Drug Target (Study on computational method of discovering new target in drug discovery) :

Similar documents
pdf 16..

À±½Â¿í Ãâ·Â

untitled

°í¼®ÁÖ Ãâ·Â

04-다시_고속철도61~80p

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

<31325FB1E8B0E6BCBA2E687770>

02-³í´Ü1

위해 사용된 기법에 대해 소개하고자 한다. 시각화와 자료구조를 동시에 활용하는 프로그램이 가지는 한계와 이를 극복하기 위한 시도들을 살펴봄으로서 소셜네트워크의 분석을 위한 접근 방안을 고찰해 보고자 한다. 2장에서는 실험에 사용된 인터넷 커뮤니티인 MLBPark 게시판

PowerPoint 프레젠테이션

<B3EDB9AEC1FD5F3235C1FD2E687770>

#Ȳ¿ë¼®

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

<333820B1E8C8AFBFEB2D5A B8A620C0CCBFEBC7D120BDC7BFDC20C0A7C4A1C3DFC1A42E687770>

08_À±¹ÎÈ£0927

untitled

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

03-최신데이터

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

Output file

09È«¼®¿µ 5~152s

歯1.PDF

PowerPoint 프레젠테이션

6À嵶¼º¿¬±¸ºÐ¾ß

06_ÀÌÀçÈÆ¿Ü0926


지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

11¹Ú´ö±Ô

석사논문.PDF

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

김기남_ATDC2016_160620_[키노트].key

09구자용(489~500)

I

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

DBPIA-NURIMEDIA

전용]

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

Manufacturing6

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

歯CRM개괄_허순영.PDF

6.24-9년 6월


09권오설_ok.hwp

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

Journal of Educational Innovation Research 2019, Vol. 29, No. 1, pp DOI: (LiD) - - * Way to


<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

<372E20B9DAC0B1C8F12DB0E62E687770>

<C0CCBCBCBFB52DC1A4B4EBBFF82DBCAEBBE7B3EDB9AE2D D382E687770>

Software Requirrment Analysis를 위한 정보 검색 기술의 응용

03.Agile.key

-

Journal of Educational Innovation Research 2016, Vol. 26, No. 3, pp DOI: * The Grounds and Cons

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특

PowerPoint 프레젠테이션

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

퍼스널 토이의 조형적 특성에 관한 고찰

DBPIA-NURIMEDIA

230 한국교육학연구 제20권 제3호 I. 서 론 청소년의 언어가 거칠어지고 있다. 개ㅅㄲ, ㅆㅂ놈(년), 미친ㅆㄲ, 닥쳐, 엠창, 뒤져 등과 같은 말은 주위에서 쉽게 들을 수 있다. 말과 글이 점차 된소리나 거센소리로 바뀌고, 외 국어 남용과 사이버 문화의 익명성 등

Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

시안

[ReadyToCameral]RUF¹öÆÛ(CSTA02-29).hwp

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

02( ) CPL12-16.hwp

,.,..,....,, Abstract The importance of integrated design which tries to i

DBPIA-NURIMEDIA

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

인문사회과학기술융합학회

05_±è½Ã¿Ł¿Ü_1130

Copyright 2012, Oracle and/or its affiliates. All rights reserved.,.,,,,,,,,,,,,.,...,. U.S. GOVERNMENT END USERS. Oracle programs, including any oper

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

정보기술응용학회 발표

<B9AEC8ADC4DCC5D9C3F7BFACB1B82D35C8A32833B1B3292E687770>

IKC43_06.hwp

歯목차45호.PDF

목 차 요약문 I Ⅰ. 연구개요 1 Ⅱ. 특허검색 DB 및시스템조사 5

Microsoft PowerPoint - AC3.pptx

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

< FC3D6C1BEBCF6C1A45FB1E2B5B6B1B3B1B3C0B0B3EDC3D E687770>


<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

I&IRC5 TG_08권

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

化學科

Portal_9iAS.ppt [읽기 전용]

