1

Similar documents
Microsoft Word - multiple

김기남_ATDC2016_160620_[키노트].key

경제수학강의노트 09 미분법 I: 미분법칙, 편미분, 전미분 Do-il Yoo PART III: Comparative-Static Analysis 비교정태분석 Chapter 7: Rules of Differentiation and Their Use in Comparat

김경재 안현철 지능정보연구제 17 권제 4 호 2011 년 12 월

(azimuth agle), (elevatio agle), [1],[2].,,,, CRPL(Cetral Radio Propagatio Laboratory) [5] [6] 7 6, [7],,,, (Maximum Likelihood Estimatio), 2-1, 2-2 2

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

- 2 -

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

<30312D303720B9DAC1A4BCF62E666D>

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh


6. 추 정 (Estimation)


public key private key Encryption Algorithm Decryption Algorithm 1

w xy» w (Keski ad Terzi, 2006; Deswal ad Pal, 2008; Rahimi Khoob, 2009). Sudheer et al.(2002) w Class A d mw, d e» œ Stephes ad Stewart œ. w» l xy w»

11¹Ú´ö±Ô

untitled

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45


조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

#Ȳ¿ë¼®

Output file

2-32

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

DBPIA-NURIMEDIA

09김정식.PDF

DBPIA-NURIMEDIA

#KM560

Buy one get one with discount promotional strategy

¼º¿øÁø Ãâ·Â-1

0125_ 워크샵 발표자료_완성.key

서론 34 2

본문01

#중등독해1-1단원(8~35)학

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

wess_usage.PDF

<32B1B3BDC32E687770>

#KM-250(PB)

PJTROHMPCJPS.hwp

hwp

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

04-다시_고속철도61~80p


강의록

<5BC6EDC1FD5D4B485520B1DBB7CEB9FA20B1E2BEF7B9FDB9AB20B8AEBAE42037B1C72031C8A32E687770>

Orcad Capture 9.x

44-4대지.07이영희532~

03.Agile.key

BSC Discussion 1

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Study on the Pe

DBPIA-NURIMEDIA

Á¶´öÈñ_0304_final.hwp

Microsoft PowerPoint - 7-The Hydrogen Atom-part 3.ppt [호환 모드]

304.fm

#KLZ-371(PB)

untitled

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

제 출 문 한국산업안전공단 이사장 귀하 본 보고서를 2002 년도 공단 연구사업계획에 따라 수행한 산 업안전보건연구수요조사- 산업안전보건연구의 우선순위설정 과제의 최종보고서로 제출합니다. 2003년 5월 연구기관 : 산업안전보건연구원 안전경영정책연구실 정책조사연구팀 연

<C7D1B9CEC1B7BEEEB9AEC7D03631C1FD28C3D6C1BE292E687770>

#KM-340BL

PowerPoint 프레젠테이션

#KM-235(110222)

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

Multi-pass Sieve를 이용한 한국어 상호참조해결 반-자동 태깅 도구

<31325FB1E8B0E6BCBA2E687770>

,.,..,....,, Abstract The importance of integrated design which tries to i

2 min 응용 말하기 01 I set my alarm for It goes off. 03 It doesn t go off. 04 I sleep in. 05 I make my bed. 06 I brush my teeth. 07 I take a shower.

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

methods.hwp

Vol.258 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

분산시스템_강의교재 - 7

한국 출산력의 저하 요인에 관한 연구

한국성인에서초기황반변성질환과 연관된위험요인연구

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to

< C6AFC1FD28B1C7C7F5C1DF292E687770>

cat_data3.PDF

Microsoft PowerPoint - 27.pptx

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

Journal of Educational Innovation Research 2019, Vol. 29, No. 2, pp DOI: 3 * Effects of 9th

½Éº´È¿ Ãâ·Â

... 수시연구 국가물류비산정및추이분석 Korean Macroeconomic Logistics Costs in 권혁구ㆍ서상범...

