J Dent Hyg Sci Vol. 14, No. 1, 2014, pp.15-21 RESEARCH ARTICLE 인상스캐닝방법에의해제작된디지털치과모형의체적안정성평가 김재홍ㆍ김기백 고려대학교일반대학원보건과학과치의기공전공 Evaluation of Dimensional Stability of Digital Dental Model Fabricated by Impression Scanning Method Jae-Hong Kim and Ki-Baek Kim Department of Health Science Specialized in Dental Laboratory Science and Engineering, Graduate School, Korea University, Seoul 136-703, Korea The purpose of this study in vitro investigation was to evaluate the dimensional stability of dental digital models made by impression scanning method. Twenty working models were produced. Twenty impressions were made from study models. The dimensional stability of models of two groups (stone and digital models) was examined using six landmark distances. Stone models were measured through digital vernier calipers. Digital models were measured by the computer program. Statistical analyses were performed with Wilcoxon rank sum test (α=0.05). The mean of six landmark distances were significantly larger in the stone models than in the digital models (p<0.05) but digital models showed clinically acceptable accuracy. Key Words: Computer-aided design, Dental models, Dimensional stability 서론 성공적인치과보철치료를위해서는환자의구강내정확한정보를얻는것이무엇보다중요하다. 때문에치료를위하여첫번째로시작되는과정인환자구강의인상채득작업과모형을제작하는작업은매우중요한단계라할수있다. 인상채득작업은구강내환경이복제된모형의정밀도를좌우하는근본이되며, 모형의구강내재현정도는최종치료의성패와수복물의수명을좌우하게된다 1-3). 환자의구강이복제된모형을분석하여봄으로써교합상태를점검하고, 진단을내리고, 치료계획을세울수있으며, 종합적으로평가할수있다 4). 전통적으로환자의구강이복제된모형의제작은인상재를이용하여환자의구강을인상채득한후음형의공간에모형재를붓는방식으로제작된다. 대표적인모형재로는주로치과용석고가사용되고있다. 이러한석고모형의제작방법은지난수십년간사용되어왔으며, 아직까지널리이용되고있다. 치과용석고는사용이간편하고, 모형제작방법이비교적편리하며, 정밀도가높은반면모형이파절및변형되기쉬우며, 분실의위험성이높고, 별도의저장공간이필요한단점이있다 5-7). 최근컴퓨터과학이발달함에따라치의학에도영향을미치고있는데, 특히치과보철물의표준화된제작과정이소개되면서제작과정의질도함께향상되고있다. 치과용캐 Received: January 22, 2014, Revised: February 10, 2014, Accepted: February 10, 2014 ISSN 1598-4478 (Print) / ISSN 2233-7679 (Online) Correspondence to: Ki-Baek Kim Department of Health Science Specialized in Dental Laboratory Science and Engineering, Graduate School, Korea University, 161, Jeongneung-ro, Seongbuk-gu, Seoul 136-703, Korea Tel: +82-2-940-2762, Fax: +82-2-909-3502, E-mail: kimkb404@naver.com Copyright 2014 by the Korean Society of Dental Hygiene Science This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
