KSEP Head and Neck Korean J Otolaryngol 2000;43:978-84 후두전적출술후 Amatsu 식기관식도단락술을시행한환자에대한영상학적, 음향학적고찰 이한국 김순곤 주호범 이봉희 이윤우 이강대 maging and Acoustic Study of Laryngectomees after the Amatsu Tracheoesophageal Shunt Operation Han Kook Lee, MD, Sun Gon Kim, MD, Ho Bum Joo, MD, Bong Hee Lee, MD, Yun Woo Lee, MD and Kang Dae Lee, MD Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Kosin University, Pusan, Korea ABSTACT Background and ObjectivesThe two most important methods for voice rehabilitation after total laryngectomy are tracheoesophageal speech and esophageal speech. The former can be obtained in several ways, for example, by the primary Amatsu tracheoesophageal T-E shunt operation or by the use of a low-resistance valve such as the Provox prosthesis. The purpose of this investigation was to study the anatomy and physiology of the neoglottis and to evaluate the vocal quality of tracheoesophageal speech. Materials and MethodsA total of 12 patients, who had undergone the Amatsu T-E shunt operation after total laryngectomy, were analyzed using the stroboscopy, laryngofiberscopy, videofluoroscopy, and computerized speech lab. esultswith stroboscopy, the neoglottis was split from left to right in 3 patients and in 9 patients, the direction of opening and closure of the neoglottis was anterior-posterior. The regular vibratory features were observed in patients with a shortened visible vibratory segment. The results of videofluoroscopy indicate that the location of the vibration was mostly situated between C3 and C5. The cervical esophagus closure during tracheoesophageal phonation was located at a level between -T2. ConclusionThe anatomical and morphological characteristics of the neoglottis was related to the healing process after operation. The neoglottis was considered to be formed by the thyropharyngeal muscle, and concentric contraction under subneoglottic extension was formed by the contraction of the cervical esophagus. (Korean J Otolaryngol 2000;43:978-84) KEY WODSLayngectomy Tracheoesophageal voice Voice rehabilitation. 978
신성대화상술검사 X선투시검사 (videofluoroscopy) 공기역학적검사와음향분석학적검사 Table 1. Summary of cases Case No. Age/sex Tumor site Stage Treatment Follow upmo 1 58/F Glottic T3N0M0 TL, BND 8 2 65/M Glottic T3N1M0 TL, ND, XT 88 3 62/M Supraglottic T3N0M0 TL, BND 87 4 64/M Glottic T3N0M0 TL 2 5 61/M Supraglottic T4N0M0 TL, BND 15 6 56/M Glottic T4N0M0 TL, LND 52 7 52/M Supraglottic T4N0M0 TL, BND 30 8 69/M Supraglottic T3N0M0 TL, ND 32 9 49/M Glottic T3N1M0 TL, BND 8 10 52/M Glottic T2N1M0 TL 13 11 44/M Supraglottic T3N0M0 TL, BND 96 12 71/M Supraglottic T3N0M0 TL 78 TLtotal laryngectomy, BNDbilateral neck dissection, NDright neck dissection, LNDleft neck dissection, XTpostoperative raiotherapy 979
