Chapter 2. Structure and Properties

Similar documents
7 7.1 Chapter 7 Covalent Bonding

Microsoft PowerPoint - Chap7note

36 Chap 20 : Conjugated Systems 20.1 Stability of Conjugated Dienes Diene : 2 개의 C=C 이중결합을가진화합물 C 1,4-Pentadiene 1,3-Pentadiene 1,2-Pentadiene (unconj

슬라이드 제목 없음


(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

<B4EBC7D0BFF85F F31C7D0B1E25FB0EDB1DEB9ABB1E2C8ADC7D0315FB1E2B8BBB0EDBBE72E687770>

슬라이드 1

Chapter 2

00....

300 구보학보 12집. 1),,.,,, TV,,.,,,,,,..,...,....,... (recall). 2) 1) 양웅, 김충현, 김태원, 광고표현 수사법에 따른 이해와 선호 효과: 브랜드 인지도와 의미고정의 영향을 중심으로, 광고학연구 18권 2호, 2007 여름

Buy one get one with discount promotional strategy

Microsoft PowerPoint - analogic_kimys_ch10.ppt

歯49손욱.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

72 Chap 23 Amines 23.1 Structure and Classification Amine의분류 : 1) 질소원자에직접결합된탄소원자의수에따라 primary (1 o ), secondary (2 o ), tertiary (3 o ) amine으로분류된다. 2

PJTROHMPCJPS.hwp

Slide 1

#Ȳ¿ë¼®

rientation of Nuclear Spins in an Applied Magnetic Field 수소핵에외부자기장을걸어주면수소핵은전하를띠므로핵자기모멘트가유도 됨 Figure 13.1 : Spin states of 1 and 13 nuclei in t

79. Mechanism and thermochemistry of acid-base reactions 산 (A-) 과염기 (B - ) 사이에양성자가이동하여화학반응이일어나기위해서는두화학종이서로충돌해야한다. 이때반응이일어나기위한유효충돌은염기 B - 가 -A 의 A 쪽이아니

16-기06 환경하중237~246p

<B3EDB9AEC1FD5F3235C1FD2E687770>


KAERIAR hwp

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

歯전기전자공학개론

한국성인에서초기황반변성질환과 연관된위험요인연구

Bond angle ( 결합각 ) 과분자형태 분자의결합각 (bond angle) 과구조는전자쌍들이서로반발하고최대한멀리떨어진다는개념을활용하는원자가껍질전자쌍반발 (valence shell electron pair repulsion, VSEPR) 모형을이용하여예

Output file

Microsoft PowerPoint - Freebairn, John_ppt

Microsoft PowerPoint - ch25ysk.pptx

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

09È«¼®¿µ 5~152s

86 U = (n+1) - (m-t) 2 U = index of hydrogen deficiency n = number of carbon m = number of hydrogen and halogen t = number of nitrogen N N 2 B. arbon-

72 Chap 4 : Acids and Bases 4.1 Arrhenius acids and bases 4.2 Brϕnsted-Lowry acids and bases 4.3 Acid dissociation constants, pk a, and strengths of a

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

untitled

975_983 특집-한규철, 정원호

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

대한한의학원전학회지24권6호-전체최종.hwp


sna-node-ties

untitled

°í¼®ÁÖ Ãâ·Â

step 1-1

歯174구경회.PDF

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

기관고유연구사업결과보고

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

Microsoft PowerPoint - AC3.pptx

untitled

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

에너지경제연구 Korean Energy Economic Review Volume 17, Number 2, September 2018 : pp. 1~29 정책 용도별특성을고려한도시가스수요함수의 추정 :, ARDL,,, C4, Q4-1 -

public key private key Encryption Algorithm Decryption Algorithm 1

14.531~539(08-037).fm

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

서론 34 2

À±½Â¿í Ãâ·Â

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

114 Chap 7 : Alkynes 7.1 Structure of alkynes 7.2 Nomenclature of alkynes 7.3 Physical properties of alkynes 7.4 Acidity of 1-alkynes 7.5 Preparation

