Microsoft PowerPoint - 확률3장-1-v2007 [호환 모드]

Similar documents

Microsoft PowerPoint - 04primitives.ppt

untitled

Microsoft PowerPoint - chap_11_rep.ppt [호환 모드]

untitled

A sudy on realizaion of speech and speaker recogniion sysem based on feedback of recogniion value


Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

MBA 통계6-12장.ppt

PowerPoint 프레젠테이션

Chapter4.hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

6자료집최종(6.8))

164

슬라이드 제목 없음

<C7A5C1F620BEE7BDC4>

Microsoft PowerPoint - 7-Work and Energy.ppt

step 1-1


- 2 -

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

#Ȳ¿ë¼®


DBPIA-NURIMEDIA



PJTROHMPCJPS.hwp

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,

012임수진

λx.x (λz.λx.x z) (λx.x)(λz.(λx.x)z) (λz.(λx.x) z) Call-by Name. Normal Order. (λz.z)

歯ki 조준모.hwp

public key private key Encryption Algorithm Decryption Algorithm 1

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

책임연구기관

歯제7권1호(최종편집).PDF

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

untitled

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

hwp

ps

Buy one get one with discount promotional strategy

,126,865 43% (, 2015).,.....,..,.,,,,,, (AMA) Lazer(1963)..,. 1977, (1992)


Ⅰ. Introduction 우리들을 둘러싸고 잇는 생활 환경속에는 무수히 많은 색들이 있습니다. 색은 구매의욕이나 기호, 식욕 등의 감각을 좌우하는 것은 물론 나뭇잎의 변색에서 초목의 건강상태를 알며 물질의 판단에 이르기까지 광범위하고도 큰 역할을 하고 있습니다. 하

Can032.hwp

Hi-MO 애프터케어 시스템 편 5. 오비맥주 카스 카스 후레쉬 테이블 맥주는 천연식품이다 편 처음 스타일 그대로, 부탁 케어~ Hi-MO 애프터케어 시스템 지속적인 모발 관리로 끝까지 스타일이 유지되도록 독보적이다! 근데 그거 아세요? 맥주도 인공첨가물이

歯mp3사용설명서

untitled

<30352D30312D3120BFB5B9AEB0E8BEE0C0C720C0CCC7D82E687770>

Microsoft PowerPoint - 3RFSystem.ppt [호환 모드]

cat_data3.PDF

°¡°Ç6¿ù³»ÁöÃÖÁ¾

<B3EDB9AEC1FD5F3235C1FD2E687770>

04-다시_고속철도61~80p


확률 및 분포

2009년 국제법평론회 동계학술대회 일정

<C3CA3520B0FAC7D0B1B3BBE7BFEB202E687770>

2 소식나누기 대구시 경북도 영남대의료원 다문화가족 건강 위해 손 맞잡다 다문화가정 행복지킴이 치료비 지원 업무협약 개인당 200만원 한도 지원 대구서구센터-서부소방서 여성의용소방대, 업무협약 대구서구다문화가족지원센터는 지난 4월 2일 다문화가족의 지역사회 적응 지원을

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

1. General

Microsoft PowerPoint Predicates and Quantifiers.ppt

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

182 동북아역사논총 42호 금융정책이 조선에 어떤 영향을 미쳤는지를 살펴보고자 한다. 일제 대외금융 정책의 기본원칙은 각 식민지와 점령지마다 별도의 발권은행을 수립하여 일본 은행권이 아닌 각 지역 통화를 발행케 한 점에 있다. 이들 통화는 일본은행권 과 等 價 로 연

11¹Ú´ö±Ô

¼º¿øÁø Ãâ·Â-1

2005 7

#KM-250(PB)

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

I&IRC5 TG_08권


<B9AEC8ADC4DCC5D9C3F7BFACB1B82D35C8A32833B1B3292E687770>

<B1B9BEC7BFF8B3EDB9AEC1FD5FC1A63234C1FD5FBFCF2E687770>

歯kjmh2004v13n1.PDF

歯엑셀모델링

2009;21(1): (1777) 49 (1800 ),.,,.,, ( ) ( ) 1782., ( ). ( ) 1,... 2,3,4,5.,,, ( ), ( ),. 6,,, ( ), ( ),....,.. (, ) (, )

DBPIA-NURIMEDIA

Å©·¹Àγ»Áö20p

°í¼®ÁÖ Ãâ·Â

Microsoft PowerPoint - Freebairn, John_ppt

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

44-4대지.07이영희532~

7 1 ( 12 ) ( 1912 ) 4. 3) ( ) 1 3 1, ) ( ), ( ),. 5) ( ) ). ( ). 6). ( ). ( ).

