슬라이드 제목 없음

Similar documents
DBPIA-NURIMEDIA

Microsoft PowerPoint ppt

¼º¿øÁø Ãâ·Â-1

제 3 편

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

슬라이드 제목 없음

±è±¤¼ø Ãâ·Â-1

°í¼®ÁÖ Ãâ·Â

(72) 발명자 정진곤 서울특별시 성북구 종암1동 이용훈 대전광역시 유성구 어은동 한빛아파트 122동 1301 호 - 2 -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

½Éº´È¿ Ãâ·Â

<4D F736F F D FB1E2BCFAB5BFC7E2BAD0BCAE2DB8F0B9D9C0CF20B3D7C6AEBFF6C5A92DC3D6BFCF2E646F6378>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

07김동회_ok.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

내용 q Introduction q Binary passand modulation Ÿ ASK (Amplitude Shift Keying) Ÿ FSK (Frequency Shift Keying) Ÿ PSK (Phase Shift Keying) q Comparison of

PowerPoint Template

SRC PLUS 제어기 MANUAL

Slide 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<3034B1E2B9DD32302DBAB8B0EDBCAD2D DC0FCC6C4C0DABFF BAB0C3A53420C8A8B3D7C6AEBFF6C5A9292E687770>

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

04 최진규.hwp

08김현휘_ok.hwp

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 28(11),

Bluetooth

Microsoft PowerPoint Multiplexing

À̵¿·Îº¿ÀÇ ÀÎÅͳݱâ¹Ý ¿ø°ÝÁ¦¾î½Ã ½Ã°£Áö¿¬¿¡_.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

FTTH 기술발표

인문사회과학기술융합학회

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

LDPC(Low Density Parity Check) 16 & 32 (APSK, Amplitude and Phase- Shift Keying) DVB-S2 30% [1]. DVB-S2 (SNR, Signal to Noise Ratio), (Offset). DVB-S2

그룹웨어와 XXXXX 제목 예제

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

±è¼ºÃ¶ Ãâ·Â-1

<313920C0CCB1E2BFF82E687770>

I

TCP for MANET

ARQ (Automatic Repeat reQuest)

歯A1.1함진호.ppt


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),


3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Switching

08.hwp

歯I-3_무선통신기반차세대망-조동호.PDF

bn2019_2

TTA Verified : HomeGateway :, : (NEtwork Testing Team)

2 : 2.4GHz (Junghoon Paik et al.: Medium to Long Range Wireless Video Transmission Scheme in 2.4GHz Band with Beamforming) (Regular Paper) 23 5, 2018

歯김병철.PDF

untitled


6주차.key

Chapter4.hwp

<3130C0E5>

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 2, Feb ,., LTE,. MCL (MCL [3], E-MCL [4], A-MCL [5] ) [

3 : FBMC/OQAM (YongJu Won et al.: A Study of Iterative Channel Estimation and Equalization Scheme of FBMC/OQAM in a Frequency Oversampling Domain) (Re

歯Cablexpert제안서.PDF

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

Coriolis.hwp

DBPIA-NURIMEDIA


Microsoft Word - KSR2015S030

untitled

29 Ⅰ. 서론 물리학자들이 전파의 이론을 정립한 이후, 이를 기술적으로 실현함은 물론 적정 수준의 19세기 물리학자인 페러데이, 맥스웰, 헤르츠 등의 연구 결과로 인류는 전기장과 자기장의 변화 에 따른 전파를 만들어 낼 수 있게 되었고, 인류에 게 있어 없어서는 안되

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

Chapter11OSPF

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

歯메뉴얼v2.04.doc

10(3)-12.fm

., 3D HDTV. 3D HDTV,, 2 (TTA) [] 3D HDTV,,, /. (RAPA) 3DTV [2] 3DTV, 3DTV, DB(, / ), 3DTV. ATSC (Advanced Television Systems Committee) 8-VSB (8-Vesti

Information Memorandum Danam Communications Inc

03.Agile.key

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

박선영무선충전-내지

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS


09권오설_ok.hwp

Chap06(Interprocess Communication).PDF

09È«¼®¿µ 5~152s

Microsoft PowerPoint - AC3.pptx

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

2 : DVB-NGH 2x2 MIMO SM (Jae Hyun Seo et al. : Study on Improved Polarized 2x2 MIMO Spatial Multiplexing Method for DVB-NGH System) (Special Paper) 20

