(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

Similar documents
(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

09권오설_ok.hwp

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

À±½Â¿í Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

08김현휘_ok.hwp

DBPIA-NURIMEDIA

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

(JBE Vol. 24, No. 1, January 2019) (Regular Paper) 24 1, (JBE Vol. 24, No. 1, January 2019) ISSN 2287

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

19_9_767.hwp

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

04 김영규.hwp

(JBE Vol. 23, No. 6, November 2018) (Special Paper) 23 6, (JBE Vol. 23, No. 6, November 2018) ISSN 2

(JBE Vol. 23, No. 1, January 2018) (Special Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287-

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

¼º¿øÁø Ãâ·Â-1

1 : (Su-Min Hong et al.: Depth Upsampling Method Using Total Generalized Variation) (Regular Paper) 21 6, (JBE Vol. 21, No. 6, November 2016)

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

(JBE Vol. 23, No. 1, January 2018). (VR),. IT (Facebook) (Oculus) VR Gear IT [1].,.,,,,..,,.. ( ) 3,,..,,. [2].,,,.,,. HMD,. HMD,,. TV.....,,,,, 3 3,,

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

인문사회과학기술융합학회

DBPIA-NURIMEDIA

3 : 3D (Seunggi Kim et. al.: 3D Depth Estimation by a Single Camera) (Regular Paper) 24 2, (JBE Vol. 24, No. 2, March 2019)

<372DBCF6C1A42E687770>

DBPIA-NURIMEDIA

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

03-16-김용일.indd

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

14.531~539(08-037).fm

4 : (Hyo-Jin Cho et al.: Audio High-Band Coding based on Autoencoder with Side Information) (Special Paper) 24 3, (JBE Vol. 24, No. 3, May 2019

07.045~051(D04_신상욱).fm

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

DBPIA-NURIMEDIA

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

(JBE Vol. 23, No. 1, January 2018) (Regular Paper) 23 1, (JBE Vol. 23, No. 1, January 2018) ISSN 2287

(JBE Vol. 23, No. 5, September 2018) (Special Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

5 : HEVC GOP R-lambda (Dae-Eun Kim et al.: R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder) (Special Pa

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A S

10 이지훈KICS hwp

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: A Study on Organizi

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

디지털포렌식학회 논문양식

07변성우_ok.hwp

I

04_이근원_21~27.hwp

3 : (Won Jang et al.: Musical Instrument Conversion based Music Ensemble Application Development for Smartphone) (Special Paper) 22 2, (JBE Vol

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

1 : UHD (Heekwang Kim et al.: Segment Scheduling Scheme for Efficient Bandwidth Utilization of UHD Contents Streaming in Wireless Environment) (Specia

06_ÀÌÀçÈÆ¿Ü0926

(JBE Vol. 22, No. 5, September 2017) (Special Paper) 22 5, (JBE Vol. 22, No. 5, September 2017) ISSN

2 : MMT QoS (Bokyun Jo et al. : Adaptive QoS Study for Video Streaming Service In MMT Protocol). MPEG-2 TS (Moving Picture Experts Group-2 Transport S

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: A study on Characte

09이훈열ok(163-

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

(JBE Vol. 20, No. 6, November 2015) (Regular Paper) 20 6, (JBE Vol. 20, No. 6, November 2015) ISSN

김기남_ATDC2016_160620_[키노트].key

<313120B9DABFB5B1B82E687770>

<31325FB1E8B0E6BCBA2E687770>

A-PS-C-1-040( ).hwp

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: * Suggestions of Ways

*금안 도비라및목차1~9

°í¼®ÁÖ Ãâ·Â

<372E20B9DAC0B1C8F12DB0E62E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

DBPIA-NURIMEDIA

02양은용

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

02손예진_ok.hwp

05 목차(페이지 1,2).hwp

< FC1A4BAB8B9FDC7D D325FC3D6C1BEBABB2E687770>

04 박영주.hwp

45-51 ¹Ú¼ø¸¸

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Transcription:

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, 2018 9 (JBE Vol. 23, No. 5, September 2018) https://doi.org/10.5909/jbe.2018.23.5.642 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) a), a) Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors Jong In Gil a) and Manbae Kim a),,. PIR(pyroelectric infra-red).. PIR....,,.,. Abstract Occupancy sensors installed in buildings and households turn off the light if the space is vacant. Currently PIR(pyroelectric infra-red) motion sensors have been utilized. Recently, the researches using camera sensors have been carried out in order to overcome the demerit of PIR that cannot detect stationary people. The detection of moving and stationary people is a main functionality of the occupancy sensors. In this paper, we propose an on-line human occupancy tracking method using convolutional neural network (CNN) and self-organizing map. It is well known that a large number of training samples are needed to train the model offline. To solve this problem, we use an untrained model and update the model by collecting training samples online directly from the test sequences. Using videos capurted from an overhead camera, experiments have validated that the proposed method effectively tracks human. Keyword : on-line tracking, convolutional neural network, self organizing map, occupancy sensor Copyright 2016 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors). (light on), (light off) (occupancy sensor, motion sensor) [1,2]. PIR (pyroelectric infra-red). PIR (thermal temperature),. PIR [3~7]. PIR,,,.,. PIR. Benezeth CAPTHOM [3].., 2. Han PIR [4]. Nakashima [5].,. Amin PIR a) (Dept. of Computer and Communications Engineering, Kangwon National University) Corresponding Author : (Manbae Kim) E-mail: manbae@kangwon.ac.kr Tel: +82-33-250-6395 ORCID:http://orcid.org/0000-0002-4702-8276 ICT (IITP-2018-0-01433) 2017 () (No. 2017R1D1A3 B03028806). his research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(iitp-2018-0-01433) supervised by the IITP(Institute for Information & communications Technology Promotion) and This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A3B03028806). Manuscript received July 6, 2018; Revised August 9, 2018; Accepted, August 9,2018. [6]. PIR, 2. [3,5],,. Gil [7]. Gil,. MHI(Motion History Image)..,,,..., (Tracking-by-Detection: TbD).. TbD.,,.,..,... (overfitting)..

(JBE Vol. 23, No. 5, September 2018) (Convolutional Neural Network: CNN) [8-10]. CNN. TbD. CNN. (Self Organizing Map)..,..,. 1.. 1... (patch).,,,. ±,,, ( )...,, 32, 200, 10. 32,592..... (Self Organizing Map: SOM). 1. Fig. 1. Overall flow diagram of proposed system for determining the location and scale of a target object

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors) SOM, [11]... SOM, SOM. CNN...,..,. SOM... 2...., (, )..,..... (), (),. (positive).., 2. (:, : ) Fig. 2. Positive and negative bounding boxes obtained from a tracked object. (red: positive image patch, blue: negative image patch)

(JBE Vol. 23, No. 5, September 2018) ± ±., (negative)., 2 4. 2 6. 3. (Self Organizing Map: SOM).. K-, Kohonen Kohonen., (winner-take-all). SOM 2-. SOM.,.... SOM. 1 (1 2 1 ) 4., 5. SOM 5 5. 5 1., 5.,. SOM. 1. 1,. SOM, SOM.. SOM.,. K-Means,... SOM. :,, : 1. SOM 5 2. 3. Euclidean distance 4. 5.

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors) 6. 1, 2 7. 8. SOM, CNN,.,. SOM,,, 0.5 1.5 0.1., 11. SOM (Euclidean distance).. 3 CNN. CNN (convolutional layer) (fully-connected layer). (sigmoid),. 32x32x3. 3x3 8. 30x30x8, 392. (hidden layer) 100, 80. (softmax),. 1. CNN CNN, CNN. CNN. CNN,..,.,.. (probability map) BP. 4. BP (Integral Probability Map) P. 3. CNN Fig. 3. Architecture of CNN for visual tracking

(JBE Vol. 23, No. 5, September 2018) BP p, BP n. P p BP p, P n.. 2-class.,. (ground truth), CNN. (1) (3). (2) (3) (4). 4. Fig. 4. Procedure of generating Integral Probability Map 4.. (1).. (2) Cross entropy. ln ln,. ( ) n, ( )., CNN.,., CNN.,, CNN. (4) CNN 6 CNN., CNN,. (epoch).., (5). ln.,

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors).,,,.. 2. CNN..,,. CNN, 2D..,.,..,.. CNN,. 6. 1.0...,,. CNN,.. 6. Fig. 6. Input images and score maps 5. () () Fig. 5. Object search range (yellow) and candidate image patch (blue), (score map). 5.,.. 10. 1024x786 RGB., 2.7m. 10

