Journal of the Korea Academia-Industrial cooperation Society Vol. 15, No. 2 pp. 962-969, 2014 http://dx.doi.org/10.5762/kais.2014.15.2.962 경남일부지역중 - 고교생의성별에따른시상면상척추 - 골반정렬의특성비교연구 : Rasterstereography 를이용한 3 차원영상분석 김성렬 1* 1 경남대학교물리치료학과 Differences in Male and Female Spinopelvic Alignments in Middle School and High Schools Students of Gyeongnam Areas in Korea : a Three Dimensional Analysis Using Rasterstereography Seong-Yeol Kim 1* 1 Dept. of Physical Therapy, Kyungnam University 요약본연구는한국의건강한청소년을대상으로 Rasterstereography를이용하여성별에따른척추-골반정렬패턴을분석하여특성을확인하고, 각변수의상관관계를확인하기위하여수행하였다. 2013년 5월부터 10월까지정상청소년 61명 ( 남 31명, 여 30명 ) 을대상으로실시하였고, 평균나이는16.40±2.20세였다. 그결과 PSIS비율이남자 21.15±2.40%, 여자 23.41±3.28% 로유의한차이가있었으며 (p<.01), 요추전만각에서남자 33.44±8.46, 여자 38.96±8.11 로유의한차이가있었으나 (p<0.01), 그외의변수에서성별에따른유의한차이는없었다 (p>.05). 요추전만각은골반기울기 (r=.348), 흉추후만각 (r=.609) 과유의한상관관계가있었다. 척추회전각은흉추후만각 (r=-.278), 요추전만각 (r=-.256), 척추옆치우침 (r=.493) 과유의한상관관계를보였다. 본연구결과는한국청소년의성별에따른 Rasterstereography를이용한척추-골반정렬분석의기초자료가될것이고, 척추및골반에구조적질환을가진청소년과비교할수있는자료로활용할수있을것이다. Abstract This study investigated the patterns and correlations of spinopelvic alignments in in middle school and high schools students of Gyeongnam areas in Korea using rasterstereography. Sixty-one subjects were recruited from May to October 2013, the average age of subjects was 16.40±2.20 years. In the present results, PSIS ratio was statistically different between the sexes(male 21.15±2.40%, female 23.41±3.28%)(p<.01) and lordotic angle was statistically different between the sexes(male 33.44±8.46, female 38.96±8.11 )(p<.001), but other parameters were not statistically different between the sexes. However, we verified that lordotic angle was significant correlation separately with pelvic tilt(r=.348), kyphotic angle(r=.609). Surface rotation was significant correlation separately with kyphotic angle(r=-.278), lordotic angle(r=-.256), trunk inclination(r=.493). These finding could be used as basic data research to confirm normal pattern of spinopelvic alignment and balance in health adolescents, and might help understand adolescents with structure problem in spine and pelvis. Key Words : Adolescents, Rasterstereography, Spinopelvic Alignment 본연구는 2012학년도경남대학교교내연구비 ( 신진교수연구 ) 지원에의해수행되었습니다 * Corresponding Author : Seong-Yeol Kim(Kyungnam Univ.) Tel: +82-55-249-2831 email: okpt75@kyungnam.ac.kr Received January 8, 2014 Revised (1st January 20, 2014, 2nd February 4, 2014) Accepted February 5, 2014 962