Transcription:

Underwater Acoustic Sensor Network for Antisubmarine Warfare 조호신 hscho@ee.knu.ac.kr 경북대학교전자전기컴퓨터학부

수중 NCW 개요 기본개념 필요성 발표순서 NCW 수중센서네트웍발전전망 수중 MAC 설계를위한고려사항 수중환경에서의다중접속방식 수중환경에서의재전송기법 요약및결론 2 2

대잠전체계를위한수중 NCW 개요 기본개념 전투요소들을네트워크로연결 전장상황공유 지휘속도향상 신속한작전전개 공격치명성제고 Satellite Shipboard Command center 3

필요성 대잠전체계를위한수중 NCW 개요 대잠전탐지체계환경의변화 냉전시대대잠전환경 현대천해대잠전환경 ~2000 m ~200 m 1000m 이상심해 장거리음파전달특성양호 비교적시끄러운원자력잠수함 해상교통량작아매우조용한음파탐지환경 대륙사면구조 200m 이하천해 다중경로음파전달특성불량 매우조용한재래식잠수함 어로활동및상선교통량많아매우시끄럽고급변하는음파탐지환경 4

필요성 대잠전체계를위한수중 NCW 개요 수동소나 능동소나 Multi-Static 소나 NCW 소노부이 디핑소나 TAS 해저고정형센서 네트웍개념 탐지영역확장 은밀성향상 5

수중센서네트웍의구성 Satellite Control Station Shipboard Command center Buoy gateway node UUV (Mobile node) Telesonar repeater node 6 Bottom sensor nodes

NCW 수중센서네트웍발전전망 소규모 대규모 대잠작전범위확대 필요센서노드개수증가 소형, 저가, 고성능 지능적네트워킹 (MAC, Network, Transport protocol) Short-range commun. ( < 1 Km) 잠수함의정숙성, 은밀성향상 저전력통신 Not rechargeable sensor Low power transducer/hydrophone needed. 음향채널의문제점극복 설치및관리의용이성향상 Self-configuration Self-healing 7

NCW 수중센서네트웍발전전망 전송기술의향상 MIMO Cooperative Relay Cognitive Radio Support Mobile Nodes MAC protocol Network protocol 네트웍토폴로지 클러스터구조 에너지효율 고장감내 부하분산 트리구조 ( 클러스터내부 ) 다중홉전송 8

9 수중 MAC 설계를위한고려사항 Frequency-dependent transmission loss Transmission loss Urick propagation model d k f d f d TL ) ( ), ( α = absorption loss : ) ( path loss coeff. : distance between tx and rx : f k d α > < > < = B f B f df f N f d TL df f d S B d SNR,, 0 0 ) ( ), ( ), ( ), ( bandwidth : noise p.s.d of : ) ( transmitted signal p.s.d of : ), ( B f N f d S

Colored noise 수중 MAC 설계를위한고려사항 10

Multipath 수중 MAC 설계를위한고려사항 Source signal ~200 m Received signal 1mode 2mode 3mode Doppler frequency spread f d = v r c f 0 v r : velocity of f 0 the source relative to the receiver c :speed of : frequency of acoustic signal acoustic signal 11

수중 MAC 설계를위한고려사항 High and variable propagation delay 1500 m/s (acoustic wave in water) Five orders of magnitude higher than in RF terrestrial channel Extremely variable According to temperature, salinity, density Limited bandwidth Range [km] Bandwidth [khz] Very Long 1000 <1 Long 10-100 2-5 Medium 1-10 10 Short 0.1-1 10-50 Very Short <0.1 >100 12

Management 수중 MAC 설계를위한고려사항 Not easy to control Self-configuration & self-healing required. Not rechargeable Low power communication Energy efficient modem Energy efficient MAC protocol Energy efficient routing protocol 13

