pissn eissn J Milk Sci Biotechnol 2017;35(3): REVIEW 비피도박테리아의생존성증진을위한캡슐화기술 송민유

Similar documents
DBPIA-NURIMEDIA


DBPIA-NURIMEDIA

- 1 -

012임수진

pissn eissn J. Milk Sci. Biotechnol. 2018;36(4): ARTICLE 초음파를이용한프로바이오틱스분말의유통기한연

06_À̼º»ó_0929

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

06_ÀÌÀçÈÆ¿Ü0926

대한한의학원전학회지24권6호-전체최종.hwp

<30312DC1A4BAB8C5EBBDC5C7E0C1A4B9D7C1A4C3A52DC1A4BFB5C3B62E687770>

DBPIA-NURIMEDIA

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

03-ÀÌÁ¦Çö

<30345F D F FC0CCB5BFC8F15FB5B5B7CEC5CDB3CEC0C720B0BBB1B8BACE20B0E6B0FCBCB3B0E8B0A120C5CDB3CE20B3BBBACEC1B6B8ED2E687770>

09권오설_ok.hwp

Lumbar spine


DBPIA-NURIMEDIA

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

DBPIA-NURIMEDIA

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

DBPIA-NURIMEDIA

hwp

139~144 ¿À°ø¾àħ

03-서연옥.hwp

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

ÀÌÁÖÈñ.hwp

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

hwp

학습영역의 Taxonomy에 기초한 CD-ROM Title의 효과분석

04-다시_고속철도61~80p

(....).hwp

로의 흡수 및 에너지 대사 등을 조절한다 면서 유산균은 유해균의 성장을 억제하면서 동시에 유산균의 증식 을 도울 수 있는 능력이 있다. 따라서 프레바이오틱스(prebiotics)나 프로바이오틱스가 함유된 식품이나 의약 품을 꾸준히 섭취하는 것이 중요하다 고 강조했다.

(5차 편집).hwp

½Éº´È¿ Ãâ·Â

11¹Ú´ö±Ô


°í¼®ÁÖ Ãâ·Â

04_이근원_21~27.hwp

Main Title

À±½Â¿í Ãâ·Â

인문사회과학기술융합학회

pissn eissn J. Milk Sci. Biotechnol. 2019;37(1): ARTICLE 유아분변에서분리한비피도박테리아의프로바이오틱스기

±èÇö¿í Ãâ·Â

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

歯1.PDF

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

07_Àü¼ºÅÂ_0922

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

#Ȳ¿ë¼®

02양은용

01이정훈(113~127)ok

08김현휘_ok.hwp

DBPIA-NURIMEDIA

¨ë Áö¸®ÇÐȸÁö-¼Û°æ¾ðOK

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

(72) 발명자 박종현 서울특별시 송파구 양재대로 1218, 올림픽선수촌아 파트 호 (방이동) 이영덕 경기도 남양주시 화도읍 녹촌로 87-29, 신창현두산 위브아파트 101동 1604호 이 발명을 지원한 국가연구개발사업 과제고유번호

<32382DC3BBB0A2C0E5BED6C0DA2E687770>

(

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: * A Research Trend

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

Rheu-suppl hwp

<303038C0AFC8A3C1BE5B315D2DB1B3C1A42E687770>

차 례... 박영목 **.,... * **.,., ,,,.,,

12이문규

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

30이지은.hwp

Can032.hwp

정보기술응용학회 발표

스포츠과학 143호 내지.indd

서론 34 2

06_±è¼öö_0323

½Ç°ú¸Ó¸®¸»¸ñÂ÷ÆDZÇ(1-5)¿Ï

27송현진,최보아,이재익.hwp

16(1)-3(국문)(p.40-45).fm

DBPIA-NURIMEDIA

???? 1

A 617

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

주요경력 ~ present 매일유업중앙연구소유제품연구센터이사 / 센터장 ~ 한국야쿠르트중앙연구소 [ ~ ] 연구기획팀 / 팀장 [ ~ ] 유제품연구팀 / 팀장 [1989.

