(JBE Vol. 22, No. 5, September 217) (Regular Paper) 22 5, 217 9 (JBE Vol. 22, No. 5, September 217) https://doi.org/1.599/jbe.217.22.5.618 ISSN 2287-9137 (Online) ISSN 1226-7953 (Print) DASH a), a), a) A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement Hyun-Jun Kim a), Ye-Seul Son a), and Joon-Tae Kim a) DASH (FDASH). (FLC : Fuzzy Logic Controller), (SBFM : Segment Bit-rate Filtering Module)., (Start Mechanism) (Sleeping Mechanism). FDASH NS-3., FDASH /. (Pointto-Point) Wi-Fi 5%. Abstract In this paper, we propose a modification of fuzzy logic based DASH adaptation algorithm(fdash) for seamless media service in time-varying network conditions. The proposed algorithm selects more appropriate bit-rate for the next segment by the modification of the Fuzzy Logic Controller(FLC) and reduces the number of video bit-rate changes by applying Segment Bit-rate Filtering Module(SBFM). Also, we apply the Start Mechanism for clients not to watch the low quality videos in the very beginning stage of streaming service and add the Sleeping Mechanism to avoid any buffer overflow expected. Ultimately, we verified by using NS-3 Network Simulator that the proposed method shows better performance compared to FDASH. According to the experimental results, there is no buffer underflow/overflow within the limited buffer size, which is not guaranteed in FDASH on the other hand. Also, we confirmed that mfdash has almost the same level of average video quality against FDASH and reduces about 5% of number of video bit-rate changes compared to FDASH in Point-to-Point network and Wi-Fi network. Keyword : DASH, Fuzzy Logic, Segment Bit-rate Filtering Module(SBFM), Adaptive streaming Copyright 217 Korean Institute of Broadcast and Media Engineers. All rights reserved. This is an Open-Access article distributed under the terms of the Creative Commons BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/3.) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and not altered.
2: DASH (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement). DASH [1][2][3] HTTP/TCP RTP/UDP, HTTP. DASH HTTP, DASH HTTP. DASH [4][5], (QoE). [6] mdash Markov Theory [7][8]. [6] DASH,, QoE. [9] Scalable Video Coding(SVC) [1],, QoE. Agile and Smooth Video Adaptation Algorithm (SVAA) [11],, a) (Department of Electronic Engineering, Konkuk University) Corresponding Author : (Joon-Tae Kim) E-mail: jtkim@konkuk.ac.kr Tel: +82-31-67-6734 ORCID: http://orcid.org/-1-6953-5482. [R11-16-189, ] 217 () (No. R11-16-189, ) Manuscript received June 26, 217; Revised August 25, 217; Accepted August 25, 217. History-Based TCP Throughput Estimation(HBTTE) [12]. [13][14] FDASH [15]. 1 FDASH. DASH Playback, FLC. FLC, FS (FDASH Scheme) FLC, FLC,. HTTP Request DASH. FDASH,. QoE, / [16][17]. FDASH DASH QoE. FDASH. (mfdash) FLC [18][19], FLC SBFM. mfdash FDASH FHBTTE (smoothness) SBFM.,,. NS-3(Network Simulator) [2]
(JBE Vol. 22, No. 5, September 217) 1. FDASH Fig. 1. Architecture of FDASH Algorithm 2. mfdash Fig. 2. Architecture of mfdash Algorithm FDASH. 5% Wi-Fi 53.1%.. FLC, mfdash.,.. mfdash 2. DASH Playback, FLC. FLC, SBFM, FLC., SBFM.,. mfdash FLC. FLC 3 (Fuzzification), (Knowledge Base), (Decision-Making Logic), (De-Fuzzification).
2: DASH (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement) 3. FLC Fig. 3. Fundamental Architecture of FLC 1) (Crisp Input) FLC, (Fuzzy Input). 2) (Data Base), (Rule Base). FLC. (fuzzy rules) IF- THEN,. 3). 4), (Crisp Output). 5. i) (The centroid), ) (The bisector), ) (The middle of maximum), ) (The largest of maximum), ) (The smallest of maximum) [21]. mfdash FLC, FDASH FLC. mfdash FLC,,., /., 2, mfdash 2. 4,. 4,. k,. 3 [Short(S), Close(C), Long(L)], Short, Close, Long. mfdash FDASH.