J Dent Hyg Sci Vol. 14, No. 1, 2014 드캠 (computer aided design-computer aided manufacturing, CAD-CAM) 기술은컴퓨터의도움을받아보철물을설계하고, 제작하는기술로서기존의모형재료를이용한모형을대상으로보철물을제작하지않고, 디지털모형에보철물을설계하게된다. 디지털모형은앞서설명한기존의석고모형의단점들을보완하여준다. 디지털모형으로변환된환자의구강정보는저장이간편하며, 컴퓨터를이용하여저장되므로얼마든지저장이가능하다 8-10). 또한시간이오래지나도변형의위험이없으며, 모니터를이용하여자유자재로가상의조종이가능하다. 예를들면모형단면의관찰이가능하며, 모형의확대및축소가자유롭기때문에세밀한환자의구강을관찰할수있는등의장점이있을뿐만아니라필요시쾌속조형기술 (rapid prototyping) 을이용하여손쉬운모형제작이가능하다 8-10). 치과용 CAD-CAM 기술을이용한디지털모형제작방법은크게직접법과간접법으로구분된다. 직접법은치료실에서구강내디지털인상법 (intra-oral scanner) 에의해환자의구강내정보를얻어디지털모형을완성하는반면간접법은기공실에서제작이되는데, 이는다시두가지방법으로구분된다. 첫번째는치과용스캐너 (dental scanner) 로환자의인상체를스캐닝하여디지털모형을제작하는방법이고, 두번째는채득된환자의인상체에석고등을부어모형을제작한뒤치과용스캐너로모형을스캐닝하여디지털모형을제작하는방법이다 11). American Dental Association (ADA) 에서규정한내용 (ADA No. 25) 에의하면치과용모형재를이용한모형제작중 0.2% 의팽창이발생할수있으며, 이는모형의체적안정성에상당한영향을줄수있다고보고되었다 12). 몇몇선행연구에서는모든모형재는경화반응시수축또는팽창을동반하므로환자의구강을완벽히재현해내기에는무리가있다고보고하였다 13,14). 때문에가급적환자의인상체를이용하여디지털모형을제작하는것이정밀한디지털모형의제작에도움이된다고생각된다. 그러나현재인상체를이용하여제작된디지털모형의체적안정성평가에관한연구는전무한실정이다. 그리하여본연구에서는연구모형들을대상으로인상을채득하고채득된인상체들을치과용스캐너를이용하여디지털모형들을제작하고자한다. 제작완료된디지털모형들과연구모형들을대상으로대표지점을선정하고, 측정한뒤비교평가하여봄으로써인상체를스캐닝하여제작된디지털모형의체적안정성을평가하고자한다. Fig. 1. Study model. 연구대상및방법 1. 연구대상 1) 연구모형제작본연구를위하여지대치혹은결손치가없는상태의상악모형을본모형 (500B-1; Nissin Dental Product, Kyoto, Japan) 을연구대상으로선정하였다. 본모형을대상으로연구모형을제작하기위하여치과용실리콘 (Deguform; Degu- Dent GmbH, Hanau, Hessen, Germany) 을이용하여총 20 개의음형상태의실리콘몰드를제작하였다. 제작이완료된몰드안에치과용석고 (Everest Rock; KaVo Dental GmbH, Biberach/Riβ, Baden-Württemberg, Germany) 를제조사권장혼수비에따라혼합후붓는방식으로 Fig. 1과같은연구모형총 20개제작을완료하였다. 2) 인상채득작업완성된 20개의연구모형을대상으로치과용인상재를이용하여인상을채득하였다. 인상채득방법은 one-step법에서 double mix technique을이용하였다. 정밀한인상채득을위하여치아와치아부위에연질실리콘 (Aquasil Ultra XLV; Densply DeTrey GmbH, Konstanz, Baden-Württemberg, Germany) 을도포하고, 기성트레이 (D-TBW-07; Osung MND Co., Ltd., Gimpo, Korea) 에는치과용 putty 인상재를담아한번에인상을채득하였다 (Fig. 2). 16
김재홍ㆍ김기백 : 인상스캐닝방법에의해제작된디지털치과모형의체적안정성평가 Fig. 4. Digital model. Fig. 2. Impression taken with light body silicone and putty impression materials. Table 1. Landmark Definitions in This Study Landmark Definition 1 Mesio-buccal crown width of central incisor (right) 2 Mesio-buccal crown width of canine (right) 3 Mesio-buccal crown width of first premolar (right) 4 Mesio-buccal crown width of first molar (right) 5 Inter-canine distance 6 Inter-molar distance 시하는과정을통해총 20 개의디지털모형을제작하였다 (Fig. 4). Fig. 3. Non-contact dental scanner. 