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

, ( ) 1) *.. I. (batch). (production planning). (downstream stage) (stockout).... (endangered). (utilization). *

jaeryomading review.pdf

Buy one get one with discount promotional strategy

12È«±â¼±¿Ü339~370

45-51 ¹Ú¼ø¸¸


10(3)-09.fm

(......).hwp

03이경미(237~248)ok

Coriolis.hwp

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

14.531~539(08-037).fm

13장문현(541~556)ok

untitled

10송동수.hwp

Transcription:

pissn 2384-0269 eissn 2508-3635 J Milk Sci Biotechnol 2017;35(3):143-151 https://doi.org/10.22424/jmsb.2017.35.3.143 REVIEW 비피도박테리아의생존성증진을위한캡슐화기술 송민유 박원서 유자연 함준상 * 농촌진흥청국립축산과학원 Microencapsulation Technology for Enhancement of Bifidobacterium spp. Viability: A Review Minyu Song, Won Seo Park, Jayeon Yoo, and Jun-Sang Ham * National Institute of Animal Science, RDA Received: September 18, 2017 Revised: September 25, 2017 Accepted: September 26, 2017 *Corresponding author : Jun-Sang Ham National Institute of Animal Science. RDA. Wanju, Korea. Tel : +82-63-238-7366, Fax : +82-63-238-7397, E-mail : hamjs@korea.kr Copyright 2017 Korean Society of Milk Science and Biotechnology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/ licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The intestinal microbiota has been shown to have a vital role in various aspects of human health, and accumulating evidence has shown the beneficial effects of supplementation with bifidobacteria for the improvement of human health, ranging from protection against infection to various positive effects. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Microencapsulation of probiotic bacterial cells provides protection against adverse conditions during processing, storage, and gastrointestinal passage. In this paper, we review the current knowledge, future prospects, and challenges of microencapsulation of probiotic Bifidobacterium spp. Keywords Bifidobacterium, encapsulation, viability 서론 유익한박테리아는종종기능성식품및영양보충제에포함되어생균제로섭취된다. 이는사람뿐만 아니라, 가축에서건강을증진하고, 병원균부담을경감하기위해직접급여하는미생물 (direct-fed microbials) 을포함한다 (Puccio et al., 2007; Neal-McKinney et al., 2012; Watson and Preedy, 2015). Bifidobacterium longum 은비피도박테리움속내알려진 48 분류군의하나로인체의위장 관 (GIT, Gastrointestinal tract) 에정착한다 (Milani et al., 2014; Sun et al., 2015). 이절대혐기 균은유아장관의초기정착자들중의하나이지만, 성인장관에서는낮은농도로존재한다 (Schell et al., 2002; Sela et al., 2008). Bifidobacterium longum, infantis, 그리고 suis 는이전에별개 로분류되었으나, 최근에 B. longum 의아종 (subspecies) 으로재분류되었다 (Sakata et al., 2002). 이들이하나의종으로통일된것은일차적으로는이들그룹사이에유전적및표현형적유사성이공유 된데기초한다. Bifidobacterium animalis subsp. lactis 가종종프로바이오틱으로사용되는반면, B. longum 은인류와함께진화한것과같은특별한관심을받는다. 이것은 B. longum 이모유올리 고당을활용하고, 유아에서성년까지보호적장관미생물균총을확립한다는것에서명확하다 (Sela and Mills, 2010). Bifidobacterium longum 은다양한전달방식을이용하여여러가지프로바이오 틱스적용에효율적으로이용된다 (Adhikari et al., 2000; Fortin et al., 2011; Amine et al., 2014; Lewis et al., 2015). 프로바이오틱스가건강에유익한영향을주기위해서는상대적으로많은양이 권장되며, 전형적으로일일 10 6 ~10 7 CFU/g 이다 (Krasaekoopt et al., 2003; Roy, 2005). 그런데, 프 리바이오틱세포를식품에직접첨가하는것은저장및장관통과시상당한세포생존성감소를가져 온다 (Sultana et al., 2000; de Vos et al., 2010). 그러므로, 저장및소화과정에서이들프로바이오 J Milk Sci Biotechnol Vol. 35, No. 3 143