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

05( ) CPLV12-04.hwp


12È«±â¼±¿Ü339~370

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

Æ÷Àå½Ã¼³94š

서론 34 2

F1-1(수정).ppt

DBPIA-NURIMEDIA


Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

Transcription:

Drug Target (Study on computational method of discovering new target in drug discovery) :. 2006 6 26 2006 8

,,,. 12 9.. target target..,. in silico. drug, disease, target (PharmDB) (phexplorer). drug, disease, target,. drug, disease, target, target drug target. target. target target 1% 43%. :,,,, Java : 99448-099

1. 1. 2. 2. 1. Network 2. Pajek & Prefuse 3. Cell Signaling and Motif 3. phexplorer - Visualization Tool 4. Discovery of new target 5. 6. 7.

List of Figures Figure 1. Pajek Figure 2. Pajek Figure 3. Prefuse Figure 4. Signaling network of mammalian hippocampal CA1 neuron Figure 5. Network Motif Figure 6. Map of regulatory profile within cellular network Figure 7. http://pharmdb.org Figure 8. Drug-Target-Disease Network Figure 9. phexplorer Figure 10. Popup Menu on Target Figure 11. Expansion Figure 12. DST Method Figure 13. DDST Method Figure 14. Related Targets of Acetaminophen Figure 15. Related Diseases of Acetaminophen Figure 16. Targets of Related Diseases Figure 17. Shared Targets of Releated Diseases Figure 18. Result of Brute-Force Method Figure 19. Result of DST Method - Test 1 Figure 20. Result of DST Method - Test 2 Figure 21. Result of DST Method - Test 3 Figure 22. Result of DDST Method - Test 1 Figure 23. Result of DDST Method - Test 2 Figure 24. Result of DDST Method - Test 3 Figure 25. Result of CS Method - Test 1 Figure 26. Result of CS Method - Test 2 Figure 27. Result of CS Method - Test 3 Figure 28. Propose a new Target Figure 29. Input Dialog Figure 30. Proposed Target

1. 1. (drug discovery) target Target Identification, target Hit Identification, Lead Identification, receptor Lead Optimization, Candidate Drug Prenomination, 1 Concept Testing, 2, 3 Development For Launch, Launch Phase, 4 ( ) Life Cycle Support. 12, 9. 100 1... drug target. drug target. irgb PharmDB (http://pharmdb.org) target. 2...,.. Mycoplasma genitalium E-Cell, Health center Virtual Cell

, KEGG,, NCBI Entrez. target drug, disease Therapeutic Target Databse(TTD) Protein target Nucleic Acid target synonym, disease drug, function target. Drug Bank drug drug target, Java structural searching. brute force drug-target matching silico. PharmDB phexplorer target drug target PharmDB in silico.

2. 1. Network Network( ) graph data N = (V,L,P,W). A graph g = ( V, L) V vertex, A arc, E edge L = E A. P: Vertex value function W: Line value function (directed, undirected, mixed). 2-mode networks Multi-relational networks Temporal networks Petri s nets, p-graphs, 2. Pajek & Prefuse Pajek (Figure 1) visualize. social network large scale. Prefuse (Figure 3) visualization tool Pajek. 3. Cell Signaling and Motif Motif. A. Ma ayan[5] 545 ligand & protein node 1259 function & biochemical mechanism link Mammalian hippocampal CA1 neuron signaling network Motif Motif cell signaling. MotifMFinder Program[6]. Motif local density interconnectedness DIP(Density of Information Processing) DIP.

Figure 1. Pajek Figure 2. Pajek

Figure 3. Prefuse

, Motif concentration MLI(Motif Location Index). MLI. cellular network regulatory profile map Figure 6. positive feedback loop negative feedback loop.