2. 연구방법 1) 디지털모형제작 20개의연구모형을대상으로채득된 20개의인상체를비접촉방식의치과용스캐너를이용하여 20개의디지털모형을제작하였다. 모형고정판위에트레이를고정한후스캐너제조사의권장사항에의거하여스캐닝을실시하였다 (Fig. 3). 인상체는음형이기때문에 1회의스캐닝만으로는치아의함몰부위나치아와치아사이의공간인엠브레져 (embrasure) 의재현이부족하므로추가적으로스캐닝을실 2) 대표지점선정디지털모형의체적안정성평가를위한대표지점선정은선행연구 15) 를참고하여본연구에맞게수정하였다. 본연구에서는대표치아치관의근원심경과함께견치간폭경, 구치간폭경을선정한뒤측정하였다. 대표치아로는절치의대표인중절치와견치, 소구치의대표인제1소구치, 대구치의대표인제1대구치를대표치아로선정하였으며, 모두우측치아를대상으로측정하였다. 견치간폭경은좌우측견치의첨두를연결한직선거리를의미하며, 구치간폭경은좌우측제1대구치의근심설측교두정을연결한직선거리를의미한다 (Table 1). 3) 대표지점측정석고모형의 6개의대표지점측정은소수점둘째자리까지 mm단위로측정이가능한디지털밀림자 (CD-20PSX; Mitutoyo Corp., Kawasaki, Japan) 를이용하였다. 밀림자를이용한측정시석고모형의흔들림방지를위하여고정 17
J Dent Hyg Sci Vol. 14, No. 1, 2014 Table 2. Distances of Stone and Digital Models at 6 Landmark Distances Landmark Distances (mm) Stone model Digital model p-value Central incisor a 08.52±0.03 08.28±0.10 0.006 Canine a 07.61±0.06 07.46±0.06 0.004 First premolar a 07.11±0.04 06.88±0.07 0.001 First molar a 10.36±0.22 10.08±0.09 0.029 Inter-canine distance 35.90±0.28 35.60±0.14 0.008 Inter-molar distance 42.17±0.27 41.87±0.10 0.046 Values are presented as mean±standard deviation. a Mesio-buccal crown width of tooth. Fig. 5. Measurements of stone models using digital vernier calipers. 4) 통계분석두집단총 40개의시편에서측정된 6개의대표지점거리의평균과표준편차를제시한뒤제시된두집단의평균간에는유의한차이가있는지알아보기위하여비모수검정인윌콕슨순위합검정법 (Wilcoxon rank sum test) 을수행하였다. 제1종오류수준은 0.05로설정하였고, 모든통계분석은 IBM SPSS Statistics 20.0 (IBM Co., Armonk, NY, USA) 프로그램을이용하였다. 결과 Fig. 6. Measurements of digital models using computer program. 판을이용하여고정하였다. 고정한후측정하기전에앞에서설명한 6개의대표지점을 0.3 mm의날카로운샤프심으로표시하였다. 표시된부분을근거로디지털밀림자로대표지점들을직선거리로측정하였다 (Fig. 5). 각부위별로 1 인의측정자가 2회측정하였으며, 2회측정치의평균을해당부위의값으로지정하였다. 디지털모형의측정은컴퓨터프로그램을이용하였다. 측정전문프로그램 (Delcam Copy CAD; Delcam plc, Birmingham, UK) 을이용하여 3차원디지털모형을 x, y, z축의좌표를중심으로직선적인거리를측정되었으며 (Fig. 6), 석고모형의측정과동일하게 1인의숙련된프로그램전문가가 2회측정한후 2회측정치의평균을해당부위의값으로정의하였다. 두집단 ( 석고모형, 디지털모형 ) 각각 20개씩의모형을대상으로 6개의대표지점거리를측정한평균과표준편차는 Table 2와같다. 석고모형과디지털모형의우측중절치근원심경의평균 ± 표준편차는각각 8.52±0.03 mm, 8.28± 0.10 mm였고, 견치는 7.61±0.06 mm, 7.46±0.06 mm였다. 제1소구치의근원심경의평균 ± 표준편차는각각 7.11±0.04 mm, 6.88±0.07 mm였고, 제1대구치는 10.36±0.22 mm, 10.08±0.09 mm였다. 견치간폭경의평균 ± 표준편차는석고모형이 35.90±0.28 mm, 디지털모형은 35.60±0.14 mm였고, 끝으로구치간폭경은각각 42.17±0.27 mm, 41.87± 0.10 mm였다 (Table 2). 측정된 6개의대표지점모두에서석고모형보다디지털모형이더적은수치로측정되었으며, 6부위모두통계적으로유의하였다 (p<0.05) (Table 2). 두집단간측정치의평균차이는중절치근원심경은 0.24 mm, 견치근원심경 0.15 mm, 제1소구치근원심경 0.23 mm, 제1대구치근원심경 0.28 mm, 견치간폭경과구치간폭경은 0.30 mm의차이로모두석고모형이디지털모형보다크게측정되었다. 18