(JBE Vol. 22, No. 5, September 217) 1. FDASH FLC mfdash FLC Table 1. Difference Between FDASH FLC and mfdash FLC (Input Variable), (Output Variable) (Input Membership Function) (Output Membership Function) (Fuzzy Rule) (Reason of Modification) FDASH FLC,. (We use the same input variables and the same output variable of FLC of FDASH.). (We let the segment bit-rate switched at the appropriate buffer status by the modification of the ranges of input membership functions.) 5 3., ( ). (We reduce the number of output linguistic variables from 5 to 3 to prevent unnecessary bit-rate switching. Also, we modified the ranges of the output membership functions to obtain optimal output variable( ).),. (The Fuzzy Rules are also modified as the output linguistic variables and output membership functions are modified.) 1), FDASH Short 1.. mfdash. 2), Long 1. 4, k k-1,.,,,. 3 [Falling(F), Steady(S), Rising(R)]. Falling, Steady, Rising.. (De-Fuzzification Method) FDASH The Centroid. (We use the The Centroid method which is also used in FDASH.) 1), () (c) 4. Fig. 4. Membership Functions of Inputs and Output
2: DASH (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement). Falling 1. 2), Rising 1. [Reduce(R), No change(nc), Increase(I)]. 4(c) N, Z, P R, NC, I. N N[,1], Z 1. P P [1, ].. Fuzzy Rules 1: if short and falling then R : = min(s,f) 2: if close and falling then R : = min(c,f) 3: if short and steady then R : = min(s,s) 4: if long and falling then NC : = min(l,f) 5: if close and steady then NC : = min(c,s) 6: if short and rising then NC : = min(s,r) 7: if long and steady then I : = min(l,s) 8: if close and rising then I : = min(c,r) 9: if long and rising then I : = min(l,r) mfdash FLC FDASH FLC, FLC 1.. mfdash 2 FLC (HBTTE), SBFM,,. 1. FDASH ( ) FLC ( ). FHBTTE (level shift) (outlier). mfdash, HBTTE. R, NC, I (1), (2), (3), The Centroid (4). 5. Fig. 5. Comparison of Throughput Estimation
(JBE Vol. 22, No. 5, September 217) 5 Wi-Fi FHBTTE HBTTE. FHBTTE ~7 TCP. HBTTE, HBTTE,. 2. (Segment Bit-rate Filtering Module) FLC.,,. (Oscillation). mfdash SBFM,. 1 SBFM. ( ),, min 2 (threshold). FLC HBTTE.,..,,,..,,. 1 Segment Bit-Rate Filtering Module 1: = ; 2: 3: if then 4: if and then 5: 6: end if 7: else if then 8: if and then 9: if then 1: 11: 12: end if 13: end if 14: if and min and 15: then 16: 17: else if and min and 18: then 19: 2: end if 21: end if,. false, min false true., min true. min. false.
2: DASH (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement) 3. DASH SBFM DASH. mfdash. 2 1: = ; 2: if then 3: if then 4: 5: else 6: 7: end if 8: end if 2..,,.. 4.. DASH. mfdash. DASH DASH, (long-term) (short term). Wi-Fi DASH, 5 (Background traffic), 6 Wi-Fi.,, ( ),, [22].,,,, QoE [23][24]., mfdash FDASH,.,,. () 2, 3, () 2., m in 1, 7, SBFM.8, 1.5, 3. DASH 2, 45Kbps, 89Kbps, 131Kbps, 178 Kbps, 221Kbps, 263Kbps, 334Kbps, 396Kbps, 522Kbps, 595Kbps, 791Kbps, 1.33Mbps, 1.245Mbps, 1.547Mbps, 2.134Mbps, 2.484Mbps, 3.79Mbps, 3.527Mbps, 3.84 Mbps, 4.22Mbps.. NS-3 Wi-Fi 1. 6