Song et al. 틱스는건강에유익함을달성할수있는권장수준아래로생존성이감소될지모른다. 프로바이오틱세포를하이드로겔매트릭스내에캡슐화하면외부환경요인으로부터보호되어가공, 저장및소화동안박테리아생존성을증진한다 (de Vos et al., 2010; Fareez et al., 2015; Yeung et al., 2016). 캡슐화는장관내에정확한활동위치에서프로바이오틱스방출을조절함으로써프로바이오틱효율을증진시킬수도있다 (de Barros et al., 2015; Zhang et al., 2015). 본론 1. 캡슐화에의한프로바이오틱스보호마이크로캡슐화는하이드로콜로이드물질코팅내에박테리아세포를포집하는이화학적또는기계적공정으로높은산도와낮은 ph, 담즙산염, 냉온충격 ( 냉동이나동결건조와같은공정조건으로유발 ), 산소, 열충격 ( 분무건조와같은공정으로유발 ), 그리고화학적항생제와같은악조건에서보호한다 (Adhikari et al., 2000; Krasaekoopt et al., 2006; Sultana et al., 2000; Mortazavian et al., 2008; Krasaekoopt et al., 2004; Hansen et al., 2002). 다른이점으로는관능적안정성증가나제품내균일한분포를위한세포의고정화도달성될수있다 (Mortazavian et al., 2007). 발효제품의높은산도와낮은 ph는특히냉장저장중프로바이오틱스의생존성손실을일으키는주요요인이다 (Shah et al., 1995; Dave and Shah, 1997). 프로바이오틱캡슐화에일반적으로사용되는기술은유화 (emulsion), 압출 (extrusion), 분무건조 (spray drying), 동결건조 (freeze drying), 그리고전분에부착하는것이다. Kebary et al.(1998) 은비피도박테리아를 alginate로캡슐화하여냉동아이스밀크내생존성을유의적으로증가시킨반면, κ-carrageenan 사용시에는효과가없었음을보였으며, 우유내에캡슐화된 B. longum 이캡슐화안된세포와비교시저장중높은생존성을보였다 (Hansen et al., 2002). 냉장저장중요구르트내 B. infantis 의높은생존성은세포가 gelatin-xanthan 혼합물로캡슐화되었을때보고되었다. 캡슐화공정후비드의평균크기는 3 mm이었다 (Sun and Griffiths, 2000). alginate-starch 혼합물로캡슐화되고, 비드크기가 0.5~1.0 mm로캡슐화된프로바이오틱스는요구르트에서저장중좀더생존성이높다 (Sultana et al., 2000). Lee and Heo (2000) 는칼슘 alginate 로캡슐화된 B. longum 이위액유사조건 (ph 1.5) 에서생존성이상당히증가됨을보였으며, 캡슐내프로바이오틱스의사멸율이 alginate 농도 (1~3%), 비드크기 (1~3 mm), 그리고초기세포수가증가함에비례하여감소됨을발견했다. 위와유사한조건 (ph 1.5) 은 B. infantis 의생존수를극히낮추지만 (30분후 1.23 10 9 에서 <10 cfu/ml), 캡슐화후에는같은조건에서생존성손실이처음생균수의 0.67% 를초과하지않았다 (Sun and Griffiths, 2000). 저항전분은위산, 중성 ph, 그리고췌장소화효소에분해되지않고 비드가소장에들어갔을때세포를방출하기때문에프로바이오틱스캡슐화목적에효과적임이밝혀졌다 (Ebglyst et al., 1992; Sun and Griffiths, 2000). 코팅재료의형태와농도뿐만아니라, 캡슐의지름도프로바이오틱스의생존성을증가시키는결정적요소가된다. 2. 캡슐화재료중합체시스템에서프로바이오틱미생물의캡슐화는낮은 ph와높은담즙농도로부터프로바이오틱스를보호하기위해실험실규모의공정은쉬워보일수있다 (Anal and Singh, 2007; Heidebach et al., 2010; Lian et al., 2002; Peres et al., 2012; Huq et al., 2013). 그런데, 이공정의스케일업은산업적투자가필요하다. 캡슐화재료의선택은캡슐의기능적특성과사용되는코팅공정에달려있다. 프로바이오틱미생물캡슐화에일반적으로사용되는재료는 κ- carrageenan, alginate, cellulose acetate phthalate, 변성전분, 키토산, 젤라틴, xanthan, gum arabic, 그리고동물성단백질 ( 우유, 젤라틴 ) 이다. 다양한기술로생산된캡슐을추가적필름으로코팅하면저장중산소에노출을방지할뿐만아니라, 산성 ph에서안정성을개선할수있다 (Jung et al., 2007; Krasaekoopt et al., 2004; Lee et al., 2004). Alginate 캡슐의코팅은외부에 1~2 μm 의균일층을생성하고, 비피도박테리아의생존을개선할수있다 (Annan et al., 2008). 3. 캡슐화방법 1) 사출법 (extrusion) 과유화법 (emulsion) 사출과유화기술은프로바이오틱미생물캡슐화의 2가지기초적방법이다. 일반적으로, 사출기술은간단하고저렴한방법으로세포손상을최소화하여프로바이오틱세포가상대적으로높은생존성을갖도록한다. 생체적합성과유연성도이방법의장점이다. 이방법의가장중요한단점은비드의생성이늦어대규모생산에적용할수없다는것이다. 일반적으로이방법으로생성되는비드의크기 (2~5 mm) 는유화법에의해생산되는비드보다크다 ( 예, 유화법으로만들어진구형비드는지름이 25 μm에서 2 mm). 사출법에서캡슐의크기는 sodium alginate 용액의점도, 사출기구멍지름, 그리고주사기와 calcium chloride 수집용액과의거리에달려있다 (Smidsrod and Skjak-Braek, 1990). 높은 sodium alginate 농도는점도가높아입자를크게만든다. 저온사출법은미생물과효소의캡슐화에사용될수있다. 유화법은유화형성을위해식물기름을사용하기때문에사출법보다비싸다 (Mortazavian et al., 2007). 이방법에서작은부피의세포 / 중합슬러리 ( 분산상 ) 는해바라기, 대두, 옥수수, 또는파라핀오일과같은큰부피의식물기름 ( 연속상 ) 에첨가한다. Sheu and Marshall (1993) 은 w/o 시스템을이용하여박테리아를가두는법을개발했 144 J Milk Sci Biotechnol Vol. 35, No. 3