김재홍ㆍ김기백 : 인상스캐닝방법에의해제작된디지털치과모형의체적안정성평가 고찰 본연구에서는구강으로부터채득된인상체를스캐닝하여제작된디지털모형의체적안정성을평가하고자하였다. 그리하여환자의구강을가정한상악모형을본모형으로채택한후본모형으로부터연구모형을치과용석고를이용하여총 20개를제작하였다. 제작된연구모형 20개를치과용기성트레이와인상재를이용하여각각의모형을대상으로인상을채득하였다. 채득된 20개의인상체를디지털모형으로변환하기위하여치과용스캐너를이용하여스캐닝을실시하였다. 제작완료된 20개의디지털모형의체적안정성을평가하기위하여 6개의대표지점을선정하였다. 디지털모형과함께디지털모형의근간인석고모형을대상으로앞서선정한 6개의대표지점을측정하였다. 그결과측정한모든부위에서디지털모형이석고모형보다적은수치로계측되었고, 통계적으로유의하였다 (p<0.05). 이러한결과들로추론하여보았을때환자의구강으로부터채득된인상체를스캐닝하여제작한디지털모형의체적은환자의구강보다작다는것을알수있었다. 이와같은이유는다양하겠으나첫번째는스캐너의정밀성이부족한것이하나의이유로생각된다. 선행연구결과를근거로유추해보았을때 Lowey 16) 는디지털모형이원본모형보다체적이작게제작되는이유중에하나로서치아와치아사이의공간인엠브레져등과같은부분까지치과용스캐너가정확히재현하지못하는것을하나의이유로제시하였다. 본연구결과또한 Lowey 16) 가주장한것과같은이유로디지털모형의체적이석고모형보다작게계측된것으로생각된다. 또한모형을스캐닝하는것과는달리인상체를스캐닝하는작업은스캐닝의정밀성이떨어진다. 그이유는음형의공간인인상체스캐닝시특히중절치와같이전방경사가심한치아의경우절단연과같이깊숙한부위를스캐닝하는데한계가있기때문인것으로생각된다. 본실험시에도전방중절치절단연부분스캐닝을위하여스캐닝이끝난뒤에도추가로스캐닝을실시하였으며, 인상체의각도에따라중절치의절단연부분이스캐닝이이루어지지않는경우도있었다. 이는추후에개선되어야할문제로생각된다. 두번째는석고모형과디지털모형의대표지점측정시측정방법의차이때문인것으로생각되는데, 석고모형은디지털밀림자로수동으로측정한반면디지털모형은컴퓨터프로그램을이용하여자동으로측정하였다. 디지털밀림자를이용한석고모형측정시수동인만큼손이떨린다거나혹은모형이흔들린다면얼마든지측정값이흔들릴수 있는단점이있다. 때문에본연구에서는측정에서의오차를줄이고자모형을고정할수있는별도의테이블로모형을고정후각측정부위별 2회측정후의평균을해당부위의측정치로정의하여측정의신뢰성을높였다. 석고모형을디지털밀림자를이용하여계측하는방법은이미모형의체적안정성을평가한많은연구에서활발히이용된방법이며, gold standard로방법으로인정되고있다 17). 디지털모형의경우컴퓨터프로그램을이용하여대표지점을직선거리로측정하였는데, 디지털모형의특성상컴퓨터모니터상으로모형을관측하는만큼교두등의돌출부위가석고모형만큼명확하지않을수있는단점이있다 18). 본연구결과에따르면인상체를스캐닝하여제작된디지털모형의체적이비록그근간인석고모형의체적보다적은것으로조사되었으나, 각계측지점의평균차이는적게는 0.18 mm에서크게는 0.30 mm까지였으며, 이는선행연구결과들을근거로하였을때임상적으로문제가되지않을것으로생각된다. Bell 등 19) 은치과용모형과 3차원이미지간직선적인계측지점을비교평가한결과두모형간에는차이가 0.27 mm라고보고하였고, Santoro 등 20) 은석고모형과디지털모형의치아폭경등을분석한결과 0.16 mm 0.49 mm의차이를보인다고보고하였다. Asquith 등 21) 은치아크기와견치간폭경, 구치간폭경을조사한결과 0.62 에서 0.19 mm까지차이를보였다고보고하였다. 이들선행연구들은이러한차이들이임상적으로영향을미치지않는다고보고하였다 19-21). 그밖에다른선행연구들에서는석고모형과디지털모형과의계측지점 ( 견치간폭경, 구치간폭경등 ) 간의차이가 0.5 mm 차이이내면임상적으로문제가되지않는다고보고하였다 22,23). 이와같은선행연구결과들과본연구결과를비교하여볼때치과용인상체를스캐닝하여디지털모형을제작하는작업은임상적으로허용이가능할것으로생각된다. 대부분의치과치료의시작은정확하게복제된환자구강모형으로부터시작된다해도과언이아니다. 최근의치의학은전반적으로진료의첨단화와디지털화가급속도로진행되고있으며 24), 이에따라치료의질또한향상되고있다. 그중심에는치과용 CAD-CAM 기술이있으며, 이기술의목표는환자구강이복제된모형을제작하지않고, 나아가서는환자의구강을인상채득하지않고도정교한보철물을제작하는것이다. 때문에디지털모형이정확하게제작되어야함은자명한사실이며, 그를위해서는디지털모형의정확성평가와관련한연구는끊임없이이루어져야한다고생각된다. 그런의미에서볼때본연구에서인상체를스캐닝하여제작한디지털모형의체적안정성을평가한점에서 19