626 방송공학회논문지 제22권 제5호, 217년 9월 (JBE Vol. 22, No. 5, September 217) 그림 6. 장기 대역폭 변화 점대점 네트워크 환경 시뮬레이션 결과 Fig. 6. Simulation result in long-term bandwidth variation Point-to-Point network 표 2. 장기 대역폭 변화 점대점 네트워크 환경 성능 지표 Table 2. Performance index in long-term bandwidth variation Point-to-Point network 적응적 스트리밍 기법 평균 평균 비트율 변화 횟수 재생 끊김 횟수 Adaptive Streaming Algorithm Average Segment Bit-rate Average number of Bit-rate Changes Number of Interruptions FDASH 1.721Mbps 24 mfdash 1.78Mbps 11 타낸다. 그림 6는 mfdash와 FDASH의 과 점대점 링크의 용량을 나타내며 링크 용량은 1초 간격으로 1Mbps, 2.5Mbps, 1Mbps, 3Mbps, 험 결과를 나 1.5Mbps이다. 그림 6는 mfdash와 FDASH의 를 타낸다. FDASH의 경우 가 5초 근처까지 올라가 나 기 때문에 버퍼 오버플로우의 위험이 있지만, mfdash의 즈 경우에는 가 (버퍼 사이 )보다 높이 올라가지 않기 때문에 버퍼 오버플로우가 발생할 위험이 없다는 것 을 확인 할 수 있다. 표 2에는 장기 변화 점대점 환경에서의 평균 세그먼트 타 비트율, 변화 횟수, 재생 끊김 횟수가 나 나있다. mfdash가 FDASH에 비해 평균 낮지만, 비트율 변화 횟수면 에서는 54%정도 좋은 성능을 내는 것을 확인 할 수 있다. 재생 끊김 횟수는 이.7%정도 두 스트리밍 기법 모두 번으로 좋은 성능을 보인다. 2. 주기적 단기 변화 점대점 네트워크 환경 주기적 단기 대역폭 변화 점대점 네트워크 환경에서의 그림 7. 주기적 단기 대역폭 변화 점대점 네트워크 환경 시뮬레이션 결과 Fig. 7. Periodic short-term bandwidth variation Point-to-Point network
김현준 외 2인: 성능 향상을 위한 퍼지 논리 기반 DASH 알고리즘의 수정 (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement) 627 표 3. 주기적 단기 대역폭 변화 점대점 네트워크 환경 성능 지표 Table 3. Performance index in periodic short-term bandwidth variation Point-to-Point network 적응적 스트리밍 기법 시 평균 평균 비트율 변화 횟수 재생 끊김 횟수 Adaptive Streaming Algorithm Average Segment Bit-rate Average number of Bit-rate Changes Number of Interruptions FDASH 1.116Mbps 15 mfdash 1.17Mbps 11 뮬레이션 결과는 그림 7에 나타나있다. 그림 7는 mfdash와 FDASH의 과 점대점 링크의 용 량을 나타내며, 링크 용량은 초~19초까지는 1Mbps이고, 이 후에는 1초 주기로 1Mbps와 2Mbps사이에서 흔들린다. 그림 7는 mfdash와 FDASH의 를 나타내며, 이를 통해 서 FDASH의 가 3초를 초과하여 35초 이상까지 버퍼 를 사용하지만 mfdash의 는 3초를 초과하면 대기 메 므 커니즘의 동작으로 대기상태에 들어가 로 버퍼를 많이 사용하 했 지 않는 것을 확인 할 수 있고, 이는 mfdash를 사용 을 때 버퍼 오버플로우가 발생할 가능성이 더 낮음을 의미한다. 그림 8. 일반 Wi-Fi 네트워크 환경 첫 번째 시뮬레이션 결과 표 3은 주기적 단기 변화 점대점 네트워크 환경에서의 평균, 변화 횟수, 그리고 재생 끊김 횟수가 정리되어 있다. mfdash가 FDASH에 낮지만, 비트율 변 화 횟수는 mfdash가 26.7% 더 낮게 가져가면서 좋은 성 능을 내는 것을 확인 할 수 있다. 비해 평균 은 1.6%정도 3. Wi-Fi 네트워크 환경 일반 Wi-Fi 네트워크 환경에서의 모의실험 결과는 그림 Fig. 8. First simulation result in Wi-Fi network 그림 9. 일반 Wi-Fi 네트워크 환경 두 번째 시뮬레이션 결과 Fig. 9. Second simulation result in Wi-Fi network
628 방송공학회논문지 제22권 제5호, 217년 9월 (JBE Vol. 22, No. 5, September 217) 타 타 8~그림 13에 나 나있고, 성능지표는 표 4에 나 나있다. 백그라운드 트래픽의 주기성 을 달리하여 총 6번의 시뮬레이션을 진행 하였다. Wi-Fi 네트워크 환경에서는 그림 1. 일반 Wi-Fi 네트워크 환경 세 번째 시뮬레이션 결과 그림 8~그림 13의 를 보면 FDASH의 경우 버퍼에 5 데이터가 쌓이는 것을 확인 할 수 있다. 반대 로, mfdash의 경우 이상 올라가지 않는 안정적인 초 정도까지 Fig. 1. Third simulation result in Wi-Fi network 그림 11. 일반 Wi-Fi 네트워크 환경 네 번째 시뮬레이션 결과 Fig. 11. Fourth simulation result in Wi-Fi network 그림 12. 일반 Wi-Fi 네트워크 환경 다섯 번째 시뮬레이션 결과 Fig. 12. Fifth simulation result in Wi-Fi network