Microencapsulation of Bifidobacterium spp. Table 1. Survival of encapsulated Bifidobacterium spp. under gastrointestinal conditions Encapsulation materials & Methods Bifidobacterium spp. Survival under gastrointestinal conditions References 2% sodium alginate with poly-l-lysine or chitosan(extrusion technique) Bifidobacterium bifidum Higher than 10 6 cfu/ml Cui et al., 2000 2~4% alginate (Extrusion technique) Bifidobacterium longum Depending on alginate concentration and bead size Lee and Heo, 2000 0.75% gellan/1 % xanthan gum (Extrusion technique) Bifidobacterium infantis Higher than 10 6 cfu/ml Sun and Griffiths, 2000 0.75% gellan/1 % xanthan gum (Extrusion technique) Bifidobacterium lactis Higher than 10 6 cfu/ml McMaster et al., 2005 2% alginate with Hi-maize starch (Emulsion technique) Bifidobacterium spp. Higher than 10 6 cfu/ml Sultana et al., 2000 Bifidobacterium 3% alginate adolescentis Truelstrup Hansen et al., (Emulsion technique) Bifidobacterium breve 8.2~1.0 log cfu/ml 2002 Bifidobacterium lactis Bifidobacterium longum 35% gum arabic 15% skim milk 30% gelatin 35% soluble starch (Spray-drying technique) 35% gum arabic 15% skim milk 30% gelatin 35% soluble starch (Spray-drying technique) 10% heat-denatured whey protein isolate (Spray-drying/emulsion technique) Source: Iravani et al., 2015 Bifidobacterium infantis CCRC 14633 Bifidobacterium longum B6 Bifidobacterium breve Bifidobacterium longum 89.17% 65.16% 92.73% 92.70% 93.53% 81.26% 87.15% 95.47% 1.0 log cfu/ml 3.8 log cfu/ml Lian et al., 2003 Lian et al., 2003 Picot and Lacroix, 2004 다. 캡슐화물질을우선박테리아와혼합하고혼합물을 Tween 80 ( 유화제 ) 을포함하는기름조에분산한다. 그다음, 생산된유화물은 CaCl 2 를첨가하여유화를파괴하고생산된캡슐은원심분리로수집한다. 젤화전캡슐믹스의농도와점도, 혼합물의교반속도그리고유화제종류는최종형성되는비드의지름을결정하는중요한지표로보고되었다. 매우큰비드 ( 약 1,000 μm 이상 ) 는거친조직과약한구조일수있다 (Mortazavian et al., 2008). 비드의지름은프로바이오틱세포의생존성과대사속도및최종제품의관능적특성에유의적으로영향을미치며또한제품내비드의분산품질에도영향을미친다 (Mortazavian et al., 2007; Mortazavian and Sohrabvandi, 2006). 2) 동결건조와분무건조동결건조와분무건조법의사용과이두공정의핵심지표는높은생존수준에중요하다 (Anal and Singh, 2007). 동결건조와분부건조법은대규모프로바이오틱스의캡슐화에사용될수있으나, 두방법모두미생물이극한환경조건에노출된다. Semyonov et al.(2010) 은높은생존성의 L. paracasei 건조캡슐제조를위해분무-동결건조 (SFD) 를평가하였다. 그들은 maltodextrin 과 trehalose 로캡슐화된세포의생존성을조사하였다. 결과적으로, SFD는높은생존성 (> 60%) 의건조캡슐생산에사용될수있다. Trehalose 농도와 maltodextrin 분자량이최종프로바이오틱생존성에영향을미치는주요한요인으로보인다. 분무건조는분무기형태, 공기압과출구공기온도와같은주요지표가조절되면경제적으로다량의프로바이오틱미생물생산에사용될수있다 (Gardiner et al., 2000; Champagne and Mollgaard, 2008). 동결건조에서제품은임계온도이하로동결된후에압력이낮아지는일차건조과정이따르며, 선반온도는보통증가하고비결합수는승화에의해제거된다. 최종적으로, 이차건조단계는탈착에의해결합수가제거되고, 제품은점차상온으로돌아온다 (Jennings, 1999; Oetjen, 1999). 동결건조기술에서배지의 ph, 보호제함량 ( 예, 탄수화물 ), 생물량이력 ( 배지환경, 수확시기 ), 초기세포농도, 동결속도및온도 ( 예, 액체질소의사용 ) 를포함하는중요인자들이조절되어야한다 (Carvalho et al., 2004). 동결건조동안생존성손실에극히중요한요인은세포내빙결형성과재결정으로발생되는삼투압충격과세포막손상이다. 캡슐제조에제안된많은방법중에서분무건조는작고조절가능한입자크기로물에불용성인건조캡슐제조에가장적절한기술이다 (Picot and Lacroix, 2003; Groboillot et al., 1994). 이시스템은높은안정성, 취급용이성과미생물저장및식품의관능적특성에미치는제한된효과등다양한이유로고정화된프로바이오틱미생물을식품에첨가하는데이상적이다. 그런데, 분무건조에의한프 J Milk Sci Biotechnol Vol. 35, No. 3 145