경남일부지역중 - 고교생의성별에따른시상면상척추 - 골반정렬의특성비교연구 : Rasterstereography 를이용한 3 차원영상분석 1. 서론 시상면상 (sagittal plane) 에척추-골반 (spino- pelvic) 의바른정렬 (normal alignment) 은근골격계건강의중요한지표로여겨지고있다. 척추-골반정렬에관한연구는유아부터노인까지다양한연령대의정상인에서부터 [1-5] 퇴행성질환, 만성요통, 척추측만증과같은환자군에 [6-8] 이르기까지다양한대상에서분석되고있으며, 여러연구들에서근골격계환자에게바른정렬을위한자세교정운동프로그램등이제시되어이에대한중요성이더욱강조되고있다 [9]. 그중에서도최근에는성장기에있는청소년의자세및척추-골반정렬형태를분석한연구가활발히이루어지고있다 [10,11]. 실제시상면상의척추-골반의정렬은평상시자세습관과밀접한관련이있으며, 이는척추-골반에부착된근육과연부조직의길이와수축력을변화시켜근육불균형으로인한다양한근골격계통증을일으키고있다 [10]. 또한 Brattberg[12] 은청소년기에시상면상의척추-골반정렬이정상범위에서벗어난경우성인이되어서척추통증이나타날확률이증가한다고보고하였으며, 이에청소년기에시상면상의척추-골반정렬의분석이성인의척추통증예측인자로중요하다고보고하였다. 한편척추-골반의정렬분석은대부분의선행연구에서는방사선촬영 (Radiography) 을이용한시상면, 전두면상의정렬을분석하는방법을일반적으로사용하고있다 [1,5]. 하지만방사선촬영은 2차원영상을이용하여정렬변수를측정하기때문에시상면, 전두면의정렬이외의횡단면에서확인할수있는척추의회전및실제변형을분석하기에는제한점이있다 [13]. 또한이온화방사선 (Ionizing Radiation) 과같은방사선촬영기법은유방암 [14], 백혈병 [15], 갑상선암 [16] 등의문제도초래할수있으며, 그외에방사선피복에관한문제들이제기되고있다. 이러한문제점을보완하기위하여전산화단층촬영장치 (Computed Tomography; CT) 가사용되기도하지만이또한방사선노출을벗어나지못한다 [13,17-19]. 또한사진촬영 (Photo- graphy) 을이용한선자세정렬을평가하는연구가이루어져 r=.81~.91로높은신뢰도를보였으나, 척추-골반정렬을분석하기에변수가한정되어있다 [20]. 또한자기공명영상진단기 (Magnetic Resonance Imaging, MRI) 의방법을사용하여방사선노출이없이척추-골반정렬을확인할수있으나, 측정시간및비용이많이들어척추측만증수술과같은 3차원적인결과를확인하는등의특별한경우에만사용되고있다 [21]. 최근에는이러한문제점의대안으로방사선노출이없고, 측정시간및비용이적어간편하게측정할수있는 Rasterstereography의연구가활발히이루어지고있다. Rasterstereo- graphy는 1989년부터임상에서사용되었으며, 신뢰도와타당도가입증된측정기법으로방사선노출이없는할로겐전구및적외선촬영의방식을사용한다 [22]. 최근에는 6~11세의정상아동을대상으로실시한연구 [23] 뿐만아니라, 요통 [24], 척추측만증 [25] 등의질환군을대상으로연구가활발하게이루어지고있다. 그러나아직까지정상청소년을대상로실시한연구가미흡하여, Furian 등 [23] 의연구에서는이에대한연구의필요성을제시하고있다. 국내연구에서도편측운동종목선수의척추-골반정렬상태를분석하고 [26], 운동의효과를평가하기위하여 Rasterstereography가사용되었다 [27]. 이렇듯국내에서는질환을가지고있는대상자나특정운동선수를대상으로실시한연구가있으나, 아직정상성인및청소년을성별에따라분석한연구가없는실정이다. 이에본연구는 Rasterstereography를이용하여성장기에있는건강한청소년을대상으로성별에따라척추-골반정렬을비교분석하고, 시상면상의척추-골반형태의특징과상관성을확인하여질환을가진청소년과비교할수있는기초자료를제공하기위하여실시하였다. 2.1 연구대상자 2. 연구방법 본연구는 2012년 5월부터같은해 10월까지경상남도마산소재의 K 대학교를방문한중 고등학생을 61명 ( 남성 31명, 여성 30명 ) 을대상으로실시하였다. 대상자의제외기준은척추의골절이나종양이있는자, 허리수술의경험이있는자, 측정부위에피부질환이있는자로하였다. 또한척추측만계 (Scoliometer) 를이용하여등심대의기울기가 5 이상인척추측만증의심자와최근 3개월동안허리에통증이시각적통증척도 (Visual Analogue Scale, VAS) 4점이상인만성요통인자는제외하였다. 연구에참여한모든대상자는연구의목적과절차에대해충분히설명을듣고동의서를작성한후연구에참여하였으며, 연구대상자의일반적특성은 Table 1과같다. [Table 1] General characteristics of participants Male(n=31) Female(n=30) Age(yrs) 16.32±2.17 16.90±1.98 Height(cm) 171.11±5.25 159.22±4.62 Weight(kg) 68.39±12.18 53.41±8.32 BMI a (kg/m 2 ) 23.27±3.48 21.03±2.88 a body mass index 963
한국산학기술학회논문지제 15 권제 2 호, 2014 2.2 연구방법 2.2.1 척추-골반정렬분석대상자의척추-골반정렬분석을위하여 Formetric 3D(Diers International GmbH, Schlangenbad, Germany) 를이용하였다. Formetric 3D은척추의구조를시상면, 전두면, 횡단면에서분석이가능한신뢰도와타당도가입증된장비이다 [28,29]. 촬영된영상은분석소프트웨어 Draco(Diers, International GmbH, Schlangenbad, Germany) 를이용하여계산하였다. Formetric 3D는경추의돌출부 (Vertebra Prominens, VP) 인경추 7번 (7th Cervical, C7) 과골반의오른쪽과왼쪽의함몰부 (Dimple Right, DR, Dimple Left, DL) 인후상장골극 (Posterior Superi- or Iliac Spine, PSIS) 를자동으로인식하여이를근거로골반- 척추정렬의상태를분석한다. 