Æ÷Àå½Ã¼³94š

Microsoft PowerPoint - 7-Work and Energy.ppt

03 장태헌.hwp

09이훈열ok(163-


20 A. Mechanism 1) Base-catalyzed aldol reaction a 3 2 new bond 3-ydroxybutanal ( -hydroxyaldehyde, racemic mixture) 2 + a + pk a 20 arbanion En

< C6AFC1FD28B1C7C7F5C1DF292E687770>

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

<C0C7B7CAC0C720BBE7C8B8C0FB20B1E2B4C9B0FA20BAAFC8AD5FC0CCC7F6BCDB2E687770>

:,,.,. 456, 253 ( 89, 164 ), 203 ( 44, 159 ). Cronbach α= ,.,,..,,,.,. :,, ( )

solution map_....


X-VA-MT3809G-MT3810G-kor



e hwp

hwp

6자료집최종(6.8))

PowerPoint 프레젠테이션

~41-기술2-충적지반

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

Chapter 16

Microsoft Word - KSR2016S168

14È£À¯½Åȸº¸¸ñÂ÷.ps

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

< C7D0B3E2B5B520C0DABFACB0E8BFAD20B8F0C0C7C0FBBCBAB0EDBBE72020B9AEC1A62E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 27(5),

10 (10.1) (10.2),,

- 2 -

歯15-ROMPLD.PDF

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

일반화학 I 기말고사 Useful P

Á¶´öÈñ_0304_final.hwp


Aluminum

Transcription:

Components of Organic Chemistry Reactions: synthesis Organic compounds Structure bonding, conformation, analysis, stereochem. Reactivity interaction with other molecules: mechanism, dynamic stereochem. CareySundbergA-Chap1 1

그저익숙하도록읽는것뿐이다. 글을읽는사람이, 비록글의뜻은알았으나, 만약익숙하지못하면읽자마자곧잊어버리게되어, 마음에간직할수없을것은틀림없다. 이미읽고난뒤에, 또거기에자세하고익숙해질공부를더한뒤라야비로소마음에간직할수있으며, 또흐뭇한맛도있을것이다. - 퇴계이황 ( 금장태著 ) CareySundbergA-Chap1 2

Chapter 1. Bonding & Structure Valence Bond Theory: hybridization & resonance bonding electron pairs are localized between two atoms simple & effective but over-simplified & many exceptions Molecular Orbital Theory: Schrödinger equation bonding electrons are distributed over the entire molecule more accurate & close to the real structure but difficult to calculate & many assumptions in calculation CareySundbergA-Chap1 3

Valence Bond Theory (I) Lewis in 1916 & eitler-london in 1927 ( 2 : ) chemical bonding results from sharing of the electrons between the two atoms: localized bonding electron pairs ybridization: complex molecules (C 4 ) directed valence: Pauling in 1931; 4 bot. & 5 4 bonds rather than 2 & more effective overlap due to the highly directional 4 sp 3 orbitals: σ bonds 2 C=C 2 3 sp 2 & 1 2p or 4 sp 3, trigonal; C C 2 sp & 2 2p or 4 sp 3, digonal: 5 ( 2 C=C=C 2?) π bonds from 2 sp 3 : bent bonds CareySundbergA-Chap1 4

Valence Bond Theory (II) ybridization of strained molecules: 3-ring more p for C-C (17%, sp 5 )& more s for C- (33%, sp 2 ) bent bonds: less overlap; 7 Fig. 1.5 & 5 Fig. 1.4 electronegativity change: more electronegative (s character) C in strained molecules; 7 Fig. 1.6 propellanes: 8 Fig. 1.7; [4.4.4] sp 3 ; [2.2.2] sp 2 ; [1.1.1] inverted carbon reactive: 8 middle & bottom CareySundbergA-Chap1 5

Valence Bond Theory (III) Resonance theory: more than one Lewis structure possible for complex molecule Rule of thumb: 9 middle (a d); acrolein O + O O - C- II I C+ IV acrolein O + O - C - III V C + CareySundbergA-Chap1 6