Song et al. 로바이오틱미생물의캡슐화는열에의한불활화때문에거의고려되지않는다. 분무건조과정동안높은공기온도에노출되는것은미생물의생존성에부정적영향을미친다. 반대로, 생물물질의안정성에물의역할이중요하기때문에, 물의제거는박테리아세포막과단백질의기능및구조에비가역적변화를일으킬수있다 (Picot and Lacroix, 2003). 3) 캡슐화에영향을미치는중요한지표프로바이오틱스를스트레스와열처리에서보호하기위해연구자들은다양한캐리어매질시스템을사용하여저항성을연구하였다 (Leverrier et al., 2005; Boza et al., 2004). Lian et al.(2002) 은프로바이오틱스트레인과캐리어가분무건조후에비피도박테리아의생존성에미치는영향을연구하였다. 그결과, 10%(w/w) gelatine, 아라비아검또는가용성전분에서분무건조시비피도박테리아의가장높은생존성을보였다. 미생물중에서 B. longum B6가실험조건하에서분무건조에가장둔감하였다. 또한, B. longum B6 와 B. infantis CCRC 146336을젤라틴, 가용성전분, 탈지유또는아라비아검의 10%(w/w) 캐리어물질과분무건조하여캡슐화하였고, 이들미생물의생존성을모사된위액 (ph 2.0과 3.0) 및담즙액 (0.5% 와 2.0%) 에서시험하였으며, 분무건조에의한프로바이오틱미생물의캡슐화는위액에노출시높은생존성을보인다고결론지었다. 스트레스처리, 탈수전미생물의생장기, 유전적변형및생장배지처럼여러가지요인들이탈수동안프로바이오틱미생물의생존성에영향을줄수있다. 급격한환경변화에박테리아가세포상태의저항성증가를유도하는대사적재프로그램으로반응한다는것이밝혀졌다. 미생물의스트레스반응이생장기에달려있다는것도잘알려져있다. Saarela et al.(2004) 은 B. animalis subsp. lactis의늦은대수기 (15 h) 또는이른정체기에동결건조및저장안정성을보고하였다. 유산균의열및삼투압저항성은종의존적이다. 분무건조후프로바이오틱스의생존성은사용된캐리어의종류및농도뿐만아니라, 분무건조기의배기온도에달려있다 (Ananta et al., 2005; Hisiao et al.; Lian et al., 2003; Lian et al., 2002). B. animalis subsp. lactis는배기온도 80~90 에환원탈지유 (20% w/v) 에서분무건조시 70% 이상생존했음을보였다 (Simpson et al., 2005). 탈수동안프로바이오틱스의생존성을보호하기위해분무건조와냉동건조전에다양한보호제를첨가한다 (Morgan et al., 2006). 탈지유분말, 유청단백질, 트레할로스, 글리세롤, 베타인, 설탕, 포도당, 유당, adonitol 과폴리머 ( 예, polyethylene glycol 및 dextran) 이보호제로사용된다 (Anal and Singh, 2007; Heidebach et al., 2010; Lian et al., 2002). 탄수화물의첨가가프로바이오틱스의생존성을개선하고동결건조중박테리아에보호효과가있다는것은잘기술되어있다. 트레할로스가동결건조시효과적인동결보호제라는것도보고되었으며 (Conrad et al., 2000; Patist and Zoerb, 2005), 트레할로스, 트레할로스 / 유당및유당 / 말토스는동결건조에가장효과적인이당류로보고되었다 (Meng et al., 2008). 