분석변수로는척추-골반의일반적인특징의변수로몸통길이 ( Length), 몸통비율 ( Ratio), 양쪽 PSIS 길이 (Dimple Length), PSIS 비율 (Dimple Ratio) 을분석하였고, 골반정렬변수로골반기울기 (Pelvic Tilt), 골반비틀림 (Pelvic Torsion) 을분석하였다. Inclination), 몸통좌우기울기 ( Imbalance), 흉추후만각 (Kyphotic Angle), 요추전만각 (Lordotic Angle), 척추옆치우침 (Lateral Deviation), 척추회전각 (Surface Rotation) 를분석하였다. 각변수에대한설명은 Fig 1, Table 2와같다. 2.3 연구절차척추-골반정렬을측정하기위하여대상자의상의를탈의한상태에서양발은어깨넓이로벌려서도록하였고, 발을 30도씩외측으로벌린후양팔을몸에자연스럽게놓고편안한자세로서도록하였다. 대상자의등을카메라쪽을향하게하고, 대상자의경추부터골반까지노출시켜 C7과 PSIS가식별되게하였다. 자세에따른결과값의영향을줄이기위하여촬영이진행되는동안대상자에게는최대한움직이지않도록지시하였으며, 6초동안총 12번을촬영후각변수의평균값을계산하여자료분석하였다. 2.4 자료분석대상자의일반적특성을확인하기위하여기술통계를실시하였으며, 주요변수들은 Shapiro-Wilk test를이용하여정규성을확인하였다. 각변수에대한성별간차이를확인하기위하여독립표본 t-test를실시하였으며, 척추- 골반정렬변수간상관관계를알아보기위하여피어슨상관분석 (Pearson's correlation coefficient) 을이용하여분석하였다. 통계처리는 SPSS 17.0 통계패키지프로그램을이용하였으며, 유의수준은 ɑ=.05로하였다. 3. 연구결과 [Fig. 1] Spinopelvic alignment variable VP: Vertebra Prominens, DL: Dimple Left, DR: Dimple Right, DM: Dimple Middle, ICT: Inflection point Cervical Thoracic, ITL: Inflection point Thoracic Lumbar, ILS: Inflection point Lumbar Sacral 3.1 성별에따른척추-골반정렬특성의비교성별에따른척추-골반정렬특성을비교한결과는 Table 3과같다. 척추-골반의일반적인특징의변수중몸통길이와 PSIS비율에서성별에따른유의한차이가있었다 (p<.01). 양쪽 PSIS길이는유의하지는않지만남자 96.38±9.29mm, 여자 101.77±12.35mm로약 5.39mm의차이가있었다 (p=.059). 골반정렬변수에서는유의한차이가없었다 (p>.05). 또한척추정렬변수는요추전만각에서남자 33.44±8.46, 여자 38.96±8.11 로유의한차이가있었으나 (p<.01), 그외의변수에서는성별에따른유의한차이는없었다 (p>.05). 또한척추정렬변수로몸통앞뒤기울기 ( 964
경남일부지역중 - 고교생의성별에따른시상면상척추 - 골반정렬의특성비교연구 : Rasterstereography 를이용한 3 차원영상분석 [Table 2] Spinopelvic alignment variable Parameters Characteristics of Spinopelvic Length(mm) Description length is defined as the spatial distance between VP-DM or VP-SP. [Table 3] Spinopelvic alignment in male and female Male(n=31) Female(n=30) t Characteristics of Spinopelvic Length(mm) 457.50±29.8 4 436.00±20.38 3.273 * Ratio(%) 37.18±1.55 36.55±1.43 1.584 Ratio(%) Dimple Length(mm) VP-DM distance relative to the height (=100%) The dimple distance is defined as the spatial distance is independent of the position of the patient relative to the recording system. Dimple Length(mm) Dimple Ratio(%) 96.38±9.29 101.77±12.35-1.926 21.15±2.40 23.41±3.28-3.075 * Parameters of Pelvic Alignment Pelvic Tilt( ) 1.84±1.50 2.39±2.08.529 Dimple Ratio (%) DL-DR distance relative to the VP-DM distance (=100%) Parameters of Pelvic Alignment Pelvic Tilt( ) Pelvic Torsion( ) Parameters of Spine Alignment The pelvic tilt refers to a difference in height of the lumbar dimples, based on a horizontal plane (transversal inter- section). Pelvic torsion is calculated from the mutual torsion of the surface normals on the two lumbar dimples (vertical component). Pelvic Torsion( ) 2.13±1.18 2.10±1.64 -.486 Parameters of Spine Alignment Inclination( ) 2.14±2.38 1.55±2.06 1.019 