ๆญฏ์ด์น ์šฐ(01-02).PDF

Similar documents
ch3.hwp

LIDAR์™€ ์˜์ƒ Data Fusion์— ์˜ํ•œ ๊ฑด๋ฌผ ์ž๋™์ถ”์ถœ

Gray level ๋ณ€ํ™˜ ๋ฐ Arithmetic ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•œ ์˜์ƒ ๊ฐœ์„ 

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

Slide 1

untitled

์„œ๋ณด๊ต์œก์ž๋ฃŒ๋ฐฐํฌ์šฉ.ppt

1. ์„œ ๋ก 

์‚ฐ์„ ์ƒ์˜ ์ง‘์ž…๋‹ˆ๋‹ค. ํ™˜์˜ํ•ด์š”

2005CG01.PDF

PowerPoint ํ”„๋ ˆ์  ํ…Œ์ด์…˜

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

19_9_767.hwp

ํ™•๋ฅ ๊ณผํ†ต๊ณ„ ๊ฐ•์˜์ž๋ฃŒ-1.hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

ๆญฏDCS.PDF

แ„€แ…ตแ†ทแ„€แ…ตแ„‚แ…กแ†ท_ATDC2016_160620_[แ„แ…ตแ„‚แ…ฉแ„แ…ณ].key

2 : 3 (Myeongah Cho et al.: Three-Dimensional Rotation Angle Preprocessing and Weighted Blending for Fast Panoramic Image Method) (Special Paper) 23 2

2011๋…„ 10์›” ์ดˆํŒ c 2011 Sony Corporation. All rights reserved. ์„œ๋ฉด ํ—ˆ๊ฐ€ ์—†์ด ์ „์ฒด ๋˜๋Š” ์ผ๋ถ€๋ฅผ ๋ณต์ œํ•˜๋Š” ๊ฒƒ์„ ๊ธˆํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋Šฅ ๋ฐ ๊ทœ๊ฒฉ์€ ํ†ต๋ณด ์—†์ด ๋ณ€๊ฒฝ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. Sony์™€ Sony ๋กœ๊ณ ๋Š” Sony์˜ ์ƒํ‘œ์ž…๋‹ˆ๋‹ค. G L

์ธ์ผˆ(๊ตญ๋ฌธ)pdf.pdf

Chapter4.hwp

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

2005 7

fx-82EX_fx-85EX_fx-350EX

์˜์ƒ์ฒ˜๋ฆฌ ์ด๋ก  ๊ณผ ์‹ค์ œ ์ œ3์žฅ ์˜์—ญ์ฒ˜๋ฆฌ

VZ94-ํ•œ๊ธ€๋งค๋‰ด์–ผ

08๊น€ํ˜„ํœ˜_ok.hwp

CONTENTS INTRODUCTION CHARE COUPLED DEVICE(CCD) CMOS IMAE SENSOR(CIS) PIXEL STRUCTURE CONSIDERIN ISSUES SINAL PROCESSIN

untitled

2

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ฮถ ฯ‰ n (rad/sec) 2 ( ฮถ < 1), 1 (ฮถ = 1), ( ) 1