DBPIA-NURIMEDIA

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

IKC43_06.hwp

산은매거진13

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

02. 특2 원혜욱 지니 3.hwp

Microsoft PowerPoint - ìž—ë²€ëflflëfiœ_ê°ŁíŽflíŁŽì−µ_엸미뇟_2ì°¨_ ppt [ퟸ펟 모ëfiœ]

K7VT2_QIG_v3

공연영상

Microsoft PowerPoint - 27.pptx

아니라 일본 지리지, 수로지 5, 지도 6 등을 함께 검토해야 하지만 여기서는 근대기 일본이 편찬한 조선 지리지와 부속지도만으로 연구대상을 한정하 기로 한다. Ⅱ. 1876~1905년 울릉도 독도 서술의 추이 1. 울릉도 독도 호칭의 혼란과 지도상의 불일치 일본이 조선

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

歯미국경기표지.PDF

???짚?

Coriolis.hwp

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>


Transcription:

Ch.3 Random Variables 불규칙변수 3. The Noion of a Random Variable S ζ ζ real line Random variable a funcion ha assigns a real number ζ o each oucome ζ in he sample space of a random eperimen Specificaion of a measuremen on he oucome of a random eperimen Define a funcion on he sample space, i.e., a random variable S

S he domain of he random variable S he range of he random variable E.3.: Afer hree ime of coin ossing, he sequence en e of heads and ails is noed. S {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} ζ oucome he number of heads in hree coin osses S {0,,, 3} a new sample space

ζ : HHH HHT HTH THH HTT THT TTH TTT ζ : 3 0 cf If ζ is already a numerical value, he oucome can be a random variable defined by ideniy funcion, ζ ζ uncion is fied and deerminisic Randomness is due o he eperimen oucomes ζ Sample space S, random oucome ζ and he even A Sample space S,, random variable ζ and he even B in S, A {ζ : ζ in B} } B A {ζ : ζ in B} 3

3.. Cumulaive Disribuion uncion cdf The cdf of a random variable : he probabiliy of he even { } } for - < < a random variable a numerical variable no random The probabiliy pobab ha aes on a value au in he se -, The probabiliy of he even {ζ : ζ } Noe The even { } and vary wih or : a funcion of he variable. 4

Evens of ineres when dealing wih numbers Inervals of he real line, heir complemens, unions, inersecions roperies of he CD 0 cf Aiom I : 0 A and Corollary : A lim cf The even { < } is he enire sample space, hen Aiom II : S 5

lim 0 cf The even { - } is he empy se, hen Corollary 3: Φ0 is a nondecreasing funcion of, i.e., if a < b, hen a b 단조증가함수 cf Corollary 7: he even { a} he even { b}, hen a b is coninuous from he righ + for h >0 0, b lim b + h b h 0 6

a < b b- a cf { a} {a < b} { b}, hen by Aiom III a + a < b b b b- - b cf le a b-ε and ε > 0 b-ε < b b- b-ε lim b ε < ε 0 b b b b Noe : If he CD is coninuous a a poin b, hen he even { b} has probabiliy zero, i.e., b 0 if CD is coninuous a a poin b. 7

Noe : {a b} { a} {a < b} a b a- a - + b- a b- a - Noe : If he CD is coninuous a endpoins, i.e., a he poins a and b, hen a < < b a < b a < b a b > - 8

E 3.4: The cdf is coninuous from he righ and equal o ½ a he poin. 3/8, he magniude of he jump a he poin. cf or a small posiive number δ, δ,, + δ 8 3 δ 8 0 < 0 cf In erms of uni sep funcion u 0 3 3 u + u + u + u 3 8 8 8 8 9

Three Types of Random Variables Discree Random Variable cdf is a righ-coninuous, saircase funcion of wih jumps a a counable se of poins 0,,, S { 0,,, } probabiliy mass funcion pmf of : he se of probabiliies p of he elemens in S cdf of a discree random variable p u where p : he magniude of jumps in he cdf 0

Coninuous Random Variable is coninuous everywhere and sufficienly smooh. f d where f is a nonnegaive funcion 0

Random Variable of Mied Type cdf has jumps on a counable se of poins 0 0,,,, cdf increases coninuously over a leas one inerval of values of. p + -p where 0<p<, and is he cdf of a discree random variable and is he cdf of a coninuous random variable