기관식도발성환자에 대한 영상학적 음향학적 고찰 Fig. 1. Stroboscopic images of the neoglottis during phonation. A Split anterior to posterior B Split right to left. Table 2. Vibratory patterns of the neoglottis Case No. Split egularity Vibration location 1 2 -L ntermediate 3 4 Anterior Long 5 Long 6 ntermediate 7 -L 8 Long Anterior Length of neoglottis ntermediate 9 10 ntermediate 11 -L 12 ntermediate Split anterior to posterior, -L Split right to left, rregular or loose-baggy vibration, egular mucosal wave, Anterior n vibration of neoglottis, anterior portion is predominant, n vibration of neoglottis, posterior predominant, Symmetrical vibration dimensional voice program)을 이용하여 기본주파수(Fo, Fig. 2. Serial stroboscopic images of the neoglottis during sustained /a/ phonation. The neoglottis regularly opened and closed by expiratory airflow. 결 과 fundamental frequency, Hz), pitch의 변동을 나타내는 Jitter(pitch perturbation, %), 진폭의 변동을 나타내는 Shi- 신성대화상술검사에서 기관식도발성시 신성대 진동방향 mmer(amplitude perturbation, %), 잡음을 측정하는 척도 은 크게 2가지로 구별할 수 있었다. 3명에서는 실제 성대에서 인 NH(noise to harmonics ratio)을 검사하였다. 가능하 와 같이 좌우로 진동(split right-left)하였으며 9명에서는 전 면 같은 음도와 세기로 약 2 3초간 /아/를 지속적으로 발 후로 진동(split anterior-posterior)하였다(fig. 1). 7명은 성하도록 하였으며, 이를 2회 이상 실시한 후 가장 안정된 발 규칙적으로 진동하였으며, 5명은 불규칙적으로 진동하였다. 성을 나타내는 것을 선택하여 디지털 녹음기(digital audio 4명은 정상 성대와 같이 대칭적으로 진동하였으며, 나머지 8 tape, DAT)에 녹음한 다음 분석하였다. 통계학적 검증은 명은 한쪽 성대파동은 크게 진동하는 반면 그곳에 대응하는 SPSS 중 t-test를 이용하여 유의수준 95%로 하여 검정하 반대쪽 점막주름의 진동은 다소 고정되어 있었다. 전후진동 였다. 9명중에 뒤쪽에 현저한 성대파동을 가지는 경우가 6명, 앞쪽 이 현저한 경우가 2명, 대칭적으로 진동한 경우가 1명이었다. 980 Korean J Otolaryngol 2000;43:978-84
이한국 외 A B C Fig. 3. Lateral videofluoroscopic images of the neoglottis during sustained /a/ phonation. A etropharyngeal prominence (arrow) and extension of subglottic lumen, are demonstrated (case 3). B Location of vibration is not assessable (case 5). C Anterior and retropharyngeal prominence (arrow) are demonstrated (case 4). 좌우진동의 경우 3명 모두에서 비교적 대칭적으로 진동하였 다. 신성대의 길이가 짧은 경우가 긴 경우 보다 규칙적으로 진 동하였다(Table 2). 규칙적으로 진동하는 경우에 실제 성대에 서와 같은 규칙적인 개방기(opening phase)와 폐쇄기(closing phase)를 가졌다(Fig. 2). 규칙적으로 진동한 군에서는 Table 3. Anatomy of the neoglottis and upper limit of esophageal closure Case Location of Vertical height (mm) Location of No. vibration of neoglottis Esophageal closure 1 * 2 C3 20 VD 7 3 VD 3 20 VD 7 음성의 높이(pitch) 변화가 가능하였다. 연성후두경검사 소 4 and C5 45 견에서 발성시 하신성대강의 확대와 함께 하강이 끝나는 부 5 C5 * 위에서 식도상부의 동심원적 수축이 관찰되었으며 발성이 끝 6 15 7 4 T2 8 17 남과 동시에 하신성대강이 수축하였다. 측면 X선 투시검사를 시행한 결과, /아/ 발성시 신성대를 이 9 20 루는 모양에 따라 3가지로 분류할 수 있었다. 하인두수축근 10 C5 25 의 수축에 의해서 후면에 저명한 인두후 융기(retropharyn- 11 30 geal prominence)를 형성하는 경우가 8명으로 가장 많았 으며, 증례 1, 5, 12에서와 같이 인두후 융기의 형성 없이 12 * VD 7 ntervertebral disc between and, C Cervical vertebrae, T Thoracic vertebrae, * Not measurable 점막의 떨림만으로 발성이 이루어지는 경우가 3명이었으며, 증례 4에서와 같이 전면과 후면에 융기를 형성하는 경우가 1 증례 2와 증례 6에서는 인두후 융기 이외에 각각 경추 4번과 명이었다(Fig. 3). 신성대 파동 위치는 경추 3번째와 5번째 경추 6번 위치에 후면 점막주름을 하나 더 가지고 있었다. 사이에 위치하였으며 인두후 융기를 형성한 경우에 이들 주 대부분 환자에서 발성시 인두후 돌출을 형성하면서 하신성대 름의 수직 높이는 4 40 mm로 평균 22.0 mm였다(table 3). 강이 넓어지고 식도상부의 동심원적 수축이 관찰 되었다(Fig. 981
Table 4. Acoustic measurement in patients and control group Cases Fo Hz Jitter % Shimmer % NH 2 69.7 5.9 11.5 0.49 3 137.3 2.8 9.4 0.20 5 85.2 8.3 30.7 0.62 7 131.5 3.5 11.8 0.21 11 107.8 8.7 15.5 Mean 106.3029.08 5.842.69* 15.788.62* 0.380.21* Control 117.1 11.5 n5 0.680.21 3.500.25 0.180.02 *p0.05 982 Korean J Otolaryngol 2000;43:978-84