SRC PLUS ์ œ์–ด๊ธฐ MANUAL

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

09๊ถŒ์˜ค์„ค_ok.hwp

04_แ„‹แ…ฉแ„‘แ…ณแ†ซแ„Œแ…ตแ„‹แ…ฆแ†ฏAPI.key

Preliminary spec(K93,K62_Chip_081118).xls


1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

ๆญฏA1.1ํ•จ์ง„ํ˜ธ.ppt

Microsoft PowerPoint - User Manual pptx

FTTH ๊ธฐ์ˆ ๋ฐœํ‘œ

ํ‘œ์ง€

ๆญฏ๊ธฐ๊ตฌํ•™

Microsoft PowerPoint - ์นด๋ฉ”๋ผ ์‹œ์Šคํ…œ

MAX+plus II Getting Started - ๋ฌด์ž‘์ •๋”ฐ๋ผํ•˜๊ธฐ

DBPIA-NURIMEDIA

PCServerMgmt7

์ €์ž‘์žํ‘œ์‹œ - ๋น„์˜๋ฆฌ - ๋™์ผ์กฐ๊ฑด๋ณ€๊ฒฝํ—ˆ๋ฝ 2.0 ๋Œ€ํ•œ๋ฏผ๊ตญ ์ด์šฉ์ž๋Š”์•„๋ž˜์˜์กฐ๊ฑด์„๋”ฐ๋ฅด๋Š”๊ฒฝ์šฐ์—ํ•œํ•˜์—ฌ์ž์œ ๋กญ๊ฒŒ ์ด์ €์ž‘๋ฌผ์„๋ณต์ œ, ๋ฐฐํฌ, ์ „์†ก, ์ „์‹œ, ๊ณต์—ฐ๋ฐ๋ฐฉ์†กํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ์ด์ฐจ์ ์ €์ž‘๋ฌผ์„์ž‘์„ฑํ• ์ˆ˜์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์Œ๊ณผ๊ฐ™์€์กฐ๊ฑด์„๋”ฐ๋ผ์•ผํ•ฉ๋‹ˆ๋‹ค : ์ €์ž‘์žํ‘œ์‹œ. ๊ท€ํ•˜๋Š”์›์ €์ž‘์ž๋ฅผํ‘œ์‹œํ•˜์—ฌ์•ผํ•ฉ๋‹ˆ๋‹ค. ๋น„

ๆญฏ๋ฉ”๋‰ด์–ผv2.04.doc

2

[ReadyToCameral]RUFยนรถร†ร›(CSTA02-29).hwp

รˆยฒร€รŽยผยบ รƒรขยทร‚

DIB-100_K(90x120)

PowerSHAPE ๋”ฐ๋ผํ•˜๊ธฐ Calculate ๋ฒ„ํŠผ์„ ํด๋ฆญํ•œ๋‹ค. Close ๋ฒ„ํŠผ์„ ๋ˆŒ๋Ÿฌ ๋ฏธ๋Ÿฌ ๋ฆด๋ฆฌํ”„ ํŽ˜์ด์ง€๋ฅผ ๋‹ซ๋Š”๋‹ค. D ํ™”๋ฉด์„ ๋ณด๊ธฐ ์œ„ํ•˜์—ฌ F ํ‚ค๋ฅผ ๋ˆ„๋ฅธ๋‹ค. - ๋ชจ๋ธ์ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ณด์ด๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ์—ด๋งค ๋งŒ๋“ค๊ธฐ Shape Editor๋ฅผ ์ด์šฉํ•˜์—ฌ ์—ด๋งค๋ฅผ ๋งŒ๋“ค์–ด ๋ณด๋„๋ก

ร€ยฑยฝร‚ยฟรญ รƒรขยทร‚

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

untitled

ยบรŽยทรB

์Šฌ๋ผ์ด๋“œ ์ œ๋ชฉ ์—†์Œ

. "" "",.... :...,,....,.. :..,,,..,,...,.... 2

์ข‹์€ ์‚ฌ์ง„ ์ฐ๋Š” ๋ฐฉ๋ฒ•

ยผยบยฟรธรรธ รƒรขยทร‚-1

๋ชฉ์ฐจ ์ œ 1 ์žฅ inexio Touch Driver์†Œ๊ฐœ ์†Œ๊ฐœ ๋ฐ ์ฃผ์š” ๊ธฐ๋Šฅ ์ œํ’ˆ์‚ฌ์–‘... 4 ์ œ 2 ์žฅ ์„ค์น˜ ๋ฐ ์‹คํ–‰ ์„ค์น˜ ์‹œ ์ฃผ์˜์‚ฌํ•ญ ์„ค์น˜ ๊ถŒ๊ณ  ์‚ฌ์–‘ ํ”„๋กœ๊ทธ๋žจ ์„ค์น˜ ํ•˜๋“œ์›จ


untitled

BSC Discussion 1

(72) ๋ฐœ๋ช…์ž ์ •์ง„๊ณค ์„œ์šธํŠน๋ณ„์‹œ ์„ฑ๋ถ๊ตฌ ์ข…์•”1๋™ ์ด์šฉํ›ˆ ๋Œ€์ „๊ด‘์—ญ์‹œ ์œ ์„ฑ๊ตฌ ์–ด์€๋™ ํ•œ๋น›์•„ํŒŒํŠธ 122๋™ 1301 ํ˜ธ - 2 -

1217 WebTrafMon II

ๆญฏFDA6000COP.PDF

่žๅˆๅ…ˆ้ชŒไฟกๆฏๅˆฐไธ‰็ปด้‡ๅปบ ็ป„ไผšๆŠฅ ๅ‘Š[2]

