한수지 51(3), , 2018 Original Article Korean J Fish Aquat Sci 51(3), ,2018 확률신경망에의한해저저질의식별 이대재 * 부경대학교해양생산시스템관리학부 Classifying Seafloor Sedim

Similar documents
한수지 51(2), , 2018 Original Article Korean J Fish Aquat Sci 51(2), ,2018 어군에의한광대역음향산란신호의시간 - 주파수분석을위한 chirp 데이터수록및처리시스템의성능특성 이대재 * 부경대학교해양

한수지 49(2), , 2016 Original Article Korean J Fish Aquat Sci 49(2), ,2016 인공신경망에의한 6 개어종의음향학적식별 이대재 * 부경대학교해양생산시스템관리학부 Acoustic Identificat

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

09권오설_ok.hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

03-서연옥.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

Slide 1

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

DBPIA-NURIMEDIA

09È«¼®¿µ 5~152s

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

DBPIA-NURIMEDIA

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

3 : ATSC 3.0 (Jeongchang Kim et al.: Study on Synchronization Using Bootstrap Signals for ATSC 3.0 Systems) (Special Paper) 21 6, (JBE Vol. 21

<C7A5C1F620BEE7BDC4>

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

08김현휘_ok.hwp

02¿ÀÇö¹Ì(5~493s

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>


Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

한수지 49(6), , 2016 Original Article Korean J Fish Aquat Sci 49(6), ,2016 음향산란층의식별을위한에코그램분석방법의비교 최석관 윤은아 1 * 한인우 1 오우석 1 국립수산과학원원양자원과, 1 전남

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

< C6AFC1FD28C3E0B1B8292E687770>

606 이대재 재료 및 방법 초음파 진동소자의 제작과 배열 본 연구에서는 공진주파수가 서로 다른 6개 주파수의 tonpilz 형 진동체를 설계, 제작한 후, Fig. 1a에서와 같이 2 3 패턴 으로 배열하여 Fig. 1b의 다중공진 음향변환기를 개발하였다. Fig.

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

04김호걸(39~50)ok

인문사회과학기술융합학회

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

2013년 1회 정보처리산업기사 실기.hwp

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

KIM Sook Young : Lee Jungsook, a Korean Independence Activist and a Nurse during the 이며 나름 의식이 깨어있던 지식인들이라 할 수 있을 것이다. 교육을 받은 간 호부들은 환자를 돌보는 그들의 직업적 소

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

¼º¿øÁø Ãâ·Â-1

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

: RTL-SDR (Young-Ju Kim: Implementation of Real-time Stereo Frequency Demodulator Using RTL-SDR) (Regular Paper) 24 3, (JBE Vol. 24, No. 3, May

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun; 26(6),

< C6AFC1FD28B1C7C7F5C1DF292E687770>

비어 있음

012임수진

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 25(12),

°í¼®ÁÖ Ãâ·Â

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

11 함범철.hwp

14.531~539(08-037).fm

±è¼ºÃ¶ Ãâ·Â-1

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

_

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

10(3)-10.fm

2 : (Jaeyoung Kim et al.: A Statistical Approach for Improving the Embedding Capacity of Block Matching based Image Steganography) (Regular Paper) 22

44-3대지.08류주현c

<5BBEF0BEEE33332D335D20312EB1E8B4EBC0CD2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

Journal of Educational Innovation Research 2017, Vol. 27, No. 4, pp DOI: * A Study on Teache

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

PowerPoint 프레젠테이션

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

DBPIA-NURIMEDIA

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

45-51 ¹Ú¼ø¸¸

KR

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

<35BFCFBCBA2E687770>

2014_ pdf

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

04_이근원_21~27.hwp

(JBE Vol. 23, No. 5, September 2018) (Regular Paper) 23 5, (JBE Vol. 23, No. 5, September 2018) ISSN

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

(p47~53)SR

<31312DB1E8BCB1BFEB4B D30342D F31C2F7BCF6C1A4B0CBC5E4BABB2E687770>

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A528B1E8C1BEB9E8292E687770>

한수지 48(2), , 2015 Original Article Korean J Fish Aquat Sci 48(2), ,2015 고등어 (Scomber japonicus), 불볼락 (Sebastes thompsoni) 및쥐노래미 (Hexagram

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

03¹Ú³ë¿í7~272s

상기 DVD 플레이어는 거의 거치형(톱니형)으로 개발되어 텔레비젼, AC3 앰프 및 6개의 스피커 또는 단순 히 스테레오 시스템 등에 연결되어 영화 재생용으로만 특징지워지고, 반면에 상기 DVD-롬 드라이브는 컴 퓨터에 장착되어 소정의 인터페이스 방식을 통해 컴퓨터 테

개최요강

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

Transcription:

한수지 51(3), 321-327, 2018 Original Article Korean J Fish Aquat Sci 51(3),321-327,2018 확률신경망에의한해저저질의식별 이대재 * 부경대학교해양생산시스템관리학부 Classifying Seafloor Sediments Using a Probabilistic Neural Network Dae-Jae Lee* Division of Marine Production System Management, Pukyong National University, Busan 48513, Korea To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 khz. The spectrum amplitudes for frequency responses of 35-75 khz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment. Key words: Chirp sonar, Broadband acoustic echoes, Frequency spectrum, Probabilistic neural network, Seafloor sediment classification 서론,,., chirp echo. (Simmons et al., 1996; Saad et al., 2007; Latha et al., 2009; Kuruvilla and Gunavathi, 2014; Lee, 2016). Specht (1990),,, (back-propagation neural network) (probabilistic neural network, PNN). (sample) (probaility density function, PDF) (Rutkowski, 2004; Selekwa et al., 2005). 3 echo (set). chirp echo. chirp 20-220 khz (Lee, 2018), 35-75 khz chirp echo. (sinal to noise ratio, SNR). chirp echo, (mud), (mud/shell),. 재료및방법 해저 echo 신호의수록및해석시스템구성 Lee (2018), chirp https://doi.org/10.5657/kfas.2018.0321 Korean J Fish Aquat Sci 51(3) 321-327, June 2018 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licens (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 2 May 2018; Revised 16 May 2018; Accepted 16 May 2018 *Corresponding author: Tel: +82. 51. 629. 5889 Fax: +82. 51. 629. 5885 E-mail address: daejael@pknu.ac.kr Copyright 2018 The Korean Society of Fisheries and Aquatic Science 321 pissn:0374-8111, eissn:2287-8815

322 이대재 ( chirp.) (2015 6 23 ) (2015 6 26 ) (5 6 5 m, 2015 7 23 ). echo chirp (Lee, 2018), PC (Dell, Inspirion, USA), 3 chirp (B265LH, Airmar, USA), (DSO model DS-1530, EZ, Korea), (VP-2000, Teledyne Reson, Denmark), USB (P3, 1TB, Samsung, Korea). (G/T 1,737 ) chirp 1.5 m,. 10.5 m, 33.0 m, 1.0 m. chirp 3 chirp (B265LH) 1 1.0 ms, 20-220 khz chirp., 2 (B265LH) (35-75 khz) chirp echo., echo, TVG, A/D (analog to digital) 500 khz,. SNR TVG, 2 echo.,, chirp 40 mm [tungsten carbide sphere with 6% cobalt binder (WC)]., chirp echo, Fig. 2. Fig. 2 2015 6 26 echo. Fig. 2 echo 2,, 2 echo., chirp 0.5 ms, 1 ping 255,, 45 m (60 ms), 0-250 khz. Fig. 2 33.0 m (44 ms) echo., 42-52 ms echo, 255 ping 1. echo. 확률신경망에의한해저저질의식별 (class category) (classifier). 2 (training pattern)., class Fig. 1. Schematic diagram of the chirp data acquisition and processing system for measuring the broadband acoustic echoes from two different seabed sediments (mud, mud/shell) and the concrete sediment of water tank (Lee, 2018). MOSFET, metal oxide semiconductor field effect transistor; BPF, bandpass filter; ADC, analog-to-digital converter; DAC, digital-to-analog converter.

확률신경망에의한해저저질의식별 323 Fig. 2. Frequency-dependent characteristics of acoustic scattering signals acquired at a mud/shell sediment site (Dojangpo bay) of the southern waters, Korea, using the chirp data acquisition and processing system. PDF,., x i class c i PDF,, P (c i x) (1) (Parzen, 1962; Specht, 1990; Selekwa et al., 2005). n 1 i (x-x ji ) T i (x-x j ) P (c i x)= ((2 ) (N 2) N n i ) j=1 2 2, n i i class c i, x, x x=[x 1, x 2, x 3, x 4, x N ] T., x ji i class c i j, (smoothing parameter), N (1)., (1) Fig. 3. Fig. 3,, 4.,, / chirp echo (x),. Fig. 3 ( ) 3 (c i, i=1, 2, 3) (neuron),,, Gaussian (

324 이대재 Fig. 3. Architecture of probabilistic neural network used in this study. ). (1) P (c i x).. 결과및고찰 해저 echo 신호의시간응답특성 (35 07.18 N, 129 03.17 E),, (34 46.04 N, 128 41.09 E),, chirp echo Fig. 4. (PM3D, Marine Electronics Corp., Korea),, /,. Fig. 4 echo 35 m SNR A/D ( 40 mm, WC). Fig. 4 (a) (mud) echo, echo 12.86 ms 16.03 ms Fig. 4. Comparison of the time response characteristics of broadband echo signals recorded from three different sediment types of muddy seabed (a), mud/shell seabed (b) and concrete sediment (c)., 19.04 ms, echo (envelope) (Gaussian)., echo 22.5 ms echo tail. chirp, chirp echo,,., chirp,.,,. Fig. 4 (b) / echo Fig. 4 (a) echo., 43.93 ms 46.20 ms, 52.05 ms, echo., echo (leading edge) echo Fig. 4 (a)