I

09권오설_ok.hwp

디지털영상처리18_스테레오스코프

한글사용설명서

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

01김경회-1차수정.hwp

슬라이드 1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 29(7),

전용]

歯전용]

DBPIA-NURIMEDIA

<B3EDB9AEC1FD5F3235C1FD2E687770>

Transcription:

Learig Processes What is learig? Stimulus System New Respose Learig paradigm Supervised learig: learig with a teacher Usupervised learig or self-orgaized learig: learig without a teacher Learig algorithm Error-correctio learig Memory-based learig Hebbia learig Competitive learig Stochastic learig () Error-correctio learig Supervised learig eacher x[ ] d [ ] System y [ ] + e [ ] Delta rule or Widrow-Hoff rule: LMS (least mea square) algorithm Let the system parameter be w [ ] ad y [ ] = w [ ] x [ ] he, 2 From LMS algorithm, w[ + ] = w[ ] +ηe[ ] x [ ] * 2 w = argmi E [ ] = argmi e [ ] w w - - BME, KHU

Step size parameter η is called as the "learig rate parameter" Batch mode algorithm: LS (least square) algorithm (2) Memory-based learig Supervised learig N { i i } i= Past experieces are explicitly stored i a large memory as ( x, d ) Give a ew iput x test, Defie a local eighborhood of x test Classificatio rule applied to the local eighborhood - Nearest eighbor rule - -earest eighbor classifier (3) Hebbia learig Usupervised learig Hebbia syapse If two euros o either side of a syapse (coectio) are activated simultaeously (or sychroously), the the stregth of that syapse is selectively stregtheed If two euros o either side of a syapse (coectio) are activated asychroously, the that syapse is selectively weaeed or elimiated Properties of Hebbia syapse ime-depedet mechaism Local mechaism Iteractive mechaism Cojuctioal or corelatioal mechaism Mathematical models: w [ ] = F( y [ ], x [ ]) j j Hebb's hypothesis: w [ ] = ηy [ ] x [ ], expoetial growth, may be saturated j j Covariace hypothesis: wj[ ] η ( y[ ] y ) ( xj[ ] xj ) = with time averages y ad x j Modificatio usig a forgettig factor: - 2 - BME, KHU

( ) w [ ] = ηy [ ] x [ ] αy [ ] w [ ] = αy [ ] cx [ ] w [ ] j j j j j (4) Competitive learig Usupervised learig Competitive learig rule Competitio amog euros with the same structure but with differet weights Stregth (output) of each euro has a certai limit he wier(s) is oe (ie, competitive) or more euros (ie, cooperative) with the biggest stregth ad called wier-taes-all euro Mathematical models: Clusterig ( xj wj ) η [ ] [ ] if wier wj[ ] = 0 otherwise - 3 - BME, KHU

Clusterig ad Classificatio () Clusterig Usupervised learig Labelig could be too cost Uderstad iteral structure of data distributio from clusters Preprocessig for classificatio sice features withi the same cluster are similar Clusterig problem defiitio Give a set of vectors { x } = K, fid a set of C clusterig ceters { } C w such that each x is assiged to a cluster i i= w i so that the average distortio where (, ) i C K D= I x i d x w K i = = (, ) (, ) i d x w is a distace measure ad the idicator fuctio is I (, i) K-meas clusterig algorithm Iitializatio Repeat ( x wi) ( x w j) if d, < d,, j i x = 0 otherwise C Radomize { w i} i=, I (, i) Compute (, ) Evaluate I(, i) i x =0 for K ad i C, D(0) = 0, = d x w for K ad i C ( x wi) ( x w j) if d, < d,, j i x = for K 0 otherwise C Compute D [ ] = I( x, id ) ( x, w ) K = K K i = = i Update w I ( x, i) x with N I(, i) i N i = D [ ] If < ε, stop D [ ] Distace measure i K = x for i C = - 4 - BME, KHU

Norm, ( ) d xy = x y, p Mahalaobis distace, d ( x, y) = ( x y) S ( x y) xy Agle, ( xy, ) d = x xy y 2 2 aimoto coefficiet, ( xy, ) Distortio measure d = xy xx+ yy xy Mea square error, D I(, i) C N = = K C K C 2 2 x x wi x y 2 2 i= = i= Ni xy, C( i) I geeral, D d( xy, ) or D = mi d( xy, xy ) Scatterig criteria = i= i xy, C( i) K m = x x Mea of cluster i, I (, i) otal mea, m i N i = C i = Nim i K i = C i= {, C( i) } K i i i = Scatter matrix of cluster i, S = I( x, i) ( x m )( x m ) Withi cluster scatter matrix, S W C = S Betwee clusters scatter matrix, S = N ( m m)( m m ) i= C i B i i i i= otal scatter matrix, S = S + S = ( x m)( x m ) Note that D = tr( SBS W) Distace betwee clusters, mi { } W B = x C(), i y C( j) K d C(), i C( j) = mi d( xy, ) max { } d C(), i C( j) = max d( xy, ) { } x C(), i y C( j) d C(), i C( j) d( xy, ) avg = NN i j x C() i y C( j) - 5 - BME, KHU