Multiple Access FDMA (Frequency Division Multiple Access) Narrow bandwidth TDMA (Time Division Multiple Access) Difficult timing synch CDMA (Code Division Multiple Access) Most promising candidate Near-far problem power control Code assignment OFDMA (Orthogonal Frequency Division Multiple Access) Doppler spread difficult freq. synch Not completely evaluated yet. 14

네트웍토폴로지 데이터수집형계층트리구조 L 1 CDMA 성능분석 L 2 L1 L 3 L K 15 15

CDMA 성능분석 Power saving scheme : 엇갈림깨어남패턴 노드간의거리에기인하여시간차를두고연속적으로깨어나는패턴 효율적인다중홉전송으로전송지연시간을줄임 Awake Awake L k-1 Sleep Awake Awake L k Sleep Transmission Awake Awake Reception L k+1 Sleep Wakeup-time 16 16 Latency

CDMA 성능분석 신호대잡음비 L k 1 L k d j _ i+2 l l i i+ 3 node i node i+1 node i+2 node i+3 S P S γ = P t _ i li γ t _ i = S li out j _ i+ 2 = = P t _ i+ 2 d γ j _ i+ 2 γ γ ( li+ 2 S ) d j _ i+ 2 node j node j+1 17 17 ( E N ) b o k 1 = N B t w 123 thermal noise + S [ n S R in 14243 4 int ra-family k out ( j) 1] + S j _ m out m F ( j) 14243 inter-family B w

CDMA 성능분석 트리형계층구조에서의적용예 Rx Tx Rx Tx 18 18

CDMA 성능분석 모의실험환경 Parameter Value Topology [1 2 4 8] Acoustic speed 1500 m/s Node spacing ACK packet size RTS/CTS packet size Vertical: 1 km, Horizontal: 200 m 100 bits 100 bits Data packet size 2000 bits Path loss (γ) 1.5 Required (E b /N o ) 5 db Bandwidth 30 khz 19 19

CDMA 성능분석 비트오류율에따른데이터처리율 20 20

CDMA 성능분석 전송부하에따른데이터처리율 21 21

수중에서의 OFMDA 적용 AMC (Adaptive Modulation & Coding) 기본개념 SNR 16QAM -3/4 지상의경우 Freq. f 1 f 2 f 3 f 4 f k : Sub-carrier 16QAM -1/2 Minimum SINR requirements (AWGN channel, target BER: 10-6 )-WiMAX 20dB-5dB=15dB QPSK -3/4 QPSK -1/2 BPSK -3/4 SINR 5.0 db 8.0 db 10.5 db 14.0 db 18.0 db 20.0 db MCS QPSK- 1/2 QPSK- 3/4 16QAM- 1/2 SINR Graph Slop: -15dB/sub-band 대역 (khz) 16QAM- 3/4 64QAM- 2/3 64QAM- 3/4 22

수중에서의 OFMDA 적용 수중에서의 AMC 활용주파수대역및거리 Consider QPSK and 16QAM SINR graph slop: -10dB/sub-band 대역 AMC 적용가능범위 통신거리가짧을수록 -10dB 에대한대역폭증가요구되는파워감소 통신거리가늘어날수록 -10dB 에대한대역폭감소요구되는파워증가 23

수중에서의 OFMDA 적용 주파수자원활용방안 Grouping of Sensor Node 거리에따른센서노드의그룹화 균등분포의센서노드가정 각그룹별노드수일정 -> 그룹의넓이일정 Hello Message for Grouping Hello Message 의부반송파구성 S ( d, f )(db) = 10log [ Ad (, f ) N( f )] AN F = min{ f diff ( k, f ) = D(dB)} Hk 10 1 diff ( k, f ) = S ( d k, f ) S ( d k + 1, f ) AN AN d d 2 d 3 2d 24

거리별주파수할당예 수중에서의 OFMDA 적용 25

ARQ What is ARQ (Automatic Repeat request)? Retransmission of erroneously received packets Stop & Wait is Strong Candidate in UW. Current acoustic modem supports half-duplex mode But poor efficiency To Improve the S&W ARQ scheme Transmission of blocks of packets Algorithms for adaptive adjustment of packet size to maximize efficiency of ARQ scheme 26

Ideas 수중환경에적합한 ARQ Scheme Channel sharing property t r t p Two node can share the channel if the packet is scheduled such a way that the events of packet transmission and reception do not occur at the same time at each node 27