요구르트및동결건조요구르트에서프로바이오틱박테리아 (L. acidophilus, L. casei, L. rhamnosus 및 Bifidobacterium spp.) 의생존성에미치는캡슐화, 프리바이오틱스, 그리고동결보호제의영향이연구된바있다 (Capela et al., 2006). 동결보호제 (Unipectine TM RS 150) 2.5%(w/v) 첨가시 L. casei 생존성이 7% 개선되었고, 프리바이오틱 (Raftilose TM RS 150) 1.5%(w/v) 첨가시 4 에서 4주간저장시프로바이오틱미생물생존성을 log 1.42 증진시켰다. Alginate 로캡슐화시동결건조요구르트를 21 에저장시프로바이오틱미생물의생존성을 log 0.31 증진시켰다. 동결보호제로일반적으로사용되는탈지유와설탕은세포내손상을방지할수있다고생각된다. 설탕의보호작용은고점도또는유리상 (glasslike phase) 에서염을포착함으로써손상을일으키는세포액의공융을제한하는능력때문이라고제안되고있는반면, 탈지유는세포막을안정화함으로써세포손상을방지할수있다 (Saarela et al., 2006). 목적을고려한캡슐재질의선택은매우중요하다. 예를들어, alginate 캡슐에서칼슘이온이누출되면분해될수있으므로, alginate 캡슐은높은산도와킬레이팅물질이함유된환경을피해야한다. 그런데, 액상우유, 크림및요구르트와같은우유기반매질은고수준의칼슘때문에젤구조에서칼슘이온의용출이제한될수있어젤구슬이모양과주조를유지한다 (Hansen et al., 2002). 캡슐물질로저항전분을이용하면구슬이효소분해에저항성을만든다. 때로는고수분제품조건에저항성구슬을만드는것이소수성성분의캡슐화에필요하다 (Hansen et al., 2002). 캡슐제조용액의농도와최종구슬지름은캡슐화효율에중요한요인이다. 구슬지름증가에따라극심한환경요인에대한보호효과가증가한다 (Hansen et al., 2002). Sultana et al.(2000) 은지름이 0.5~1.0 mm인 alginate 캡슐은요구르트의냉장저장중비피도박테리아의생존성을유의하게증가하나, 모사위액 ph에서는그렇지못하다고보고했다. 특별한한계 ( 캡슐과제품의형태를고려 ) 이상으로구슬의지름을증가시키는것은부적절한입맛및풍미때문에적절하지못하다. 게다가, 캡슐지름증가는소화효소에의한분해를감소시키므로, 캡슐형성에저항성전분을사용할때지름을증가시키는것은주의해야한다 (Dimantov et al., 2003). 캡슐제조농도관련연구에서 alginate 용액농도를 0.75% 에서 1.8% 로높이는것은 L. acidophilus 의위액모사조건하생존성을높인다는것을보였으나, 2% 이상은용액점도증가로구형및균일한구슬제조가불가능하였다 (Chandramouli et al., 2004). 해로운환경요인의형태와정도는캡슐효율성을낮추는가장중요한지표중하나이다. 예를들어, 캡슐은위액과같은심한산성조건보다요구르트같은약한산성조건을견딘다 (Sultana et al., 2000; Hansen et al., 2002). 지름 100 μm의 alginate 캡슐은대부분의발효제품에효과 146 J Milk Sci Biotechnol Vol. 35, No. 3