{ (), ( )} d C i C j = m m Hierarchical clusterig Merge Iitially, each clusters are merged mea i j Split Iitially, all { } x is a cluster Durig iteratios, earest pair of distict K = x belog to oe cluster Durig iteratios, oe cluster is spitted ito two or more clusters if withi cluster scatterig is large (2) Classificatio K X = Classificatio problem defiitio Assume data samples { } = x are draw from M classes = { ()} M i Give a observatio x, fid a decisio rule g ( x ) C C i = M { } C such that the probability of classificatio Pr g( x) = Ci ()( x Ci () is maximized Nearest eighbor classifier Assume that the already classified set of data or mappig i= { } or ANN is available, ie, we have ( y ) ew sample x, the decisio rule choose g ( ) = C( ) i, C( j) for i N ad j M For a x if y * = arg mi y x is paired with C() -earest eighbor classifier Examie earest classes ad classify x ito the majority of them Statistical decisio rules Maximum posterior probability (MAP) classifier Maximum Lielihood (ML) classifier Neyma-Pearso (NP) detector Bayes detector yi i (3) Features x Feature y Classifier c Raw Data Extractor Feature Class Feature represetatio - 6 - BME, KHU

Symbolic vs umeric Higher dimesioal features Feature selectio Select a subset of available features ca improve classificatio Selectio of subspace or subspace approximatio Hidde euros i MPL are feature detectors Hidde euro pruig is a id of feature selectio Feature trasformatio Affie trasformatio y = x+ b Rotatio Liear filterig Fourier trasform (DF) Discrete cosie trasform Karhue-Loeve expasio (pricipal compoet aalysis) Eigedecompositio Edge or lie detectio Other liear or oliear operatio (4) Data samplig Sample data idepedetly from the uderlyig populatio Use resamplig with radomizatio Use M-fold cross-validatio or leave-oe-out cross-validatio - 7 - BME, KHU

Artificial Neural Networ (ANN) A (artificial) eural etwor is a massively parallel distributed processor made up of simple processig uits, which has a atural propesity for storig experimetal owledge ad maig it available for use It resembles the brai i two respects: Kowledge is acquired by the etwor from its eviromet through a learig process Itereuro coectio stregths, ow as syaptic weights, are used to store the acquired owledge Properties of artificial eural etwors Noliearity Iput-output mappig Adaptivity Evidetial respose Cotextual iformatio Fault tolerace VLSI implemetability Uiformity of aalysis ad desig Neurobiological aalogy () Models of a euro Syaptic Weights b Bias Iput Sigals x x 2 x i x M w i w 2 w M w Summig Juctio v Activatio Fuctio ϕ() Neuro is a iformatio processig uit A set of syapses or coectig lis with a weight or stregth Adder or liear combier Activatio fuctio or squashig fuctio y - 8 - BME, KHU

v M = w x with w0 = b, x 0 = ad y = ϕ( v) j j j= 0 Activatio fuctio hreshold fuctio or Heaviside fuctio McCulloch-Pitts model, all-or-oe if v 0 y = ϕ() v = or 0 if v < 0 the sigum fuctio if v > 0 y = ϕ() v = sg( v) = 0 if v= 0 if v < 0 Piecewise liear fuctio (ca have a gai) if v + 2 if v + y = ϕ() v = v if < v<+ or y = ϕ() v = v if < v<+ 2 2 if v 0 if v 2 Sigmoid fuctio: strictly icreasig fuctio with a graceful balace betwee liear ad oliear behavior, for example logistic fuctio y = ϕ() v = or + exp av ( ) the hyperbolic taget fuctio y = ϕ() v = tah( v) Stochastic model (2) Sigal flow graph, architectural graph, ad Matlab represetatio Sigal flow graph - 9 - BME, KHU

x x 2 x i w i w 2 w x 0 = w 0 = v ϕ() w M b y x M Architectural graph x 0 = x x 2 y x M Matlab represetatio ( R = M) (3) Networ architecture Sigle-layer feedforward etwor - 0 - BME, KHU