Figure 4. Signaling network of mammalian hippocampal CA1 neuron Figure 5. Network Motif

Figure 6. Map of regulatory profile within cellular network

3. phexplorer - Visualization Tool PharmDB drug, target, disease phexplorer. TTD DrugBank drug target, disease. Motif pathway. phexplorer Java network visualization library prefuse[2] PharmDB drug target, disease. drug-target-disease target target protein-protein interaction, target BLAST search homology research. PharmDB (Figure 7) Target Name Drug Name, Disease Name keyword GraphView Figure 8 drug-disease-target. Mouseover. Explorer Explorer. Antialiasing phexplorer speed Java applet (Linux MacOS Unix ). Explorer mode overview. target, drug, disease target drug, disease. Target Figure 10 Search BLAST search target protein-protein interaction target. expansion phexplorer Figure 11. Figure 11 ( ),, drug-targetdisease mark/unmark. phexplorer phexplorer. ( ) BLAST search. Self protein-protein interaction. protein-protein interaction edge

Figure 7. http://pharmdb.org Figure 8. Drug-Target-Disease Network

Figure 9. phexplorer Figure 10. Popup Menu on Target

Figure 11. Expansion

4. Discovery of new target phexplorer drug target. drug disease. disease target disease drug. target. phexplorer Acetaminophentarget Figure 14. Acetaminophen drug Figure 15. Figure 15 Acetaminophen Cyclogenase-3 target drug Pain Unspecified Inflammation. disease target Figure 16. disease Mark Delete target Figure 17 Cyclooxygenase-3, Peroxisome proliferator activated receptor gamma, Inhibitor of nuclear factor kappa-b kinase. Acetaminophen target, Cyclooxygenase-3 Acetaminophen drug target.. 1. UMAD 1 disease target (DST) DST(Disease Shared Target) method target drug disease target target. Different diseases and same target UMAD Disease Disease Disease Disease Target Target Target Target Target Figure 12. DST Method

2. UMAD disease drug target (DDST) DDST(Disease Drug Shared Target) target drug disease drug target target. DST, DDST. Figure 13. DDST Method targettarget disease drug. target drug UMAD target target,. PharmDB MySQL, mysqlpp 2.0.6 DB PharmDB drug list. drug target, disease. PharmDB. 2 PharmDB target : 2830

PharmDB disease : 811 PharmDB drug : 1192 target drug: 260 disease drug: 641 551 drug 811 disease, 2830 target

Figure 14. Related Targets of Acetaminophen Figure 15. Related Diseases of Acetaminophen

Figure 16. Targets of Related Diseases Figure 17. Shared Targets of Releated Diseases

5. target target disease drug(degree). target. degree. Test 1, Test 2, Test 3. Test 1: Degree 1 Test 2: Degree 2 Test 3: Degree 3 Brute-force Method target drug target target. PharmDB target target (p1). drug p1. n( Target) p 1 = n( Target) 1. 2830 target target Figure 18. Result of Brute-Force Method

Brute-force method target 0. DST DDST target target (p2). drug p2. n( Target Target) p2 = n( Target) DST (Disease-Shared-Target) method 1. Test 1 target Figure 19. Result of DST Method - Test 1 2. Test 2 target

Figure 20. Result of DST Method - Test 2 3. Test 3 target Figure 21. Result of DST Method - Test 3 DST method Test 1 Test 3 target.

DDST (Disease-Drug-Shared-Target) method 1. Test 1 target Figure 22. Result of DDST Method - Test 1 2. Test 2 target Figure 23. Result of DDST Method - Test 2 3. Test 3 target

Figure 24. Result of DDST Method - Test 3 DDST method Test1 Test3. Combined search DST DDST. p2 DST DDST. 1. Test 1 target

Figure 25. Result of CS Method - Test 1 2. Test 2 target Figure 26. Result of CS Method - Test 2 3. Test 3 target

Figure 27. Result of CS Method - Test 3 Combined search method target. DDST method DDST method target target.