Valence Bond Theory (IV) Application of resonance theory to acrolein a. Acrolein has properties of 5 resonance structures The real structure is their resonance hybrid b. All resonance structures satisfy the octet rule c. More stable resonance structures resemble more closely the real structure (major contributors): maximum No. of covalent bonds (I), minimum separation of unlike charges (I), negative charge on the more electronegative atom (IV/V) d. Usually, delocalization of electrons enhances stability relatively to a single localized structure: an energy barrier to rotation; 10 top (allyl cation) & 11 top (amide) CareySundbergA-Chap1 7

OEt + + OEt + OEt more stable C - - C vs O O - C - CareySundbergA-Chap1 8

Valence Bond Theory (V) Experimental proof for the resonance hybrid the weaker C=O bond: 1690 vs 1730 cm -1 (IR) the deshielded β-carbon in 1 & 13 C NMR: 115.9 136.2 18.7 136.4 137.1 CO 136.0 192.1 128.0 O 25,7 197.5 7.0 35.2 O 27.5 207.6 the chemical reactivity: 1,2-/1,4-addition of nucleophiles CareySundbergA-Chap1 9

Structural Properties of Chemical Bonds (I) Bond length: 13 Table 1.2 nearly constant for a hybridization type of carbon Bond energy: variable; 14 Table 1.3 (homolytic) eterolytic ΔE dis : more sensitive; 15 Table 1.4 eat of formation: isomers; 16 Table 1.5 stable: branched alkane & more substituted tans-alkene Polarity: different electronegativity; 17 Table 1.6 dipole moment = Σ bond dipoles; 17 Table 1.7 Mulliken electronegativity (χ) = (I + A) / 2; 18 CareySundbergA-Chap1 10

Structural Properties of Chemical Bonds (II) Polarity of hydrocarbons: 18 Scheme 1.1 electronegativity of C: sp > sp 2 > sp 3 ; C for normal sp 3 Polarity transmission: polar effect; reactivity inductive effect: successive polarization through bonds field effect: through-space interactions of the electric dipoles substituent effect on reactivity: 19 Table 1.8 Polarizability: size; 21-23 Table 1.9 & Fig. 1.8 response of electrons to nearby charges: SAB principle hardness: difficult distortion, softness: easy distortion δ δ + CareySundbergA-Chap1 11

Field Effect: Through-space Electrostatic Interaction Cl Cl Cl Cl CO 2 CO 2 pk a = 6.07 pk a = 5.67 CareySundbergA-Chap1 12

Molecular Orbital (MO) Theory: Overview (I) ψ = Eψ : accuracy vs amount of computation LCAO approximation: ψ = c 1 φ 1 + c 2 φ 2 + + c n φ n minimum basis set: combination of AO chosen 2s, 2p x, 2p y, 2p z for C, N, O and 1s for semiempirical calculations: use of experimentally determined parameters [ET, CNDO, MINDO-3, MNDO, AM1, MM2, PM3]; faster, simpler but limited applications ab initio calculations: absence of adjustable parameters (fewer assumptions) using SCF [STO-3G, 4-31G, 6-31G]; more reliable, accurate but more complex, time-consuming comparison between the two calculations: 29 Table 1.12 CareySundbergA-Chap1 13

MO Theory: Overview (II) Results obtainable from MO calculations the energy of each MO & charge distributions total electronic energy of the molecule relative to the atoms the calculated molecular energy relative stabilities of isomeric molecules conformational effects (the total energy as a function of molecular geometry) the minimum energy: the most favorable molecular structure the coefficients of the AOs contributing each MO applicable to the situation in the gas phase (on a single molecule) CareySundbergA-Chap1 14

MO Theory: Applications (I) Charge distribution of a molecule the electron density (q) at each atom r : C 3+ ; 27 Table 1.10 q r = n j c jr2, n=no. of e -, c j =coefficient at jth MO j 7 MOs from 3 1s & C 2s, 2p x, 2p y, 2p z 3 occupied MOs with 2 e - for each q C =3.565 e -, q =0.812 e - : total charge = (+0.435) [(4-3.565)] + 3(+0.188) [3(1-0.812)] = +1.000 LUMO: p z (localized purely on the carbon atom) cf.: 3 sp 2 & 1 p z from VB theory CareySundbergA-Chap1 15