(JBE Vol. 23, No. 5, September 2018) 7. 4 9. CNN-SOM Fig. 7. Qualitative results of the 9 trackers over 4 test sequences. CNN-SOM is the proposed method, 4 7. 1 4 Video1, Video8, Video9, Video 10. 9,. 9 Adaptive Structural Local Sparse Model(ASL A) [12], Circulant Structure of Tracking-by-Detection with Kernel(CSK) [13], Compressive Tracking(CT) [14], Distribu- tion Fields for Tracking(DFT) [15], Incremental Learning for Robust Visual Tracking(IVT) [16]. L1 Tracking using Accelerated Proximal Gradient Approach(L1APG) [17], Lo- cally Orderless Tracking(LOT) [18], Multi-task Sparse Learning(MTT) [19], Sparsity-based Collaborative Model (SCM) [20]. CNN-SOM.. (Ground Truth).,,,. FOV(Field Of View)..,.,,. (Eu- clidean distance of corners). (8).,. 8.. Y. 10 200.

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors) 8. 9. CNN-SOM Fig. 8. Corner distance of the 9 trackers over 10 test sequence. CNN-SOM is the proposed method.,. 400. 1024x786. 400 (drift). 500,. 1.

(JBE Vol. 23, No. 5, September 2018) 1. Table 1. Average of corner distance error ASLA CSK CT DFT IVT L1APG LOT MTT SCM CNN- SOM Video1 289.40 158.58 131.74 480.11 536.68 531.22 100.10 444.70 263.21 132.88 Video2 377.09 477.00 382.45 454.95 527.95 631,83 351.01 326.88 408.41 133.64 Video3 138.14 388.04 502.93 327.63 542.45 252.52 278.65 247.08 172.48 132.18 Video4 141.14 156.50 212.85 185.97 400.27 371.70 328.44 131.41 447.97 164.78 Video5 116.37 234.07 115.27 176.70 258.83 343.96 136.51 104.38 371.35 94.92 Video6 71.96 108.42 153.86 313.99 88.15 78.41 100.59 84.03 90.48 88.32 Video7 112.52 170.91 153.20 266.55 295.71 118.03 91.24 167.81 110.06 151.73 Video8 146.64 157.94 84.10 113.21 127.44 152.58 123.06 166.07 177.78 123.03 Video9 88.37 112.89 126.86 915.70 205.54 618.17 341.45 186.01 881.52 218.84 Video10 196.11 206.55 178.12 259.10 290.87 313.76 77.04 156.12 302.11 106.05 (overlap ratio).. (9). 9.. 1.0, 0.0. 0.5,,., 0.8., 0.5.. FOV..,. 2. Table 2. Average of overlap ratio ASLA CSK CT DFT IVT L1APG LOT MTT SCM CNN- SOM Video1 0.1818 0.3728 0.4087 0.1062 0.0821 0.0682 0.4962 0.0730 0.1818 0.4183 Video2 0.3842 0.1834 0.3356 0.2207 0.1095 0.0584 0.3490 0.4048 0.2792 0.4214 Video3 0.4617 0.0967 0.0480 0.2887 0.0922 0.2564 0.2979 0.2773 0.3796 0.4235 Video4 0.4259 0.3982 0.2679 0.3329 0.1332 0.0642 0.1952 0.4464 0.0399 0.3616 Video5 0.5244 0.3732 0.5314 0.4703 0.3635 0.3834 0.5151 0.5591 0.3097 0.5963 Video6 0.6883 0.5716 0.4439 0.2526 0.6666 0.6715 0.5873 0.6402 0.6682 0.6261 Video7 0.4149 0.2913 0.3732 0.1511 0.0740 0.4116 0.4433 0.3204 0.4249 0.3248 Video8 0.4381 0.3989 0.5610 0.4604 0.3758 0.3928 0.3963 0.3874 0.3894 0.4492 Video9 0.5358 0.4799 0.4282 0.0039 0.1935 0.0163 0.2341 0.2653 0.0087 0.2452 Video10 0.2865 0.2699 0.3313 0.1759 0.1364 0.0572 0.5427 0.4164 0.0889 0.5369

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors) 9. 9 Fig. 9. Overlap ratio of the 9 trackers over 10 test sequence...,. 2....