Imbalance( ) 1.12±.93 1.15±.80 -.779 Kyphotic Angle( ) 42.37±8.17 45.35±9.67-1.305 Lordotic Angle( ) 33.44±8.46 38.47±8.11-2.371 * Lateral Deviation(mm) 5.17±3.26 4.09±2.07 1.538 Inclination( ) The trunk inclination refers to a difference in height between VP and DM, based on a vertical plane(sagittal cut). Surface Rotation( ) * ρ<.001 3.35±1.27 3.23±1.28.382 Imbalance( ) Kyphotic Angle( ) Lordotic Angle( ) Lateral Deviation (mm) Surface Rotation( ) The trunk imbalance is defined as the lateral deviation of VP from DP. This is the maximum kyphotic angle, measured between the surface tangents of the upper inflection point ICT in the vicinity of VP and the thoracic-lumbar inflection point ITL. This is the maximum lordotic angle, measured between the surface tangents of the thoracic-lumbar inflection point ITL and the lower lumbar-sacral inflection point ILS. This parameter describes the root mean square(rms) of the spinal midline from the VPDM line in the frontal plane This parameter describes the maximum root mean square of the surface rotation on the symmetry line. 3.2 척추-골반정렬변수간의상관관계척추-골반정렬변수간의상관관계는 Table 4와같았다. 요추전만각는골반기울기 (r=.348, p<.001), 흉추후만각 (r=.609, p<.001) 과유의한양의상관관계가있었다. 척추회전각은흉추후만각 (r=-.278, p<.05), 요추전만각 (r=-.256, p<.05) 과음의상관관계가있었으며, 척추옆치우침과유의한양의상관관계를보였다 (r=.493, p<.001). 4. 고찰척추변형을평가및치료하기위해척추-골반정렬의불균형상태를확인하는것은중요하다. 이를확인할수있는정렬변수로는시상면상의척추만곡각, 천추및골반의전경각, 고관절축의위치등이있으며, 전두면상의척추측만각, 골반기울기등이있다. 965
한국산학기술학회논문지제 15 권제 2 호, 2014 [Table 4] Correlation coefficients between spine and pelvis variables Pt Ps TIn TIm KA LA LD SR Total 1 Pelvic Tilt(Pt) M a F b Total.051 1 Pelvic Torsion(Ps) M.241 F -.049 Total.032.125 1 Inclination(TIn) M.162 -.077 F -.008.292 Total -.040 -.100.079 1 Imbalance(TIm) M -.146.069.158 F.044 -.250 -.010 Total.142.077 -.016.101 1 Kyphotic Angle(KA) M.171.168 -.056.027 F.087.025.089.177 Total.348 **.085 -.202.009.609 ** 1 Lordotic Angle(LA) M.236.173 -.104.029.587 ** F.396 *.031 -.205 -.027.607 ** Total -.187 -.065 -.231.247 -.153 -.093 1 Lateral Deviation(LD) M -.217 -.133 -.277.263 -.076 -.099 F -.125 -.003 -.308.250 -.205 -.265 Total -.197 -.099 -.065.198 -.278 * -.256 *.493 ** 1 Surface Rotation(SR) M -.235 -.062 -.297.167 -.275.096.563 ** F -.164 -.129.164.237 -.274 -.417 *.414 * a Male, b Female, * ρ<.05, ** ρ<.001 하지만이변수들의정상범위는연령, 성별등에따라차이가있으며, 각개인간의차이도커정상정렬범위를제시하기에는어려움이있다. 따라서최근에는각변수간의연관성을확인하여증상으로발현할수있는요인밝히기위한연구가이루어지고있다 [4]. 한편척추-골반정렬을측정하는방법으로방사선촬영, CT, MRI 등이이용되고있으나, 방사선노출의문제점이있고측정시간및비용이많이드는단점이있다. 특히자세성질환및척추-골반정렬의이상을가지고있는척추측만증등의환자에게지속적인방사선노출은암등의문제가제시되고있다 [14-16]. 이러한단점을보완하기위해사용되는 Rasterstereo- graphy는헬로겐전구를이용하여방사선노출이없으며, 측정자간신뢰도와측정자내신뢰도가입증된측정도구이다 [29]. 또한방사선촬영의측정값과의상관성지수가 r=.758~.872로높은수준을나타내고있다 [31]. 