3.3. The robabiliy Densiy uncion pdf The probabiliy densiy funcion of pdf : f d f Noe : The pdf represens he densiy of probabiliy a d f Noe : The pdf represens he densiy of probabiliy a he poin. h h + + < h h h + li. f h h h + where inerval for very small 3 lim 0 f h h where

f 0 cf d f and is a nondecreasing funcion d < + d f d The probabiliies of evens of fhe form. falls in a small Inerval of widh d abou he poin 4

a b f d b a cf The probabiliy of an inerval a, b The area under f in ha inerval b a a b f d 5

3 f d Noe : The pdf compleely specifies he behavior of coninuous random variables 4 d f : normalizaion condiion for pdf s Noe : a valid pdf can be formed from any nonnegaive, piecewise i coninuous funcion g, ha has a finie i inegral g d c < g f c 6

E. 3.8 The pdf of he samples of he ampliude of speech waveforms. f ce α < < c? using he normalizaion condiion c α α c ce d α c 7

α v < v e v α e αv α v 0 d e α d 8

pdf of Discree Random Variables cf The derivaive of he cdf does no eis a he disconinuiies. cf The relaion beween u and δ Uni sep funcion 0 < 0 u 0 Dela funcion u δ d definiion of he dela funcion 9

The cdf of a discree random variable u p p where Generalized definiion of he pdf f d f b u b f δ p f δ 0 The pdf for a discree random variable

E.3.9 : he number of heads in hree coin osses. S {0,,, 3} ind he pdf of ind < and < 3 by inegraing he pdf. sol 3 3 u + u + u + u 3 8 8 8 8 3 3 f δ + δ + δ + δ 3 8 8 8 8 + 3 < f d + 3 8 3 3 < 3 f d 8

Definiion of Condiional cdf s and pdf s condiional cdf of given A { } A A A if A > condiional pdf of given A d f A A d E. 3.0 lf life-ime of a machine : random variable cdf ind he condiional cdf and pdf given he even A { > } i.e., machine is sill woring a ime 0

sol The condiional cdf > > } { } { > > } { } { } { } { } { < > > < φ if 0 > } { } { } { cf coninuous a > > 3 cf coninuous a

The condiional pdf f f f f > H W 4 9 3 5 6 7 3 6 7 H.W., 4, 9, 3, 5, 6, 7, 3, 6, 7 4

3.4. Some Imporan Random Variables Discree Random Variables Bernoulli Random Variable Binomial Random Variable Geomeric Random Variable Negaive Binomial Random Variable oisson Random Variable 5

Coninuous Random Variable Uniform Random Variable Eponenial Random Variable Gaussian Random Variable m-erlang Random Variable Chi-Square Random Variable Rayleigh Random Variable Cauchy Random Variable Laplcian Random Variable 6

Discree Random Variables - Couning is involved Bernoulli Random Variable 0 if ζ no in A I A ζ if ζ in A Indicaor funcion for A I A Random Variable S {0, } pmf robabiliy Mass uncion p I 0 -p and p I p where A p cf ossing a biased coin I A : Bernoulli random variable 7

Binomial Random Variable n imes of independen rials I j : The indicaor funcion for he even A in he j h rial j I +I + + I n cf I j 0 or pmf of n n p p for : binomial random variable 0,,n Noe : rom he pdf, is maimum a ma n+p, where is he larges ineger ha is smaller han or equal o Noe : If n+p is an ineger, hen he maimum is achieved a ma and ma - rob. 33 8

Geomeric Random Variable The number M of independen Bernoulli rials unil he firs occurrence of a success S M {,, } pmf of M M -p - p,, where p A is he probabiliy pobab yof success in each Bernoulli rial rom he pdf M decays geomerically wih. cf q - p 9

cdf j q q p pq M cf Geomeric Series j q q p pq n a r n a r a ar ar r + + + Memoryless ropery, j M j M j M j M j M + > + > + M j M j M j M j M > > > + 30

cf M q j M j j + + M M q pq M j j < < q j M q j + + M q q q j M j M j + + 3

The only memoryless discree random variable cf memoryless : Each ime a failure occurs, he sysem forges and begins anew as if i were performing he firs rial e.g. The memoryless propery M + j M > j M for all j, > 3

oisson Random Variable Couning he number of occurrences of an even in a cerain ime period or in a cerain region in space. where he evens occur compleely a random in ime or space Couns of emissions from radioacive subsances Couns of demands for call connecion Couns of defecs in a semiconducor chip pmf for he oisson random variable α α N e 0,,,,,,! where α is he average number of even occurrences in a specified ime inerval or region in space. 33