Microencapsulation of Bifidobacterium spp. 적이나, 위산은그렇지못하다 (Cui et al., 2000). 캡슐화된박테리아에의한전분의분해도보고된바있으므로 (Takata et al., 1977), 캡슐재질의선택전에박테리아가전분을분해할수있는지도고려되어야한다. 4. 프로바이오틱스를캡슐화한발효유의관능적품질프로바이오틱스의캡슐화는발효유제품의관능적품질에특정한결과를가져온다. 최종제품의관능적특성에영향을미치는캡슐의모양과크기는산업적생산에중요한문제이다. 게다가, 분무건조시에배기온도는메일라드반응 ( 카라멜화와유사한비효소적갈변화의형태 ) 때문에캡슐의색깔에영향을미칠수있다 (McMaster et al., 2005; O Riordan et al., 2001; Su et al., 2007). 캡슐화된프로바이오틱미생물의첨가는외관및색깔, 산도, 풍미, 또는요구르트의후미를변화시키지않으나, 조직적특성에영향을미친다 (Krasaekoopt et al., 2006). 비록프로바이오틱스의캡슐화가관능적특성을개선하는효과적방법으로적용될수있어도부적절한사용은최종제품의이취및조직감손상을가져올수있다. 예를들어, 우유내 B. longum 및 B. lactis 의캡슐화는특별한이취를발생한다. 이러한사실은세포의캡슐화로작은쓴맛펩타이드를생산하는대사경로의변화때문이다 (Truelstrup Hansen et al., 2002). Adhikari et al.(2002) 은비피도박테리아를발효전에첨가시캡슐화가요구르트내아세트산농도를낮췄다. Bifidobacterium 속이생산하는아세트산은요구르트같은발효유제품에서식초맛을낸다 (Adhikari et al., 2000). 이러한이취는저장기간내발효중생산된다. 비피도박테리아의캡슐화는요구르트내아세트산생성량을줄여프로바이오틱발효유제품의풍미를개선하기때문에이러한문제를극복하기위해사용된다 (Adhikari et al., 2000). 특정한계이상의지름을가진구슬 (>100 μm, 특히 1 mm 이상 ) 은거친외관때문에액상우유및요구르트의입맛을저해할수있다. 지름 1~3 mm 구슬은최종제품의조직과풍미모두에부정적으로영향을미칠수있다 (Chandramouli et al., 2004). 특별한크기이상 ( 캡슐과미생물의종류를고려할때 ) 의구슬지름은세포의생존성에영향이없다는것이증명되었다. 결론 여러가지캡슐화방법이프로바이오틱미생물을보호하여생존성을증진한다는것이밝혀졌다. 최선의캡슐화방법의선택은유통기간동안프로바이오틱미생물이치료효과를가질수있는충분한생균수수준을유지하는데중요한역할을한다. 프로바이오틱미생물의일반적인산업적적용은아직거리가있으며, 많은사항들에의문이남아있다. 좀더효율적인캡슐화물질과기술또는일반적으로사용되는기술의개선, 캡슐화에의한별도비용감소, 가공요인과캡슐 화효율사이의관계및최고의생존성과가장만족스러운관능적특성에도달하는가공요인의최적화에더많은연구가집중되어야한다. 나쁜환경조건에서박테리아의생존을증진할수있도록캡슐화에영향을미치는가장중요한요인이확인, 조절, 그리고최적화되어야한다. 저비용으로식품에사용할수있는혁신적인캡슐기술은유제품내및위장관이동중생존성과안정성증진이필요하다. 감사의글 본연구는농촌진흥청연구사업 ( 세부과제명 : 비피더스균의대량배양및유육제품적용연구, PJ01196001) 과 2017년도농촌진흥청 ( 국립축산과학원 ) 전문연구원과정지원사업에의해이루어진것임. References Adhikari, K., Mustapha, A., Grün, I. U. and Fernando, L. 2000. Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J. Dairy Sci. 83: 1946-1951. Adhikari, K., Gruen, I. U., Mustapha, A. and Fernando, L. N. 2002. Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. J. Food Qual. 25:435-451. Amine, K. M., Champagne, C. P., Raymond, Y., St-Gelais, D., Britten, M., Fustier, P., Salmieri, S. and Lacroix, M. 2014. Survival of microencapsulated Bifidobacterium longum in Cheddar cheese during production and storage. Food Control. 37:193-199. Anal, A. K. and Singh, H. 2007. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18:240-251. Ananta, E., Volkert, M. and Knorr, D. 2005. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy J. 15:399-409. Annan, N. T., Borza, A. D. and Hansen, L. T. 2008. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res. Int. 41:184 193. Boza, Y., Barbi, D. and Scamparini, A. 2004. Survival of Beijerinckia sp. microencapsulated in carbohydrates by spray-drying. J. Microencapsul. 21:15-24. J Milk Sci Biotechnol Vol. 35, No. 3 147