골반정렬변수인골반기울기는남자 1.84±1.50 (3.15±2.69mm), 여자 2.39±2.08 (4.25 ±3.61mm), 골반비틀림는남자 2.13±1.18, 여자 2.10±1.64 로성별에따른유의한차이는없었다. Furian 등 [23] 은 6~12세의정상아동을대상으로 Rasterstereography를이용하여척추-골반정렬을분석한결과골반기울기는남자 2.71±0.45mm, 여자 2.79±0.43 mm, 골반비틀림은남자 1.39±0.38, 여자 1.66±0.44 라고하였다. 이는본연구의결과값보다작았으나, 성별에따른유의한차이가없다고하여본연구의결과와일치하였다. 또한정상아동과청소년을대상으로방사선촬영으로확인한연구에서도골반정렬변수는성별에따른차이는없었다 [4]. 한편전연령대의골반입사각 (Pelvic Incidence) 에대한연구에서는연령과양의상관관계를보였으나 (r=.27, p<.0001), 0~9세는 44.2±7.0, 10~19세는 44.6±7.9 로아동과청소년의큰차이는없다고하여 [31], 본저자의청소년을대상으로한연구와 Furian 등 [23] 의아동을대상으로한연구를비교한결과와일치하였다. 하지만나이에따른 Rasterstereography를이용한척추-골반정렬을분석한연구가없어성인및노인과의비교등의더욱다양한연령대의비교연구를실시하여골반변수의변화의요인을확인해야할것이다. 또한 Furian 등 [23] 은정상아동의요추전만각의평균은 42.1±9.9 라고하였으며, 흉추후만각의평균은 47.1± 7.5 라고하여성별에따른유의한차이는없다고하였다. 이러한보고는본연구에서의결과보다큰만곡값 966
경남일부지역중 - 고교생의성별에따른시상면상척추 - 골반정렬의특성비교연구 : Rasterstereography 를이용한 3 차원영상분석 을보고하고있으나, 요추전만각이흉추후만각보다작은만곡을보인다는결과는일치한다. 본연구의결과요추전만각은평균 35.91± 8.6 ( 남자 33.44±8.46, 여자 38.96±8.11 ) 으로성별에따른유의한차이가있었다. Mac-Thiong 등 [4] 의방사선촬영으로확인한연구결과요추전만각이남자 46.6±10.8, 여자 48.8± 12.2 로성별에따른차이가 p=0.08로유의하지는않지만차이가있다고보고하였다. 한편 Cil 등 [3] 은연령에따른차이를확인하기위하여 3~15세의유아및청소년을네그룹으로나누어비교하여흉추후만각은연령이증가할수록각도가증가하고, 요추전만각은연령이증가할수록증가하지만성장기의 1 1~13세에서일시적으로감소하는양상을보이나 13~15 세의청소년기에는다시증가한다고하였다. 하지만본연구에서는 Furian 등 [23] 의연구보다약 5~7 정도작은각도를나타내고있다. Lee 등 [33] 의연구에서아시아인 (Asian) 과백인 (White) 의정상성인척추-골반정렬연구들의결과를비교하여분석한결과백인을대상으로실시한연구에서더큰각도를보인다고하였다. 따라서이를바탕으로 Furian 등 [23] 의연구와비교하였을때나타나는각도의차이의원인을규명하기위해서는한국인을대상으로다양한연령의척추-골반정렬분석및인종에따른차이에대한연구가실시되어야할것이다. Mac-Thiong 등 [4] 은아동과청소년의척추-골반정렬을분석한결과흉추후만각은요추전만각과상관계수 r=.35, 요추전만각과천추경사각 (Sacral Slope) 은상관계수 r=.64로양의상관관계가있으며, 또한천추경사각은골반경사각과양의상관관계가있다고하였다 (r=.68). 또한골반경사각은골반기울기와상관계수 r=.67로양의상관관계가있다고하였다. 이는본연구에서의요추전만각과골반기울기 (r=.348, p<.001), 흉추후만각 (r=.609, p<.001) 과양의상관관계가있다는결과와일치한다. 이는요추전만각의증가는천골경사각을증가시키고, 이렇게증가된천골경사와함께골반기울기도증가한다는것을알수있다. 한편요추전만각은골반비틀림 (r=.396), 척추회전각 (r=-.417) 에서여자에서만상관관계를보여이러한차이가발병률이여자에서약 2~3배가높은척추측만증등의성별에따른발병률이다른질환들과어떠한연관성이있는지추적조사가필요할것이다. 한편척추-골반정렬은척추질환과긴밀한관계를보인다. 최근연구에서는비교적추간판퇴행화의원인에노출되지않은젊은환자를대상으로요천추의척추시상면상지표의상관관계를비교한결과골반입사각, 천추경사및요추전만각이작으면퇴행성추간판의수및추간판퇴행성변화를나타낸다고보고하였다 [33]. 이렇듯 척추-골반정렬을분석하여환자군과비교하는연구가더욱필요할것이다. 특히 Rasterstereography를이용하여분석한본연구의결과가척추질환을예방하고문제점을찾고이를치료에이용될수있는기본자료가될것으로사료된다. 5. 결론 본연구는 Rasterstereography을이용하여정상청소년의척추-골반정렬의기초자료를제시하는데그목적을두었다. 연구결과를통해얻은결론은다음과같다. 첫째, PSIS비율과요추전만각은남녀성별간에유의한차이를보였지만그외의변수에서는성별에따른유의한차이는없었다. 둘째, 요추전만각은골반기울기와흉추후만각과양의상관관계가있었고. 척추회전각은척추옆치우침과양의상관관계를보였지만흉추후만각과, 요추전만각은음의상관관계가있었다. 본연구의결과로 Rasterstereography를이용하여정상아동을대상으로실시한연구의결과와일치하여연령증가에따라남녀성별간의척추골반정렬의특성이차이가없음을확인하였다. 