6. DST method target. DDST method DST method target drug target target. Combined search DDST method. target degree 1, 2, 3 target. target target. phexplorer drug Propose New Target. Drug Figure 28. method Test 1, Test 2, Test 3 target degree (Figure 29). target degree Filter Value. phexplorer target. (Figure 30) PharmDB drug, target, disease drug target. target 80~90% target PharmDB target. DDST method combined search method disease degree, disease degree target. BLAST protein-protein interaction target.

Figure 28. Propose a new Target Figure 29. Input Dialog

Figure 30. Proposed Target

7. [1] Batagelj, V. and A. Mrvar, Pajek: Analysis and Visualization of Large Networks, in Graph Drawing Software, Springer, p. 77-103, 2003. [2] Jeffrey Heer, prefuse: a software framework for interactive information visualization, in Masters of Science, Computer Science Division, University of California, Berkeley, 2004 [3] Gyuman Yoon, Kyoohyung Rho, Philip M. Kim, Byungnam Kahng, Sunghoon Kim, Systematic analysis of commercial drugs, biological targets, and related diseases using network theory, in Satellite Meeting of STATPHY 22, 2004 [4], Biocomplex networks: identification of essential genes and characterization of protein regulation networks = :,, 2006 [5] A. Ma ayan, S. L. Jenkins, S. Neves, A. Hasseldine, E. Grace, B. Dubin-Thaler, N. J. Eungdamrong, G. Weng, P. T. Ram, J. J. Rice, A. Kershenbaum, G. A. Stolovitzky, R. D. Blitzer, R. Iyengar, Formation of regulatory patterns during signal propagation in a mammalian cellular network, Science 309, 1078-1083, 2005 [6] M. Barrios-Rodiles, K. R. Brown, B. Ozdamar, R. Bose, Z. Liu, R. S. Donovan, F. Shinjo, Y. Liu, J. Dembowy, I. W. Taylor, V. Luga, N. Przulj, M. Robinson, H. Suzuki, Y. Hayashizaki, I. Jurisica, J. L. Wrana, High-throughput mapping of a dynamic signaling network in mammalian cells, Science 307, 1621-1625, 2005 [7], = (A)Development of modeling system through a development of model and data integration methodology of systems biology, KAIST,, 2005 [8] K. Lindpaintner, Genetics and genemoics: impact on drug discovery and development, in Proceedings of the Fifth Annual international Conference on Computational Biology (Montreal, Quebec, Canada, April 22-25, 2001). RECOMB '01. ACM Press, New York, NY, 221-222, 2001. [9] M. Kashtan, S. Itzkovitz, R. Milo, U. Alon, Bioinformatics 20, 1746, 2004

Abstract Developing a new drug is one of the most time consuming and expensive field of science. Moreover, it requires experts from multi-disciplinary fields of biology, chemistry, biochemistry and molecular biology. On average, it takes 12 years and costs 9 billion dollars in order to develop one drug, and even after the development, there is a risk of not getting approved for sale by the Food and Drug Administration (FDA) in the United States. For pharmaceutical companies, it is a huge risk to invest that much time and money to develop one drug. However, with advancement of computer science and engineering, many research groups are attempting to develop in silico algorithms or tools (software) to narrow down candidate drugs or better understand the mechanism of disease. Doing so would reduce the development time and save money significantly. In this thesis, a computational methodology for finding new targets of existing drugs is discussed. First, network analysis tool (phexplorer) is developed based on the drug, disease and target database (PharmDB). phexplorer represents drug, disease and target relationships as an undirected graph; each node can be expanded and deleted by users. Then, a new algorithm is proposed to find new targets of drug from drug, disease and target relationships using phexplorer. Results show that the algorithm finds new targets better than the brute-force method. The brute-force method shows 1% of discovery ratio but the proposed algorithm shows up to 43% of discovery ratio. Keyword: Bioinformatics, Drug discovery, Bio information database, Interacting Network, Java Student number: 99448-099