MO Theory: Applications (II) eat of reaction: Δ f = Δ reactant - Δ product isodesmic reactions: test of reliability; 28-9 Table 1.11-12 the same No. of formal bonds of each type on each side Structure & energy: C 3 +, C 3, C 3 - ; 4-31G basis set Fig. 1.9, 29: C 3 + & C 3, planar; C 3 -, non-planar Substituent effects: π-donor vs inductive effects X-C + 2 vs -C + 2 : 29 middle & 30 Table 1.13 X-C - 2 vs -C2 - : 31 Table 1.14 vinyl: rotational barrier of an allyl cation & anion CareySundbergA-Chap1 16

ückel Molecular Orbital (MO) Theory (I) Simple but useful for the conjugated compounds assumption: the π-system can be treated independently of the σ framework in conjugated planar molecules (orthogonality) & mainly determines the chemical and spectroscopic properties Energy levels for each MO E=α+m j β, m j =2cos[jπ/(n+1)]: linear polyenes; 32 Table 1.15 α: Coulomb integral, a constant for all carbon atoms β: resonance integral, 0 for nuclei of nonbonding distance DE = E polyene - E ethylene = (6α+6.988β) - (6α+6β) = 0.988β, β 18 kcal/mol; [2(α+1.802β)+2(α+1.247β)+2(α+0.445β)] CareySundbergA-Chap1 17

ückel Molecular Orbital (MO) Theory (II) Coefficients of 2p AO of atom r for each MO: 32 bot. a node between different signs: antibonding; 34 Fig. 1.10 bonding between the similar size in concerted reactions ückel s rule: planar monocyclic conjugated polyenes aromatic: [4n+2] e - in the π system; antiaromatic: [4n] e - benzene-aromatic vs cyclobutadiene-antiaromatic E=α+m j β, m j =2cos(2jπ/n): 35 Fig. 1.11 (annulenes) DE benz = 2β vs DE cybu = 0; (aromatic) vs (antiaromatic) Frost s circle: a mnemonic; 35 Fig. 1.12 Charged C 3 3 & C 5 5 systems: 36 Fig. 1.13 CareySundbergA-Chap1 18

Calculation of Total Electron Energy E Cyclobutadiene: E cybu = 4α + 4β j=0, m 0 = 2cos(0/4) = 2; j =±1, m ±1 = 2cos(±2π/4) = 0; j=+2, m +2 = 2cos(4π/4) = -2; E 1 = α + 2β, E 2 = E 3 = α, E 4 = α -2β (empty) DE cybu = E cybu E ethylene = [2(α+2β)+1α+1α] (4α+4β) = 0 Benzene: E benz = 6α + 8β j=0, m 0 = 2; j =±1, m ±1 = 2cos(±2π/6) = 1; j=±2, m ±2 = 2cos(±4π/6) = -1; j=+3, m +3 = 2cos(+6π/6) = -2; E 1 = α + 2β, E 2 = E 3 = α + β, E 4 = E 5 = α - β (empty), E 6 = α -2β (empty) DE benz = E benz E ethylene = [2(α+2β)+4(α+β)] (6α+6β) = 2β CareySundbergA-Chap1 19

MO Energy Level of Acyclic Polyenes Allyl cation: E = 2α + 2.83β; anion: E = 4α + 2.83β Ψ 1 [E = α + 1.414β], Ψ 2 [E = α], Ψ 3 [E = α 1.414β] Butadiene: E = 4α + 4.47β Ψ [E = α + 1.618β], Ψ 1 2 [E = α + 0.618β] Ψ [E = α - 0.618β], Ψ 3 4 [E = α - 1.618β] Pentadienyl cation: E = 4α + 5.46β Pentadienyl anion: E = 6α + 5.46β Ψ 1 [E = α + 1.732β], Ψ 2 [E = α + 1.000β], Ψ 3 Ψ 4 [E = α - 1.000β], Ψ 5 [E = α 1.732β] [E = α] CareySundbergA-Chap1 20