또한성장기에있는청소년에게방사선노출이없으면서, 저렴한비용으로측정할수있는 Rasterstereography를이용하여정상청소년의척추-골반의정렬의표준값을제시하고척추-골반정렬변수간의상관관계를분석함으로써요통청소년및척추측만증등의척추질환을가지고있는대상자와비교할수있는기초자료가될것이다. References [1] C. S. Lee, S. S. Chung, K. C. Kang, et al., Normal patterns of sagittal alignment of the spine in young adults radiological analysis in a Korean population. Spine (Phila Pa 1976), Vol. 36, No.25, pp. 1648-54, 2011. DOI: http://dx.doi.org/10.1097/brs.0b013e318216b0fd [2] M. M. Janssen, X. Drevelle, L. Humbert, et al., Differences in male and female spino-pelvic alignment in asymptomatic young adults: a three- dimensional analysis using upright low-dose digital biplanar X-rays. Spine (Phila Pa 1976), Vol. 34, No. 23, pp. E826-832, 2009. 967
한국산학기술학회논문지제 15 권제 2 호, 2014 DOI: http://dx.doi.org/10.1097/brs.0b013e3181a9fd85 [3] A Cil, M Yazici, A Uzumcugil, et al., The evolution of sagittal segmental alignment of the spine during childhood. Spine (Phila Pa 1976), Vol. 30, No. 1, pp. 93-100, 2005. [4] J. M. Mac-Thiong, H. Labelle, E. Berthonnaud, et al., Sagittal spinopelvic balance in normal children and adolescents. Eur Spine J, Vol. 16, No. 2, pp. 227-234, 2007. DOI: http://dx.doi.org/10.1007/s00586-005-0013-8 [5] R. Vialle, N. Levassor, L. Rillardon, et al., Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am, Vol. 87, No. 2, pp. 260-267, 2005. DOI: http://dx.doi.org/10.2106/jbjs.d.02043 [6] C. Barrey, J. Jund, O. Noseda, et al., Sagittal balance of the pelvis-spine complex and lumbar degenerative diseases. A comparative study about 85 cases. Eur Spine J, Vol. 16, No. 9, pp. 1459-1467, 2007. DOI: http://dx.doi.org/10.1007/s00586-006-0294-6 [7] E. Chaleat-Valayer, J. M. Mac-Thiong, J. Paquet, et al., Sagittal spino-pelvic alignment in chronic low back pain. Eur Spine J, Vol. 20 Suppl 5, pp. 634-640, 2011. DOI: http://dx.doi.org/10.1007/s00586-011-1931-2 [8] W. S. Li, G. Li, Z. Q. Chen, et al., Sagittal plane analysis of the spine and pelvis in adult idiopathic scoliosis. Chin Med J (Engl), Vol. 123, No. 21, pp. 2978-2982, 2010. [9] Y. J. Choi, R. Hwang. Effect of cervical and thoracic stretching and strengthening exercise program on forward head posture. Journal of Korea Contents. Vol. 11, No. 10, pp. 293-300, 2011. DOI: http://dx.doi.org/10.5392/jkca.2011.11.10.293 [10] J. Edwards, The importance of postural habits in perpetuating myofascial trigger point pain. Acupunct Med, Vol. 23, No. 2, pp. 77-82, 2005. DOI: http://dx.doi.org/10.1136/aim.23.2.77 [11] O. Nowotny-Czupryna, K. Czupryna, K. Bak, et al., Postural habits of young adults and possibilities of modification. Ortop Traumatol Rehabil, Vol. 15, No. 1, pp. 9-21, 2013. [12] G. Brattberg, Do pain problems in young school children persist into early adulthood? A 13-year follow-up, Eur J Pain, Vol. 8, No. 3, pp. 187-199. DOI: http://dx.doi.org/10.1016/j.ejpain.2003.08.001 [13] A. Ariumi, T. Sato, K. Kobayashi. et al., Threedimensional lower extremity