J Dent Hyg Sci Vol. 14, No. 1, 2014 의의가있으며, 나아가서는임상적참고자료가될수있다고생각된다. 그러나단하나의증례만가지고연구한점과모든치아를상세히분석하지못한점등은본연구의한계점으로제시된다. 때문에추후에이루어질디지털모형의체적안정성등과관련한연구에서는본연구의한계점을극복하여다양한증례의구강모형을대상으로치아의크기와다양한계측지점을근거로보다상세히분석되어야할것으로생각된다. 요약 본연구에서는구강으로부터채득된인상체를스캐닝하여디지털모형을제작하였을때제작된디지털모형의체적안정성을평가하고자하였다. 그리하여환자의구강을가정한상악모형을본모형으로채택하였다. 본모형과동일한증례의연구모형을치과용석고를이용하여총 20개의석고모형을제작하였다. 제작된연구모형 20개를치과용기성트레이와두종류의치과용인상재를이용하여 20 개연구모형을대상으로 20개의인상을채득하였다. 채득된 20개의인상체를치과용스캐너로스캐닝하는방식으로디지털모형으로변환하였다. 체적안정성을평가하기위하여 6개의대표지점을선정한뒤디지털모형과함께디지털모형의근간인석고모형을계측하였다. 그결과계측된모든부위에서디지털모형이석고모형보다체적이작은것으로조사되었고, 이는통계적으로유의하였다 (p<0.05). 이러한결과들로추론하여보았을때환자의구강으로부터채득된인상체를스캐닝하여제작한디지털모형의체적은환자의구강보다작다는것을알수있었다. 그러나이차이는미비한것으로여러선행연구결과들을근거로하였을때임상적으로허용이가능한것으로생각된다. References 1. Perakis N, Belser U, Magne P: Final impression: a review of material properties and description of a current technique. Int J Periodontic Restor Dent 24: 109-117, 2004. 2. Wettstein F, Sailer I, Roos M, Hammerle C: Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 116: 272-279, 2008. 3. Persson A, Oden A, Andersson M, Sandborgh-Englund G: Digitization of simulated clinical dental impressions: virtual three dimensional analysis of exactness. Dent Mater 25: 929-936, 2009. 4. Bolton WA: Disharmony in tooth size and its relation to the analysis and treatment of malocclusion. Angle Orthod 28: 113-130, 1958. 5. McGuinness NJ, Stephens CD: Storage of orthodontic study models in hospital units in the U.K. Br J Orthod 19: 227-232, 1992. 6. Mah J, Hatcher D: Current status and future needs in craniofacial imaging. Orthod Craniofac Res 6: 10-16, 2003. 7. White AJ, Fallis DW, Vandewalle KS: Analysis of intra-arch and interarch measurements from digital models with 2 impression materials and a modeling process based on cone-beam computed tomography. Am J Orthod Dentofacial Orthop 137: 456.e1-9, 2010. 8. Redlich M, Weinstock T, Abed Y, Schneor R, Holdstein Y, Fischr A: A new system for scanning, measuring, and analyzing dental casts based on a 3D holographic sensor. Orthod Craniofac Res 11: 90-95, 2008. 9. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ: Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136: 16.e1-e4, 2009. 