Microsoft PowerPoint - AC3.pptx

<372DBCF6C1A42E687770>

๊ฐ•์˜10



์Šฌ๋ผ์ด๋“œ 1

T100MD+

i-movix ํŠน์ง• l ์•ˆ์ •์„ฑ l ๋›ฐ์–ด๋‚œํ™”์งˆ l ์ฐจ๋ณ„ํ™”๋œํŽธ์˜์„ฑ

Let G = (V, E) be a connected, undirected graph with a real-valued weight function w defined on E. Let A be a set of E, possibly empty, that is includ

SW_faq2000๋ฒˆ์—ญ.PDF

Microsoft Word - HD-35 ๋ฉ”๋‰ด์–ผ_0429_.doc

Week3

๋ชฉ์ฐจ ๋ณธ ์ทจ๊ธ‰์„ค๋ช…์„œ์˜ ์‚ฌ์šฉ๋ฒ• ๋ณธ ์‚ฌ์šฉ์„ค๋ช…์„œ์—์„œ๋Š” ์ œํ’ˆ์ƒ์— ํ‘œ์‹œ๋œ ์ฑ„๋„๋ช… ๋ฐ ๋ฒ„ํŠผ๋ช…, ์†Œํ”„ํŠธ์›จ์–ด์˜ ๋ฉ”๋‰ด๋ช… ๋“ฑ์ด ๋Œ€๊ด„ํ˜ธ ([ ]) ์•ˆ์— ํ‘œ์‹œ๋ฉ๋‹ˆ (์˜ˆ: [MASTER] ์ฑ„๋„, [ON/ OFF], [File] ๋ฉ”๋‰ด) ์‹œ์ž‘ํ•˜์‹œ๊ธฐ ์ „์— ํŠน์ง•...3 ๋ถ€์†ํ’ˆ...4 ์‹œ์ž‘ํ•˜์‹œ๊ธฐ ์ „์—

02( ) SAV12-19.hwp

07.045~051(D04_์‹ ์ƒ์šฑ).fm

s SINUMERIK 840C Service and User Manual DATA SAVING & LOADING & & /

untitled

PRO1_04E [์ฝ๊ธฐ ์ „์šฉ]

์š”์•ฝ๋ฌธ 1 ์š” ์•ฝ ๋ฌธ 1. ๊ณผ ์ œ ๋ช… : ์†Œ์Œ๋…ธ์ถœ ์ €๊ฐ์„ ์œ„ํ•œ ์ž‘์—…ํ™˜๊ฒฝ๊ด€๋ฆฌ ๋ฐ ์ธก์ •๋ฐฉ์•ˆ ์—ฐ๊ตฌ 2. ์—ฐ๊ตฌ๊ธฐ๊ฐ„ : ~ ์—ฐ ๊ตฌ ์ž : ์—ฐ๊ตฌ์ฑ…์ž„์ž ์žฅ ์žฌ ๊ธธ (์—ฐ๊ตฌ์œ„์›) ๊ณต๋™์—ฐ๊ตฌ์ž ์ • ๊ด‘ ์žฌ (์—ฐ๊ตฌ์›) 4. ์—ฐ๊ตฌ๋ชฉ์  ๋ฐ ํ•„์š”์„ฑ


DIY แ„Žแ…ขแ†บแ„‡แ…ฉแ†บ - LangCon

hwp

โ… . Introduction ์šฐ๋ฆฌ๋“ค์„ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ์ž‡๋Š” ์ƒํ™œ ํ™˜๊ฒฝ์†์—๋Š” ๋ฌด์ˆ˜ํžˆ ๋งŽ์€ ์ƒ‰๋“ค์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ƒ‰์€ ๊ตฌ๋งค์˜์š•์ด๋‚˜ ๊ธฐํ˜ธ, ์‹์š• ๋“ฑ์˜ ๊ฐ๊ฐ์„ ์ขŒ์šฐํ•˜๋Š” ๊ฒƒ์€ ๋ฌผ๋ก  ๋‚˜๋ญ‡์žŽ์˜ ๋ณ€์ƒ‰์—์„œ ์ดˆ๋ชฉ์˜ ๊ฑด๊ฐ•์ƒํƒœ๋ฅผ ์•Œ๋ฉฐ ๋ฌผ์งˆ์˜ ํŒ๋‹จ์— ์ด๋ฅด๊ธฐ๊นŒ์ง€ ๊ด‘๋ฒ”์œ„ํ•˜๊ณ ๋„ ํฐ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ํ•˜

๋ฐฉ์†ก๊ณตํ•™ํšŒ๋…ผ๋ฌธ์ง€ ์ œ18๊ถŒ ์ œ2ํ˜ธ

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 30(2),

์Šฌ๋ผ์ด๋“œ 1

airDACManualOnline_Kor.key

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

Transcription:

1999. 7. 15.