Multilayer feedforward etwor - - BME, KHU

Recurret etwor or dyamic etwor (4) Kowledge represetatio Kowledge refers to stored iformatio or model used by a perso or machie to iterpret, predict, ad appropriately respod to the outside world Iformatio Prior iformatio Observatios or measuremets provide a pool of iformatio from which the examples are draw to trai the ANN Examples a set of traiig data or traiig samples Labeled supervised learig Ulabelled usupervised learig Four rules of owledge represetatio for ANN Rule Similar iputs from similar class should usually produce similar represetatio iside the etwor, ad should therefore be classified as belogig to the same category Rule 2 Items to be categorized as separate classes should be give widely differet represetatios i the etwor Rule 3 If a particular feature is importat, the there should be a large umber of euros ivolved i the represetatio of that item i the etwor Rule 4 Prior iformatio ad variaces should be built ito the desig of a eural etwor, thereby simplifyig the etwor desig by ot havig to lear them "I geeral, use your commo sese" raiig ad geeralizatio - 2 - BME, KHU

Sigle-Layer Perceptro BACKGROUND MAERIALS Ucostraied optimizatio techiques Steepest descet Newto's method Gauss-Newto method Wieer filter Adaptive filter usig LMS (least mea square) algorithm LS (least square) method () Perceptro b x x 2 x i w w 2 w i w M y x x 2 x i w i w M w w 2 b v ϕ( v) y x M x M Decisio boudary is a hyperplae, M v= wx i i + b= wx + b= 0 Ad i= y x belog to class C w x> 0 0 belog to class 0 = x C2 w x - 3 - BME, KHU

Perceptro covergece algorithm Let x[ ] = [ +, x[ ],, x [ ] ] ad = [ b w w ] Iitializatio = 0 ad w[0] = 0 Activatio Apply x [ ] ad get d [ ] Respose y [ ] = sg ( w [ ] x [ ] ) M w[ ] [ ], [ ],, [ ] Weight adaptatio (LMS) + = + η ( ) w[ ] w[ ] d[ ] y[ ] x [ ] where M, if x belog to class C d [ ] =, if x belog to class C 2 (2) Perceptro as a liear classifier (Matlab) ewp sim iit learp adapt - 4 - BME, KHU

(3) Limitatios of perceptro XOR problem - 5 - BME, KHU

Multilayer Perceptro Multilayer perceptro (MLP) Iput layer Hidde layer Output layer Feed forward Noliear activatio fuctio Bacpropagatio learig algorithm () Structure of MLP (2) Bacpropagatio learig algorithm Epoch: oe complete presetatio of the complete traiig samples At the output layer, at iteratio (ie, th traiig example) e [ ] = d [ ] y [ ] at jth euro j j j E = where C is a set of all euros at the output layer 2 [ ] ej[ ] 2 j C M j = ji i ad yj[ ] = ϕ j( vj[ ] ) i= 0 v [ ] w y[ ] Chai rule E[ ] E[ ] ej[ ] yj[ ] vj[ ] = w [ ] e [ ] y [ ] v [ ] w [ ] ji j j j ji ( ) ϕ ( ) = e [ ] v [ ] y[ ] j j j i E[ ] wji = η = ηej[ ] ϕ j vj[ ] yi[ ] = ηδ j[ ] yi[ ] w [ ] LMS algorithm ( ) δ ji E[ ] E[ ] e [ ] y [ ] ( ) j j j[ ] = = = ej[ ] ϕj vj[ ] vj[ ] ej[ ] yj[ ] vj[ ] At a hidde layer, at iteratio (ie, th traiig example) E[ ] E[ ] yj[ ] E[ ] δ j[ ] = = = ϕ j vj[ ] v [ ] y [ ] v [ ] y [ ] At jth euro, ( ) From E =, 2 [ ] e [ ] 2 C j j j j E[ ] e[ ] e[ ] v[ ] = e[ ] = e[ ] y [ ] y [ ] v [ ] y [ ] j j j with - 6 - BME, KHU