수중환경에적합한 ARQ Scheme Operation Tinter t g Source node A sequentially transmits the sub-packets from 1 to N Relay node B and C immediately forward the received sub-packet to the next node if no error is found The relaying causes a backward overhearing to the previous nodes and this backward overhearing could be recognized as an ACK Only the destination node D needs to transmit a normal ACK 28

수중환경에적합한 ARQ Scheme Latency Analysis 3.5 3.4 3.3 simulation mathematical result 35 30 simulation (proposed, N=6) mathematical (proposed, N=6) simulation (S&W) mathematical (S&W) 3.2 25 Latency [sec] 3.1 3 Latency [sec] 20 15 2.9 10 2.8 2.7 5 2.6 0 2 4 6 8 10 12 14 16 18 Number of Sub-packets (N) 0 10-6 10-5 10-4 10-3 BER we can choose the number of sub-packet that minimizes the latency N = 6 29

Cooperative ARQ Scheme Operation of proposed Cooperative ARQ scheme a source node is transmitting to a destination node a neighbor node is listening to the ongoing communication the nodes in the cooperative region become cooperative node cooperative region (d DC < d SD ) & (d SC < d SD ) Cooperative region Destination node d SD Source node Cooperative node 30

Cooperative ARQ Scheme Operation of proposed Cooperative ARQ scheme the nodes in the cooperative region store a copy of the packet until the reception of a corresponding ACK destination node transmits the NACK to the cooperative node Destination node set by power control NACK NACK when a transmitted packet is NACK acknowledged by the destination ACK node, all cooperative nodes will remove their copy Source node Cooperative node 31

Retransmission Case 1 : Cooperative ARQ Scheme packet from source node to destination node is erroneous Case 2 : Destination NACK packet from cooperative node 1 to destination node is erroneous Cooperative1 NACK ACK Cooperative2 Source Case 3 : destination node does not receive the packet from cooperative node 1 within timeout 32

요약및결론 수중음향채널에적합한 MAC 프로토콜이필요함. Energy efficient Immune to long propagation delay 코드분할다중접속방식성능분석 트리토폴로지 단일코드방식유리 주파수할당및 OFDMA 적용방안 Considering frequency dependent path-loss 거리에따른센서노드그룹핑및주파수활용범위확대 채널공유 ARQ Long propagation delay 극복 협력형 ARQ Energy efficiency improved 33

34 감사합니다.

참고문헌 [1] R. J. Urick, Principles of Underwater Sound, MaGraw-Hill, 1983 [2] I. F. Akylidiz, D. Pompili, and T. Melodis, Underwater Acoustic Sensor Networks: Research Challenges, Ad hoc Networks (Elseviar), vol. 3, no. 3, pp. 257-279, May 2005. [3] M. K. Park, UWAN-MAC: An Energy Efficient MAC Protocol for Underwater Acoustic Wireless Sensor Networks, IEEE Journal of Oceanic Engineering, Vol. 32, No. 3, pp.710-720, 2007. [4] L. Freitag, M. Stojanovic, S. Singh, and M. Johnson, Analysis of Channel Effects on Direct-sequence and Frequency-hopped Spread-spectrum Acoustic Communication, IEEE Journal of Oceanic Engineering, vol. 26, no. 4, pp. 586-593, Oct. 2001. [5] Jae-Won Lee, Jong-Pil Kim, Ji-Hye Lee, Youn Seon Jang, Kyeong Cheol Dho, Kweon Son, and Ho-Shin Cho, An Improved ARQ Scheme in underwater acoustic sensor networks, Proc. OCEANS 08, April, 2008 [6] Jong-Pil Kim, Jae-Won Lee, Youn-Seon Jang, Kweon Son, and Ho-Shin Cho, A CDMA-Based MAC Protocol in Tree-Topology for Underwater Acoustic Sensor Networks, Proc. WUnderNet, Bradford, UK, May 2009. [7] M. Stojanovic, On the relationship between capacity and distance in an underwater acoustic communication channel, in Proc. ACM WUWNet, CA, pp. 41-47, Sept., 2006. 35