1.. 3. 4. 5. 6. Image Representation 7. Frame Grabber 8. Image Format 9. Look up Table Color 10. Image Class 11. Perspective Transform 1. Stereo Camera Model 13. Fourier Transform 14. Convolution 15. Histogram

Image Processing? 1 : : 1 - Computer Vision - Machine Vision - Image UnderstandingRecognition - Pattern Recognition

1950. 1960 block world 3. 1970 1970.. Structured Light Stereo Image 3. Image Understanding Pattern Recognition. 1980. VLSI... 1990 PC

- - - - PC -

- Image Restoration / Image Enhancement / Image Compression - Object Tracking - Face Detection and Recognition - Medical Image Analysis - Digital and Video LibrariesDatabase - Real-Time and Active Vision System - Physics-Based Vision - Motion and Gesture Analys - D and Low-Level Vision - Object Recognition - Character Recognition - Stereo and 3D Vision

Input Device Sampling and Quantize Digital Storage Computer Display Record acquisition digitize store process output Segmentation Representation and description Problem domain Preprocessing Image acquisition Knowledge base Recognition and interpretation Result

Image Representation

Frame Grabber RGB/HIS Converter DMA in Amp R/G/B R G B A/D Converter Memory Video Mier D/A Converter Et Signal Timing I/O Control CPU System Bus

Image format 00 MN Header Image Data Color Palette Type def struct{ BYTE id; BYTE version; BYTE encoding; BYTE bit_per_piel; WORD 1y1y; BYTE plane; WORD hres vres; - - - - - - } a image coordinate b image file format - image file format GIFGraphic Interchange Format BMPMicrosoft Windows Device Independent Bitmap TIFFTag Image File Format PCX RAS EPS SGI PCIT JPEG MPEG AVI

Look up up Table Color Piel logical colour or grey level 1byte 0 1 1 1 0 0 1 1 0 1 0 1 Look up table Actual colour from table Memory Piels Scene image

Image Class R G B RGB Image Time Sequence Image Pyramid Range Data Stereo Pair Mosaic

Perspective Transform Perspective Transform Image plane yy X z Z y X Y Z Lens center λ N Z y Y Z Y y Z Y Z Y y Z Z X Z X Z X λ λ λ λ λ λ λ λ λ λ λ λ λ λ

Stereo Camera 3 Image1 Image y y 1 y 1 Lens center y B Optical ais w World point

Stereo Camera Model X Image 1 1 y1 Origin of world coordinate system l B w Image l y X X 1 λ 1 λ λ λ 1 Z Z X X + 1 B Z Z 1 Z Plane of constant Z 1 X1 λ Z λ X + B λ λ λb Z λ 1 1 Z

Fourier Transform Fourier Transform : Spatial Frequency : : 1 -D Discrete Fourier Transform du e u F f d e f u F iu iu π π dudv e v u F y f ddy e y f v u F yv u i yv u i + + π π / / 1 0 1 0 / / 1 0 1 0 1 M yv N u i N u M v M yv N u i N M y e v u F y I e y I NM v u F + + π π

1-D Signal Convolution f g f α g α d α 1 0.5 0.5 1 0.5 f 1 g 1-1 1-1 Image Convolution y I i j y M y Mask Image Buffer Mask center Result of summation

Fourier Transform Convolution theorem Fourier Transform Convolution theorem f g Fu Gu F.T f * g Fu Gu f g Fu * Gu Inverse filter [ ] 1 1 1 1 v u H v u D F v u I F y I v u H v u D v u H v u D v u I v u I v u H v u D

Histogram Piel Piel

Image Segmentation 1. Thresholding. Edge 3. Edge Operator 4. Laplacian Operator 5. Laplacian of Gaussian 6. Canny Edge Detector 7. Local Edge Linking 8. Hough Transform 9. Region Splitting 10. Split and Merge 11. Region Growing

Thresholding Background separation B[ i j] F [ i j ] where F T [ i j ] Object Segmentation 1 if F[ i j ] > T 0 otherwise Known Object intensity F T [ i j] 1 if T 1 < F[ i j ] < T 0 otherwise