확률신경망에의한해저저질의식별 325 Fig. 5. Comparison of the frequency response characteristics of broadband echo signals recorded from three different sediment types of muddy seabed (black), mud/shell seabed (red) and concrete sediment (blue).., echo (tailing edge) echo., Fig. 4 (c) echo Fig. 4 (a) Fig. 4 (b) / echo., echo 5.71 ms 5.91 ms (peak), 6.16 ms, 6.86 ms.,, echogram. 해저 echo 신호의주파수응답특성, / echo, Fig. 5. Fig. 5,, / echo,, (khz). chirp 20-220 khz chirp, (B265LH) Fig. 6. Frequency spectrum images for 200 broadband echo signals recorded continuously from three different sediment types of muddy seabed (a), mud and shell seabed (b) and concrete sediment (c). echo., Fig. 5 35-75 khz echo. Fig. 5

326 이대재, 3,, 40 khz peak mode 50 khz null mode, 60 khz peak mode. 3 35-75 khz,,., Fig. 3., Fig. 5, /,,, 40 khz, 50 khz 60 khz. 40 khz 50 khz peak null, 60 khz., / peak,, null. echo., chirp, / 200 echo Fig. 6. Fig. 6 ping number, (khz), 0-200 khz. Fig. 6 (a), (b) /., (c). 3, /,, echo null., 40 khz 60 khz 2, 50 khz null., / 38-48 khz 58-72 khz, 50 khz Fig. 7. Bar plots showing the percentage probability of classification for three different sediment types of muddy seabed (a), mud/ shell seabed (b) and concrete sediment (c). The orange, sky blue and green colors in the bar plots indicate muddy seabed, mud/shell seabed and concrete sediment, respectively. null., Fig. 6 (c) 60 khz. 3 echo 35-75 khz,. Fig. 6 150 Fig. 3 class 1 ( ), class 2 ( / ), class 3 ( )., Fig. 6 50

확률신경망에의한해저저질의식별 327. 확률신경망에의한해저저질의식별 Fig. 6 Fig. 3 (pattern layer) 3, Gaussian,, Fig. 3 (summation layer) PDF 3,, Fig. 3 P(c i x), Fig. 7. Fig. 3 Fig. 7, ( ). Fig. 7 (percentage probability),,, bar plot, /. Fig. 7 (a),, /, 3 86%., / 4% 10%., Fig. 7 (b) /,, /, 3 / 66%., / 10% 24%., Fig. 7 (c),, /, 3 72%., / 4% 24%.,, /, 3, 74.7%..,.,,,,,.. 사사 (2017 ). References Kuruvilla J and Gunavathi K. 2014. Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113, 202-209. https://doi.org/10.1016/j. cmpb.2013.10.011. Latha P, Ganesan L and Annadurai S. 2009. Face recognition using neural networks. Sign Pro Inter J 3, 153-160. Lee DJ. 2016. Acoustic identification of six fish species using an artificial neural network. Korean J Fish Aquat Sci 49, 224-233. http://dx.doi.org/10.5657/kfas.2016.0224. Lee DJ. 2018. Performance characteristics of chirp data acquisition and processing system for time-frequency analysis of broadband acoustic scattering signals from fish schools. Korean J Fish Aquat Sci 51, 178-186. http://dx.doi.org/10.5657/ KFAS.2018.0178. Parzen E. 1962. On estimation of a probability density function and mode. Ann Math Statist 33, 1065-1076. Rutkowski L. 2004. Adaptive probabilistic Neural Networks for Pattern classification in time varying environment. IEEE Trans. Neural Networks 15, 811-827. http://dx.doi. org/10.1109/tnn.2004.828757. Saad MHM, Nor MJM, Bustami FRA and Ngadiran R. 2007. Classification of heart abnormalities using artificial neural network. J Appl Sci 7, 820-825. Selekwa MF, Kwigizile V and Mussa RN. 2005. Setting up a probabilistic neural network for classification of highway vehicles. Int J Comput Intell App 5, 411-423. http://dx.doi. org/10.1142/s1469026805001702. Simmons EJ, Armstong F and Copland PJ. 1996. Species identification using wideband backscattering with neural network and discriminant analysis. ICES J Mar Sci 53, 189-195. Specht DF. 1990. Probabilistic neural networks. Neural Networks 3, 109-118.