Noe for α <, N is maimum a 0 for α >, N is maimum a α Noe if α is a posiive ineger, ma α and α- α α α α α α e e e e! 0! 0 cf! α! α α lim 0! even for very large α 34

Approimaion of he binomial probabiliies wih very large n and small p. cf p n p α! n α p e where α np 3 n α α α n α e α + + + +! 3! n! n α α α p0 n+ n n + n n! n α + α + e α! p + n p / n α α p + p + α / n + 35

f f cf + +!! f a a f a a f a f f n + +! h h a n a f n n + + + +!! a f h a f h a f h a f 36

E. 3. Rae of requess for elephone connecions λ calls/sec The number of requess in a ime period oisson random variable ind he probabiliy bili for no call requess in seconds ind he probabiliy for n or more requess 37

sol Average number of requess in seconds α λ e e N λ λ λ 0! 0 0 n n N n N λ λ < e λ λ 0! 38

Coninuous Random Variables Easier o handle analyically The limiing form of many discree random variables coninuous random variable Uniform Random Variable All values in an inerval of he real line are equally liely o occur 39

Eponenial Random Variable The ime beween occurrence of evens The lifeime of devices and sysems pdf and cdf f 0 λe < 0 0 e λ λ 0 < 0 0 f λe -λ -e -λ 40

λ he rae a which evens occur cf he probabiliy of an even occurring by ime increases as he rae λ increases. Limiing form of he geomeric random variable An inerval of duraion T Subinervals of lengh T cf n T n,, 0 discree model coninuous model n The sequence of subinervals a sequence of independen α Bernoulli rials wih p n where α he average number of evens per T seconds. 4

The number of subinervals unil he occurrence of an even a geomeric random variable M. T The ime unil he occurrence of he firs even n T M n M > > n M T T n p T T n p p 4 T p

n T α α e T as n n e α T Noe : oisson random variable N 0 e -λ No calls for seconds he eponenial random variable α cdf wih λ T an inerval beween any wo calls > seconds 43

Meanwhile α T > e : probabiliy ha > seconds In conclusion, for oisson random variable. he ime beween evens is an eponenially disribued random α variable wih λ T Noe : The eponenial random variable is he only coninuous random variable ha saisfies he memoryless propery. 44

GaussianNormal Random Variable A random variable consising of he sum of a large number of small random variables approaches he Gaussian random variable : he cenral limi heorem The pdf for he Gaussian random variable m σ f e < < πσ Where m and σ are he mean and sandard deviaion of. 45

e πσ cdf m σ πσ Φ m σ m σ where Φ e d π cf Φ is he cdf of a Gaussian random variable wih m 0 and σ e d d 46

E. 3.4: Show ha e d π σ σ m m0 47

y e d e d e dy π π y e + ddy π π r e rdrdθ π 0 0 e π d cf e d π 48

Q-funcion Q Φ d e Q Φ π he probabiliy of he ail of he pdf π, 0 Q Q Q e Q π π, + + b a b a a Q where 49 π π, b a where

Noe : Table 3.4 The value of for which Q 0 - where,,,0 : he probabiliy of ale 0. or : he probabiliy of ale 0.0 0. or 0.0-0 "Zero mean Gaussian 50

pdf Gamma Random Variable α λ λ λ e f 0 < Γ α < where wo parameers α and λ are posiive numbers and Γz is he gamma funcion. cf Γ z 0 z Γ m + m! e Γ π Γ z + zγ z d for for z for m > z > 0 0 a nonnegaive ineger 5

Many random variables are special cases of he gamma random variable The eponenial random variable Special case of he gamma r.v. wih α 5

Chi-Square Random Variable λ, α where is a posiive ineger f e Γ e Γ 53

m-erlang Random Variable α m m λ e λ λ f > 0 m! The ime S m ha elapses unil he occurrence of he m h even. : m-erlang r.v. S m + + + m,,, m : he imes beween evens eponenial random variables S m if and only if m or more evens occur in seconds N m m h even occurred by ime 54

m N m N S m S m < where N is he oisson random variable for he number of evens in seconds. cf α λ d d f e m m m S S m S,! 0 λ λ So, S m is an m-erlang random variable! 55