Automatic thresholding Piel Counts T Gray level

Otsu Algorithm tg g i 0 f i : Gray level g Picel mg g i 0 gf i t g : Picel gray level T t g ma{ [ m g m G P t g 1 } 1 Where Pm * m G : gray level

Edge 1 1 Edge : - - - Line y m + c a r cos q + y sin q b n d p d + tn c y p c ym+c a o r q b c m l n d c

Gradient G Gy Gy G y f G y f f G G y f G y tan 1 ] [ ] [ + ] 1 [ ] [ ] [ 1] [ j i f j i f G j i f j i f G y + + -1 1-1 1 Filtering noise reduction Enhancement gradient calculation Detection thresholding Localization subpiel estimation f f f + lim 0 Edge Edge

Edge Operators Roberts Operators G [ f [ i j]] f [ i j] f [ i + 1 j + 1] + f [ i + 1 j] f [ i j + 1] G + G y G 1 0 0-1 Gy 0-1 1 0 Sobel Operators M S + S Prewitt Operator y -1 0 1-0 -1 0 1 S S y 1 1 0 0 0-1 - -1 M S + S y -1 0 1-1 0 1-1 0 1 S S y 1 1 1 0 0 0-1 -1-1

Laplacian Operator Laplacian Operator ] 1 [ ] [ ] 1 [ 1] [ ] [ 1] [ j i f j i f j i f y f j i f j i f j i f f y f f f + + + + + a b threshold y f y f y f 0 1 0 1-4 1 0 1 0 1 4 1 4-0 4 1 4 1 ramp edge

Laplacian of of GaussianLoG Gaussian filtering + Laplacian edge detection Zero Crossing h y [ g y* f y] [ g y]* f y where g y + y σ 4 σ e σ + y 1 : Gaussian Smoothing Laplacian edge detection : direct convolution with LoG filter 0 0-1 0 0 0-1 - -1 0-1 -16- -1 0-1 - -1 0 0 0-1 0 0

Canny Edge Detector 1 Smoothing : p[ i Q[ i j] S[ i S[ i j] G[ i j; σ ]* I[ i j] operator j + 1] + S[ i + 1 j j] S[ i j] + S[ i j + 1] S[ i j] + 1] S[ i + 1 S[ i + 1 j] S[ i + 1 j] / j + 1] / M [ i j ] P[ i θ [ i j ] arctan j ] + Q [ i j ] Q [ i j ] P[ i j ] 3 Nonmaima Suppression Gradient line M M 0 -> thining. 4 double thresholding T 1 T

Local Edge Linking edge point edge direction neighbourhood 1 edge piel edge point f y f y T 3 edge point α y α y < A 4 edge set Link edge point 1 5 edge point 1

Hough Transforms y m + c : c m + y : Accumulation array :[m] c 4 3 1 Original data Line to be found Three lines coincide here -14 m 1 3 4 5 y Gives Transposed 3 1 3m.1 + c c-1m+3 m. + c c-1m+ 3 4 3m.4 + c c-4m+3 0 4 0m.4 + c c-4m 4 1 3

Polar Form Hough Transform ya 3 +b 3 Pointy r cosθ + y sinθ accumulation array :[ N + M 360] ya 1 +b 1 ya ya +b 5 +b 5 ya 4 +b 4 Family of linescartesian coordinates through the pointy y y r θ Shortest distance from origin to line defines the line in terms of r and θ One of many possible lines through y e.g. ya+b cosθ So r q y tan + y tanθ cosθ sin θ + y sinθ cosθ cosθ 1 sin θ + y sinθ cosθ y- tanq y- tanq sinq cosθ + y sinθ

Region Splitting 1 block block piel 3 block 4 block 5 block

Split and Merge 1 block block 3 block piel region size block 4 block region merge I I 1 I I 3 I 4 I I 1 I I 1 I 1 I 1 I I 3 I 3 I 41 I 4 I 43 I 44 I 1 I 41 I 4 I 43 I 41 I 4 I 43

Region Growing 1 piel seed piel seed piel piel S if S T region otherwise 1 3 piel seed piel 4 piel region

Image Analysis 1.. 3. Vision System 4. 5. 6. 7. Labeling 8. Morphological Process 9. Geometric Parameter 10. Boundary Tracking 11. Compactness and Distance 1. Filtering 13. Moment 14. Pattern Recognition 15.