alignment in the weight-bearing standing position in healthy elderly subjects. J Orthop Sci, Vol. 15, No. 1, pp. 64-70, 2010. DOI: http://dx.doi.org/10.1007/s00776-009-1414-z [14] M. M. Doody, J. E. Lonstein, M. Stovall, et al., Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976), Vol. 25, No. 16, pp. 2052-2063, 2000. [15] C. M. Ronckers, C. E. Land, J.S. Miller, et al., Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res, Vol. 174, No. 1, pp. 83-90, 2010. DOI: http://dx.doi.org/10.1667/rr2022.1 [16] A. R. Levy, M. S. Goldberg, N. E. Mayo, et al. Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine (Phila Pa 1976), Vol. 21, No. 13, pp. 1540-1547; discussion 1548, 1996. [17] K. Abul-Kasim, A. Strombeck, A. Ohlin, et al. Reliability of dose CT in the assessment of screw placement after posterior scoliosis surgery, evaluated with a new grading system. Spine (Phila Pa 1976), Vol. 34, No. 9, pp. 941-948, 2009. DOI: http://dx.doi.org/10.1097/brs.0b013e31819b22a4 [18] Di. Silvestre, M. F. Lolli, G. Bakaloudis, et al. Apical vertebral derotation in the posterior treatment of adolescent idiopathic scoliosis: myth or reality?. Eur Spine J, Vol. 22, No. 2, pp. 313-23, 2013. DOI: http://dx.doi.org/10.1007/s00586-012-2372-2 [19] T. Vrtovec, R. Vengust, B. Likar, et al. Analysis of four manual and a computerized method for measuring axial vertebral rotation in computed tomography images. Spine (Phila Pa 1976), Vol. 35, No. 12, pp. E535-41, 2010. DOI: http://dx.doi.org/10.1097/brs.0b013e3181cb8d2b [20] J. Pausic, Z. Pedisic, D. Dizdar, Reliability of a photographic method for assessing standing posture of elementary school students. J Manipulative Physiol Ther, Vol. 33, No. 6, pp. 425-431, 2010. DOI: http://dx.doi.org/10.1016/j.jmpt.2010.06.002 [21] G.P. Vallespir, J. B. Flores, I. S. Trigueros, et al. Vertebral coplanar alignment: a standardized technique for three dimensional correction in scoliosis surgery: technical description and preliminary results in Lenke type 1 curves. Spine (Phila Pa 1976), Vol. 33, No. 14, pp. 1588-97, 2008. DOI: http://dx.doi.org/10.1097/brs.0b013e3181788704 [22] M. Mohokum, S. Mendoza, W. Udo, et al. Reproducibility of rasterstereography for kyphotic and 968
경남일부지역중 - 고교생의성별에따른시상면상척추 - 골반정렬의특성비교연구 : Rasterstereography 를이용한 3 차원영상분석 lordotic angles, trunk length, and trunk inclination: a reliability study. Spine (Phila Pa 1976), Vol. 35, No. 14, pp. 1353-1358, 2010. DOI: http://dx.doi.org/1097/brs.0b013e3181cbc157 [23] T.C. Furian, W. Rapp, S. Eckert, et al. Spinal posture and pelvic position in three hundred forty-five elementary school children: a rasterstereographic pilot study. Orthop Rev (Pavia), Vol. 5, No. 1, pp. 7, 