Qualitative Application of MO Theory(I) Rules for construction of MO energy level diagram total No. of MOs = No. of AOs; aufbau principle the symmetry of MOs = the symmetry of the molecule symmetric: the same sign, antisymmetric: opposite sign orthogonal orbitals do not interact: p x, p y, p z the energy of more electronegative atoms is lower the more the No. of nodes, the higher the energy Diatomic molecules with 1s AO: 37 Fig. 1.14 2 +, 2, e 2 +, e 2, e + : 61, 103, 60, (0), 43 kcal/mol CareySundbergA-Chap1 21

Qualitative Application of MO Theory(II) Energy level diagram of CO: 38 Fig. 1.15 total No. of MOs = 10 (C & O: 1s, 2s, 2p x, 2p y, 2p z ; 14 e - ) the MOs 1s e - : negligible due to the large energy gap 10 e - in 5 MOs from 8 MOs: 4 bonding & 1 antibonding MO energy diagram of C 4 : 40 Fig. 1.18 ab initio calculation results: no 4 equivalent MOs qualitative analysis of energy diagram frame of reference: a cube; 37 Fig. 1.14 3 C 2 axes (x, y, z): symmetrical or antisymmetrical CareySundbergA-Chap1 22

Application of MO Theory to Reactivity (I) Perturbation MO (PMO) theory for new MOs change of the MO pattern with a change in structure the changes are small & the new MO pattern would be similar to known MOs of the similar system strongest interactions between MOs with close energy FMO theory: important interactions between OMO of one reactant & LUMO of the other; relative energy only MOs of matching symmetry can interact Reactivity difference between C 2 =C 2 & C 2 =O ethylene with E + & formaldehyde with Nu: 48 Fig. 1.25 CareySundbergA-Chap1 23

Reactivity Difference: C 2 =C 2 & C 2 =O LUMO π OMO π E + Nu: π LUMO π OMO 2 C C 2 2 C O CareySundbergA-Chap1 24

Application of MO Theory to Reactivity (II) Substituent effects on the reactivity of double bonds ethylene with a π-donor: reactive to E + ; 49 top figure allyl anion: reactive site at the terminal atoms; β-c & N ethylene with a π-acceptor: reactive to Nu; 49 middle butadiene: larger coefficient at the β-c of LUMO prediction with VB theory: resonance; 49 bottom Concerted reactions & symmetry: 53 bottom allyl cation & ethylene: forbidden; 51 Fig. 1.27 allyl cation & butadiene: allowed; 52 Fig. 1.28 CareySundbergA-Chap1 25

Application of MO Theory to Reactivity (III) yperconjugation of allylic systems interaction between σ & π bonds: σ bonds not on the nodal plane of π-system; 54 middle eclipsed conformation favored: 1.5-2.0 kcal/mol repulsive & attractive interactions: 55 top & Fig. 1.30 slightly longer C 3 - & C 1 =C 2 but shorter C 3 -C 2 prediction with VB theory: no-bond resonance; 55 Rotational barrier: 3 kcal/mol, ethane; 55 middle hindered rotation due to π character of some MOs: 56 Fig. 1.31 CareySundbergA-Chap1 26

Other Quantitative Methods Molecular graphs & critical points: 58 Fig. 1.32 Partial structures from MO quantitative calculations partition of total electron density among atoms applications: 59-62 Table 1.17 & Figs. 1.33-5 Density functional theory (DFT): the B3LYP method simpler calculation & rather accurate: 63 Tables 1.18-9 electronegativity: V = n / r : 61 top & 64 Table 1.20 n: No. of valence-shell e -, r : effective atomic radius hardness & V: acidity & stability; 64 & 22 Table 1.21 & 9 Quantitative VBT: localized MOs & delocalization CareySundbergA-Chap1 27