983
EFEENCES 1) Hilger FJM, Ackerstaff AH, Balm AJM, Tan B, Aaronson NK, Persson JO. Development and clinical evaluation of a second generation voice prosthesis Provox 2, designed for anterograde and retrograde insertion. Acta Otolaryngol Stockh 1997;117: 889-96. 2) Amatsu M, Makino K, Kinishi M, Tani M, Kokubu M. Primary tracheoesophageal shunt operation for postlaryngectomy speech with sphincter mechanism. Ann Otol hinol Laryngol 1986;95: 373-6. 3) Amatsu M, Makino K, Kinishi M, Tani M, Kokubu M. Primary tracheoesophageal shunt operation for postlaryngectomy voice restoration: A sphincter mechanism against aspiration. Auris Nasus Larynx 1985;12:200-5. 4) Asai. Laryngoplasty after total laryngectomy. Arch Otolaryngol 1972;81:114-9. 5) Amatsu M, Kinishi M, Jamir JC. Evaluation of speech of laryngectomees after the Amatsu tracheoesophageal shunt operation. Larygoscope 1984;94:696-701. 6) Nam YW, Choi JO, Lee KS. A study on voice rehabilitation after total laryngectomy. 1991;34:316-23. 7) Wang SG. An experience of Amatsu tracheoesophageal shunt operation for speech rehabilitation after total laryngectomy. Korean J Otolaryngol 1993;36:795-803. 8) Choi HS, Kim TM, Lee SS, Choi YJ, Kim CW. A Case of Using a Tracheostoma Valve after Near Total Laryngectomy. J Korean Logo Phon 1999;10:58-62. 9) Kim KH, Kim CD, Yun JB, Choi SH, Ahn SH, Cho YS. Tracheoesophageal shunt formation after total laryngectomy. Korean J Otolaryngol 1995;38:1993-9. 10) Omori K, Kojima H, Nonomura M, Fukushima H. Mechanism of tracheoesophageal shunt phonation. Arch Otolaryngol Head Neck Surg 1994;120:648-52. 11) Corina J, Tigges M, Wittenberg T, Op de Coul, Bas M, et al. Highspeed digital imaging of neoglottic vibration after total laryngectomy. Arch Otolaryngol Head Neck Surg 1999;125:891-7. 12) Dworkin JP, Meleca J, Zormeier MM, Simpson ML, Garfield, Jacobs J, et al. Videostroboscopy of the pharyngoesophageal segment in total larygectomees. Larygoscope 1998;108:773-81. 13) sman KA, O Brien CJ. Videofluoroscopy of the pharyngoesophageal segment during tracheoesophageal and esophageal speech. Head & Neck 1992;14:352-8. 14) Gatenby A, osenblum JS, Leonard CM, Moldofsky PJ, Broder GJ. Esophageal speech: Double contrast evaluation of the pharyn-goesophageal segment. adiology 1985;157:127-31. 15) Mohri M, Ohtsuki N, Amatsu M. Esophageal contractility synchronous with expiration. Ann Otol hinol Laryngol 1999;108: 806-9. 16) Mohri M, Kinishi M, Amatsu M. Dynamic of Subneoglottic lumen in tracheoesophageal phonation. Ann Otol hinol Laryngol 1998;107:974-6. 17) obbins J, Fisher HB, Blom ED, Singer M. Selected acoustic features of tracheoesophageal, esophageal, and laryngeal speech. Arch Otolaryngol 1984;110:670-2. 18) Park HM, Song BH, Moon HS, Kim DH, Jo CW, Shim WY, et al. A comparative acoustic study of voice rehabilitation after total laryngectomy. Korean J Otolaryngol 2000;43:80-5. 984 Korean J Otolaryngol 2000;43:978-84