2013. DOI: http://dx.doi.org/10.4081/or.2013.e7 [24] J. Schroeder, H. Schaar, K. Mattes, Spinal alignment in low back pain patients and age-related side effects: a multivariate cross-sectional analysis of video rasterstereo- graphy back shape reconstruction data. Eur Spine J, Vol., 2013. DOI: http://dx.doi.org/10.1007/s00586-013-2787-4 [25] M. Mangone, P. Raimondi, M. Paoloni, et al. Vertebral rotation in adolescent idiopathic scoliosis calculated by radiograph and back surface analysis-based methods: correlation between the Raimondi method and rasterstereography. Eur Spine J, Vol. 22, No. 2, pp. 367-371, 2013. DOI: http://dx.doi.org/10.1007/s00586-012-2564-9 [26] S. Y. Jung, H. J. Nam, D. S. Hong, et al. A Comparison of balance activity and body alignment by sports type in unilateral exercise athletes. Journal of Korean Physical Education Association. Vol. 52, No. 1, p.431 442, 2013. [27] H. J. Jeon, G. G. Hwang. The Effects of 12 Weeks of Pilates Exercise on Body Composition, Pelvis and Vertebra Posture in Ballerina Dancers. Journal of Korean Association of Dance. Vol. 12, No. 1, pp.1-10, 2012. [28] S. Goh, I. Price, P. J. Leedman, et al. Rasterstereographic analysis of the thoreacic sagittal curvature: a reliability study. Journal of Musculoskeletal Research, Vol. 3, No. 2, pp. 137-142, 1999. DOI: http://dx.doi.org/10.1142/s0218957799000142 [29] L. Hackenberg, E. Hierholzer, W. Pötzl, Rasterstereographic back shape analysis in idiopathic scoliosis after posterior correction and fusion. Clin Biomech (Bristol, Avon), Vol. 18, No. 10, pp. 883-889, 2003. DOI: http://dx.doi.org/10.1016/s0268-0033(03)00169-4 [30] L. Guidetti, V. Bonavolonta, Tito A, et al. Intra- and interday reliability of spine rasterstereography. Biomed Res Int, Vol. 2013, pp. 745480, 2013. DOI: http://dx.doi.org/10.1155/2013/745480 [31] J. M. Frerich., K. Hertzler, P Knott, et al. Comparison of radiographic and surface topography measurements in adolescents with idiopathic scoliosis. Open Orthop J, Vol. 6, pp. 261-265, 2012. [32] T Vrtovec, M. M. Janssen, F. Pernus, et al. Analysis of pelvic incidence from 3-dimensional images of a normal population. Spine (Phila Pa 1976), Vol. 37, No. 8, pp. E479-485, 2012. DOI: http://dx.doi.org/10.1097/brs.0b013e31823770af [33] C. S. Lee, S. S. Chung, S. J. Park, et al. The Association of Lumbosacral Sagittal Alignments and the Patterns of Lumbar Disc Degeneration. J Korean Soc Spine Surg, Vol. 19, No. 4, pp. 145-151, 2012. DOI: http://dx.doi.org/10.4184/jkss.2012.19.4.145 김성렬 (Seong-Yeol Kim) [ 정회원 ] < 관심분야 > 근골격계물리치료, 임상운동학, 보건 1997 년 5 월 ~ 2009 년 2 월 : 경희대학교부속병원동서협진센터근무 2009 년 8 월 : 삼육대학교대학원물리치료학과 ( 이학박사 ) 2010 년 3 월 ~ 현재 : 경남대학교물리치료학과교수 969