김현준 외 2인: 성능 향상을 위한 퍼지 논리 기반 DASH 알고리즘의 수정 (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement) 그림 13. 일반 Wi-Fi 네트워크 환경 여섯 번째 시뮬레이션 결과 629 Fig. 13. Sixth simulation result in Wi-Fi network 습 즉, mfdash가 오버플로우 문제에 관하여 더 안정적인 모습을 보여준다. 또한, 그림 9과 그림 13의 확인 할 수 있다. 을 보면, FDASH의 경우 가 이 되는 버퍼 언더플 으로 2.153Mbps 을 가지고, FDASH는 로우 현상이 발생하는 것을 확인 할 수 있다. 표 4를 통해 2.127Mbps의 을 가진다. 모 을 보인다. FDASH가 버퍼 언더플로우에 의해 재생 끊김 현상이 총 뮬레이션에서 평균적 표 4를 보면, mfdash는 6번의 시 즉, mfdash가 약 1.2%정도 높은 평균 을 가진다. 또한, 76번이 발생하고, 그에 반해 mfdash는 버퍼 언더플로우 평균 비트율 변화 횟수는 mfdash가 18.5번, FDASH가 가 발생하지 않아 재생 끊김 현상이 일어나지 않는 것을 32번으로 mfdash가 42%정도 좋은 성능을 보이는 것을 확인 할 수 있다. 확인 할 수 있다. 즉, 버퍼 오버플로우/언더플로우 관점에서 도 mfdash가 FDASH에 비해 좋은 QoE을 제공하는 것을 표 4. Wi-Fi 환경 성능 지표 Table 4. Performance index in Wi-Fi network 적응적 스트리밍 기법 평균 Adaptive Streaming Algorithm FDASH mfdash Average Segment Bit-rate 회 회 3회 4회 5회 6회 평균 1회 2회 3회 4회 5회 6회 평균 1 2.27261Mbps 2 2.38311Mbps 1.8499Mbps 2.2917Mbps 2.2937Mbps 1.94372Mbps 2.127Mbps 2.21Mbps 2.19932Mbps 2.16935Mbps 2.19115Mbps 2.2663Mbps 2.13292Mbps 2.153Mbps 평균 비트율 변화 횟수 Average Number of Bit-rate Changes 회 회 3회 4회 5회 6회 평균 1회 2회 3회 4회 5회 6회 평균 1 36 2 26 32 25 26 29 32 19 19 15 22 16 2 18.5 재생 끊김 횟수 Number of Interruptions 회 회 3회 4회 5회 6회 합계 1회 2회 3회 4회 5회 6회 합계 1 2 25 51 76
(JBE Vol. 22, No. 5, September 217). DASH FDASH. FDASH FLC, SBFM, HBTTE,,. 4 ( min ). NS-3 FDASH mfdash, mfdash. DASH, FDASH QoE., DASH DASH, DASH QoE DASH. (References) [1] I. Sodagar, "The mpeg-dash standard for multimedia streaming over the internet." IEEE MultiMedia Vol.18, No.4, pp.62-67, April 211. [2] T. Stockhammer, "Dynamic adaptive streaming over HTTP--: standards and design principles," Proceedings of the second annual ACM conference on Multimedia systems, San Jose, CA, USA, pp.133-144, 211. [3] M. Park, and Y. Kim, "MMT-based Broadcasting Services Combined with MPEG-DASH," Journal of Broadcast Engineering, Vol.2, No.6, pp.283-299, March 215. [4] G. Park, G. Lee, J. Lee, and K. Kim, "HTTP Adaptive Streaming Method for Service-compatible 3D Contents Based on MPEG DASH," Journal of Broadcast Engineering, Vol.17, No.2, pp.27-222, March 212. [5] Y. Kim, and M. Park, "MPEG-DASH Services for 3D Contents Based on DMB AF," Journal of Broadcast Engineering, Vol.18, No.1, pp.115-121, January 213. [6] C. Zhou, Lin, C. W., and Guo, Z., "mdash: A markov decision-based rate adaptation approach for dynamic HTTP streaming." IEEE Transactions on Multimedia, Vol.18, No.4, pp.738-751, January 216. [7] D. L. Isaacson, and W. M. Richard, Markov chains, theory and applications. Vol. 4. New York: Wiley, 1976. [8] R. M. Blumenthal, and R. K. Getoor, Markov processes and potential theory. Courier Corporation, 27. [9] M. Zhao, X. Gong, J. Liang, W. Wang, X. Que, and S. Cheng, "Scheduling and resource allocation for wireless dynamic adaptive streaming of scalable videos over HTTP." Communications (ICC), Sydney, NSW, Australia, pp. 1681-1686, 214. [1] H. Schwarz, D. Marpe, and T. Wiegand. "Overview of the scalable video coding extension of the H. 264/AVC standard." IEEE Transactions on circuits and systems for video technology Vol.17, No.9, pp.113-112, September 27. [11] G. Tian, and Y Liu. "Towards agile and smooth video adaptation in dynamic HTTP streaming." Proceedings of the 8th international conference on Emerging networking experiments and technologies, Nice, France, pp.19-12, 212. [12] Q. He, C. Dovrolis, and M. Ammar. "On the predictability of large transfer TCP throughput." ACM SIGCOMM Computer Communication Review, Vol. 35, No. 4, ACM, October 25. [13] G. Klir, and B. Yuan. Fuzzy sets and fuzzy logic, New Jersey: Prentice hall, 1995. [14] L. A. Zadeh, "Fuzzy logic." Computer Vol.21, No.4, pp.83-83, April 1988. [15] D. J. Vergados, et al, "FDASH: A Fuzzy-Based MPEG/DASH Adaptation Algorithm." IEEE Systems Journal Vol.1, No.2, pp.859-868, December 215. [16] R. KP. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang, "QDASH: a QoE-aware DASH system." Proceedings of the 3rd Multimedia Systems Conference, New York, NY, USA, pp.11-22, 212. [17] SG12, I. T. U. T. "Definition of quality of experience." TD 19rev2 (PLEN/12), Geneva, Switzerland, pp.16-26, 27. [18] H. R. Berenji, "Fuzzy logic controllers." An Introduction to Fuzzy Logic Applications in Intelligent Systems. Springer US, pp. 69-96, 1992. [19] C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller. I." IEEE Transactions on systems, man, and cybernetics, Vol.2, No.2, pp.44-418, March/April, 199. [2] The network simulator - ns-3, http://www.nsnam.org/ (accessed May. 25, 217). [21] Z. Bingül, and O. Karahan, "A Fuzzy Logic Controller tuned with PSO for 2 DOF robot trajectory control," Expert Systems with Applications, Vol.38, No.1, pp.117-131, January 211. [22] M. Seufert, S. Egger, M. Slanina, and T. Zinner, "A survey on quality of experience of HTTP adaptive streaming," IEEE Communications Surveys & Tutorials, Vol.17, No.1, pp.469-492, March 215. [23] K. Xiao, S. Mao, and J. K. Tugnait, "QoE-Driven Resource Allocation for DASH over OFDMA Networks," Proceedings of Global Communications Conference (GLOBECOM), Washington, DC, USA, pp.1-6, 216. [24] S. Egger, B. Gardlo, M. Seufert, and R. Schatz, "The impact of adaptation strategies on perceived quality of http adaptive streaming," Proceedings of the 214 Workshop on Design, Quality and Deployment of Adaptive Video Streaming. Sydney, Australia, pp-31-36, 214.
2: DASH (Hyun-Jun Kim et al.: A Modification of The Fuzzy Logic Based DASH Adaptation Algorithm for Performance Improvement) - 217 : - 217 ~ : - ORCID : http://orcid.org/-1-5457-8957 - :,, - 217 : - 217 ~ : - ORCID : http://orcid.org/-1-848-9966 - :, - 199 : - 1993 : - 1998 : - 1998 ~ 23 : LG DTV - 23 ~ : - ORCID : http://orcid.org/-1-6953-5482 - : & TV,