10. Dalstra M, Melsn B: From alginate impressions to digital virtual models: accuracy and reproducibility. J Orthod 36: 36-41, 2009. 11. Christensen GJ: The state of fixed prosthodontics impressions: room for improvement. J Am Dent Assoc 136: 343-346, 2006. 12. American Dental Association: Council on dental materals, ANSI/ADA specification No. 25 for Dental Gypsum Products. American Dental Association, Chicago, pp.640-644, 1987. 13. Millstein PL: Determining the accuracy of gypsum casts made from type Ⅳ dental stone. J Oral Rehabil 19: 239-243, 1992. 14. Custer F, Updegrove L, Ward M: Accuracy and dimensional stability of a silicone rubber base impression material. J Prothet Dent 14: 1115-1121, 1964. 15. Creed B, Chung HK, Jeryl DE, James JX, Lee A: Comparison of the accuracy of linear measurement obtained from cone beam computerized tomography images and digital models. Semin Orthod 17: 49-56, 2011. 16. Lowey MN: The development of a new method of cephalometric and study cast mensuration with a computer controlled, video image capture system. Part II: study cast mensu- 20
김재홍ㆍ김기백 : 인상스캐닝방법에의해제작된디지털치과모형의체적안정성평가 ration. Br J Orthod 20: 315-331, 1993. 17. Kim KB, Lee GT, Kim HY, Kim JH: The influence of different gypsum materials on the accuracy from complete arch digital impression. J Dent Hyg Sci 12: 617-623, 2012. 18. Bak SI: The comparison between manual and 3D-digital measurement in dental cast measurements according to the degree of crowding. Unpublished master s thesis, Korea University, Seoul, 2006. 19. Bell A, Ayoub AF, Siebr P: Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30: 219-223, 2003. 20. Santoro M, Galkin S, Teredesai M, Nicolay OF, Cangialoi TJ: Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124: 101-105, 2003. 21. Asquith J, Gillgrass T, Mossy P: Three-dimensional imaging of orthodontic models: a pilot study. Eur J Orthod 29: 517-522, 2007. 22. Quimby ML, Vig KW, Rashid RG, Firestoe AR: The accuracy and reliability of measurements made on computerbased digital models. Angle Orthod 74: 298-303, 2004. 23. Bootvong K, Liu Z, McGrath C, et al: Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 23: 589-595, 2010. 24. Kim JH, Kim KB: Influence of high temperature of the porcelain firing process on the marginal fit of zirconia core. J Dent Hyg Sci 13: 135-141, 2013. 21