evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps. Lithos, 48. Passchier, C.W. and Trouw, R.A.J., 1996, Microtectonics. Springer-Verlag, Berlin, 89p. Sachs, P.M. and Hansteen, H.T., 000, Pleistocene underplating and metasomatism of the lowercontinental crust: a xenolith study. J. Petrol., 41, 1-56. Tatsumi Y., Shukuno H., Yoshikawa M., Chang Q., Sato K. and Lee M.W., 005, The petrology and geochemistry of volcanic rocks on Jeju Island: Plume magmatism along the Asian continental margin. Journal of Petrology, 46, 5-55. Vauchez, A. and Garrido, C.J., 001, Seismic properties of an asthenospherized lithospheric mantle: constraints from lattice preferred orientations in peridotite from the Ronda massif. Earth Planet. Sci. Lett., 19, 5-49. Wilson, M., 1989, Igneous petrogenesis. Unwin Hyman, London, 466p. Winter, J.D., 001, Igneous and metamorphic petrology. Prentice Hall, New Jersey, 697p. Xu, X., reilly, S.Y., Griffin, W.L., Zhou, X. and Huang, X., 1998, The nature of the Cenozoic lithosphere at Nushan, Eastern China. In Flower M.F.J., Chung S.L., Lo, C.H. and Lee T.Y.(eds.), Mantle dynamics and plate interactions in east Asia, Geodynamics Series, 7, 167-95. Xu, Y.G., Menzies, M.A., Matthew, F., Huang, X.L., Liu, Y. and Chen, X.M., 00, "Reactive" harzburgites from Huinan, NE China: Products of the lithosphere-asthenosphere interaction during lithospheric thinning? Geochimica et Cosmochimica Acta, 67, 487-505. Yang K., 004, Fluid and melt inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): A preliminary study. Petorlogical Society of Korea, 1, 4-45. Zoltan, Z., Kovacs, I., Szabo, C., Halter, W. and Pettke, T., 007, Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: a Melt Inclusion Study of livine-clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48, 85-88. 009 8 009 8 4 009 9 k J. Petrol. Soc. Korea