(JBE Vol. 23, No. 5, September 2018), CNN. CNN SOM. SOM.,., 10 3, 1, 1, 4, 1, 5, 5, 3, 5, 2, 3. 2, 1, 2, 4, 1, 6, 6, 3, 5, 2, 2.. (References) [1] P. Liu, S. Nguang, and A. Partridge, Occupancy inference using pyro-electric infrared sensors through hidden markov model, IEEE Sensors Journal, 16(4), Feb, 2016. [2] F. Wahl, M. Milenkovic, and O. Amft, A distributed PIR-based approach for estimating people count in office environments, IEEE Conf. on Computational Science and Engineering, 2012. [3] Y. Benezeth, H. Laurent, B. Emile, and C. Rosenberger, Towards a sensor for detecting human presence and characterizing activity, Energy and Buildings, 43, 2011. [4] J. Han, and B. Bhanu, Fusion of color and infrared video for moving human detection, Pattern Recognition, 40, 2007. [5] S. Nakashima, Y. Kltazono, L. Zhang, and S. Serikawa, Development of privacy-preserving sensor for person detection, Proceedia-Social and Behavioral Sciences, 2(1)n, 2010. [6] I. Amin, A. Taylor, F. Junejo, A. Al-Habaibeh, and R. Parkin, Automated people-counting by using low-resolution infrared and visual cameras, Measurement, 41, 2008. [7] J. Gil, and M. Kim, Real-time People Occupancy Detection by Camera Vision Sensor, Journal of Broadcast Engineering, 22(6), pp. 774-784, 2017. [8] H. Li, Y. Li, and F. Porikli, DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking, IEEE Trans. on Image Processing, Vol. 25, No. 4, pp. 1834-1848, April 2016. [9] K. Zhang, Q. Liu, and M. Yang, Robust Visual Tracking via Convolutional Networks Without Training, IEEE Trans. on Image Processing, Vol. 25, No. 4, pp. 1779-1792, April 2016. [10] X. Zhou, L. Xie, P. Zhang, and Y. Zhang, An Ensemble of Deep Neural Networks for Object Tracking, IEEE Conf. on Image Processing, pp. 843-847, 2014. [11] T. Kohonen, Self-organized formation of topologically correct feature maps, Biological cybernetics, 43(1), pp. 59-69, 1982. [12] X. Jia, H. Lu and M. H. Yang, Visual Tracking via Adaptive Structural Local Sparse Appearance Model, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1822-1829, 2012. [13] J. F. Henriques, R. Caseiro, P. Martin and J. Batista, Exploiting the Circulant Structure of Tracking-by-Detection with Kernels, European Conf. on Computer Vision, pp. 702-715, 2012. [14] K. Zhang, L. Zhang and M. H. Yang, Real-time Compressive Tracking, European Conf. on Computer Vision, pp. 864-877, 2012. [15] L. Sevilla-Lara and E. Learned-Miller, Distribution Fields for Tracking, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1910-1917, 2012. [16] D. A. Ross, J. Lim, R. S. Lin and M. H. Yang, Incremental Learning for Robust Visual Tracking, International Journal of Computer Vision, Vol. 77, Issue 1-3, pp. 125-141, 2008. [17] C. Bao, Y. Wu, H. Ling and H. Ji, Real Time Robust L1 Tracking Using Accelerated Proximal Gradient Approach, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1830-1837, 2012. [18] S. Oron, A. Bar-Hillel, D. Levi and S. Avidan, Locally Orderless Tracking, International Journal of Computer Vision, Vol. 111, No. 2, pp. 213-228, 2015. [19] T. Zhang, B. Ghanem, S. Liu and N. Ahuja, Robust Visual Tracking via Multi-task Sparse Learning, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2042-2049, 2012. [20] W. Zhong, H. Lu and MH. Yang, Robust Object Tracking via Sparsity-based Collaborative Model, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 1838-1845, 2012.

1: (Jong In Gil et al.: Online Human Tracking Based on Convolutional Neural Network and Self Organizing Map for Occupancy Sensors) - 2010 8 : - 2012 8 : - 2012 9 ~ : IT - :,,, - 1983 : - 1986 : University of Washington, Seattle - 1992 : University of Washington, Seattle - 1992 ~ 1998 : - 1998 ~ : - 2016 ~ : - ORCID : http://orcid.org/0000-0002-4702-8276 - : 3D,,