Sice e [ ] d [ ] y [ ] d [ ] ϕ ( v [ ] ) Sice = = for the output layer euro, e [ ] = ϕ ( v[ ] ) v[ ] M v[ ] v[ ] = wjyj[ ], = wj[ ] j= 0 yj[ ] E[ ] = e[ ] v[ ] wj[ ] = δ[ ] wj[ ] y [ ] herefore, ϕ ( ) j Fially, at jth euro of the hidde layer, ( ) LMS algorithm w = ηδ [ ] y[ ] Activatio fuctios Logistic fuctio ji j i ( av j ) δ [ ] = ϕ v [ ] δ [ ] w [ ] j j j j yj[ ] = ϕ j( vj[ ] ) =, a> 0 ad < vj[ ] <, + exp [ ] δ [ ] = e [ ] v [ ] j j j j Hyperbolic taget fuctio ( v [ ] ) ay [ ] ( y [ ] ) ϕ =, ad j j j j ϕ ( ) ( j j ) j ( j ) j ( j ) δ j a d [ ] y [ ] y [ ] y [ ] for output layer = ay [ ] y [ ] [ ] w [ ] for hidde layer ( ) ( ) y [ ] = ϕ v [ ] = atah bv [ ], a, b> 0 ad < v [ ] <, j j j j j b ϕ j ( vj[ ] ) = ( a yj[ ] ) ( a+ yj[ ] ), ad a δ j[ ] = ej[ ] ϕ j ( vj[ ] ) b ( d j[ ] y j[ ]) ( a y j[ ]) ( a + y j[ ]) for output layer a = b ( a y j[ ]) ( a + y j[ ]) δ [ ] w j[ ] for hidde layer a Mometum w [ ] = α w [ ] + ηδ [ ] y[ ] stabilizig effect ji ji j i - 7 - BME, KHU

Modes of traiig N { } i A set of traiig examples, ( [], i d[] i ) x epoch Radomize samples at each epoch Sequetial mode (o-lie, patter, or stochastic mode): update weight sample by sample Batch mode (o-lie, patter, or stochastic mode): update weight at the ed of epoch N N E [ ] av η ej Eav = E [ ] ad wji = η = ej[ ] w N w N = Stoppig criterio Small orm of the gradiet vector Small absolute value of chage i the average squared error per epoch = ji = ji (3) Heuristics Whe the traiig data set is large ad redudat, sequetial mode is usually faster ad better Whe the traiig data set is ot large, there are several batch mode algorithms that are faster Iformatio cotet of a traiig example Use a example that results i the largest traiig error Use a example that is differet from all those previously used Distributio of traiig examples should ot be distorted Avoid ay outlier i the traiig data set Activatio fuctio arget value Iput ormalizatio Iitializatio Use ay prior iformatio Learig rate ad mometum Every adjustable etwor parameter should have its ow idividual learig rate parameter Every learig rate parameter should be allowed to vary from oe iteratio to the ext Whe the derivative of the cost fuctio wrt a syaptic weight has the same algebraic sig for several cosecutive iteratios, the correspodig learig rate - 8 - BME, KHU

parameter should be icreased Whe the algebraic sig of the derivative of the cost fuctio wrt a syaptic weight alterates for several cosecutive iteratios, the correspodig learig rate parameter should be decreased (4) Output represetatio ad decisio rule ANN is already traied Cosider M-class classificatio problem Let x j deote jth sample (prototype) to be classified ad ANN produces output y j = y, j,, ym, j = F ( xj),, FM( xj) = F( x j) Note that the fuctio F depeds o the traiig data set ( [], i d[] i ) N { } i x What is the optimal decisio rule for classifyig the M outputs of ANN? Assigig sigle class from M distict classes: x C if F ( x ) > F( x ) for all l j j l j Assigig multiple class from M distict classes: ( ) x C if F ( x ) > threshold ex, 05 j j = (5) Geeralizatio A etwor is said to geeralize well whe the iput-output mappig is correct for test data ever used i creatig or traiig the etwor Overtraiig or overfittig problem Bias-variace trade-off Factors ifluecig geeralizatio Size of traiig set ad how represetative it is of the eviromet of iterest Architecture of ANN Physical complexity of the problem at had (6) Cross-validatio Bacpropagatio learig algorithm ecodes a iput-output mappig ito the syaptic weights ad thresholds of a MLP For better geeralizatio, partitio the traiig set ito two subsets - 9 - BME, KHU

Estimatio subset, used to trai or select the model Validatio subset, used to test or validate the model Early stoppig rule, stop traiig whe the error usig validatio subset starts icreasig (7) Networ growig ad pruig techiques Networ growig Networ pruig (8) Supervised learig viewed as a optimizatio problem Cojugate gradiet method Quasi-Newto method (9) Matlab experimets ewff iit sim adapt: leardgd, leardgdm trai: traigd, traigdm, traigda, traigdx, trairp, traicgf, traicgb, traiscg, traibfg, traioss, trailm, traibr premmx, postmmx, trammx, prestd, poststd, trastd prepca, prapca postreg - 20 - BME, KHU