Roberts Huckel Montanari Rosenfeld 3 Barrow Binford Shirai Agin Kelly Falk Shirai Relaation Vision Theory Marr 3D model Marr Brooks Osima Motion Ullman Shape-from -Theory Shape-from-shading Horn Guzman Huffman Clowes Walts Macworth Brice Tomita Ohlander Yakimovsky Knowledge-based Segmentation 65 66 67 68 69 70 71 7 73 74 75 76 77 78 79 80 81 8

FA OA CTX TV

Vision System Computer Input / Output Motion Actuator Feeding /Servo PLC Robot Network

Sample S/W

Segmentation / Real World

Neighbors Connectivity [ i j] [ i j] 4-neighbors 8-neighbors Boundary Interior

Labeling region 1 Scale from } left to right top to bottom 3 4 1 1 1 1 1 1 1 1 1 1 1 1

Labeling 4-neighbors Algorithm 1. Scan. Scan 1 Piel 1~4 1 Label Copy Piel Label Copy 3 Piel Label Label Copy Label equivalent label 4 Label 3. Piel Step 4. Equivalence table Label 5. Scan equivalent label 4

Morphological Process fi Mathematical Morphology A 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 B 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 AU B A union B 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 AI B A intersection B 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1

Dilation Erosion piel Original image A Erosion A B { p B p A} Intersection mask 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 Dilation A B Union U b B i Ab i

Gray-level Dilation Gray-level Dilation 1 0 1 0 } maimum { + + + n j m i j i B j y i A y R Gray-level Erosion Gray-level Erosion 1 0 1 0 } minimum{ + + n j m i j i B j y i A y R Opening Opening OPEN A E D B A Closing Closing CLOSE I D E B A

Opening Closing

Geometric Parameter Size : Area A n n i 1 j 1 B[ i j] Position : y n m i 1 j 1 n m i 1 j 1 B[ i B[ i j] j] n m i 1 j 1 n m i 1 j 1 jb[ i ib[ i j] j] n m jb[ i j] i j 1 1 A y n m ib[ i j] i j 1 1 A

Boundary Tracking 1. Object Piel s S scan. boundary piel c s b s s 4 3. C 8 b n 1 ~n 8 S n i 4. Cn i bn i - 1 5. CS 3 4

Compactness 4 π Distance 8 5 5 8 5 1 5 1 0 1 5 1 5 8 5 5 8 4 3 3 4 3 1 3 1 0 1 3 1 3 4 3 3 4 1 1 1 1 0 1 1 1 1 <Euclidean> <City-block> <chessboard>

Filtering --Space Domain window } Iy Arithmetic Mean Filter 1 1 1 1 1/9 1 1 1 1 1 1 I y N y w Alpha-trimmed Mean Filter Median Filter Ordered set : I 1 I I 3 I N Median value I k k N N 1 T N T I i i T + 1

f 0 frequency Filtering --Frequency Domain low-pass Filter high-pass Filter band-pass Filter gain Pass band Stop band Pass band Pass band Stop band Stop Stop Stop band v Pass band u Stop band v Pass band u Stop Pass Stop

Moments ij th discrete central moment m ij 1 n i y y 1 n y j y Elongation : Euler Number : region - hole

Pattern Recognition Particles on an air filter

Areas of Pollen Granules Areas of Particles Perimeters of Particles Area

3 : 30

5 43 3 3.. 1... 1 3

THE END

Fourier Transform Original image Result image

Image Convolution Result image Original image mask1 1 1 1 1 5 1 1 1 1 mask 1 1 1 1 1 1 5 5 5 1 1 1 1 5 5 1 44 5 1 5 5 1 1 1 1

Fourier Transform Convolution theorem Original image Inverse filtering Result image

Thresholding Original image Result image

Result image Roberts Operators Original image Sobel Operators Prewitt Operator

Laplacian Operator 0 1 0 1-4 1 0 1 0 1 4 1 4-0 4 1 4 1

Laplacian of of GaussianLoG Original image Result image

Canny Edge Detector Original image

Hough Transforms

Dilation Erosion 1 1 Original image Dilation Erosion

Dilation Erosion Original image Gray-level Dilation Gray-level Erosion

Filtering --Space Domain Arithmetic Mean Filter Original image Median Filter

Filtering --Frequency Domain Original image low-pass Filter high-pass Filter band-pass Filter