Song et al. Capela, P., Hay, T. K. C. and Shah, N. 2006. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int. 39:203-211. Carvalho, A. S., Silva, J., Ho, P., Teixeira, P. and Gibbs, P. 2004. Relevant factors for the preparation of freezedried lactic acid bacteria. Int. Dairy J. 14:835-847. Champagne, C. P. and Møllgaard, H. 2008. Production of probiotic cultures and their addition in fermented foods. In: Franworth ER (ed) Handbook of fermented functional foods. CRC Press Taylor & Francis Group, United States of America. Chandramouli, V., Kailasapathy, K., Peiris, P. and Jones, M. 2004. An improved method of microencapsulation and its evaluation to protect Lactobacillu spp. in simulated gastric conditions. J. Microbiol. Methods. 56:27-35. Conrad, P. B., Miller, D. P., Cielenski, P. R. and Pablo, J. J. 2000. Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology. 41: 124-127. Cui, J., Goh, J., Kim, P., Choi, S. and Lee, B. 2000 Survival and stability of bifidobacteria loaded in alginate poly-llysine microparticles. Int. J. Pharm. 210:51-59. Dave, R. I. and Shah, N. 1997. Viability of yogurt and probiotic bacteria in yoghurts made from commercial starter culture. Int. Dairy J. 7:31-41. de Barros, J. M., Lechner, T., Charalampopoulos, D., Khutoryanskiy, V. V. and Edwards, A. D. 2015. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria. Int. J. Pharm. 493:483-494. de Vos, P., Faas, M. M., Spasojevic, M. and Sikkema, J. 2010. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 20:292-302. Dimantov, A., Greenberg, M., Kesselman, E. and Shimoni, E. 2003. Study of high amylase corn starch as food grade enteric coating in a microcapsule model systems. Innov. Food Sci. Eng. Technol. 5:93-100. Englyst, H. N., Kingman, S. M. and Gummings, J. H. 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 2:33-50. Fareez, I. M., Lim, S. M., Mishra, R. K. and Ramasamy, K. 2015. Chitosan coated alginate-xanthan gum bead enhanced ph and thermotolerance of Lactobacillus plantarum LAB12. Int. J. Biol. Macromol. 72:1419-1428. Fortin, M. H., Champagne, C., St-Gelais, D., Britten, M., Fustier, P. and Lacroix, M. 2011. Viability of Bifidobacterium longum in Cheddar cheese curd during manufacture and storage: Effect of microencapsulation and point of inoculation. Dairy Sci. Technol. 91:599-614. Gardiner, G., O Sullivan, E., Kelly, J., Auty, M. A. E., Fitzgerald, G. F., Collins, J. K. and Ross, R. P. 2000. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl. Environ. Microbiol. 66:2605-2612. Groboillot, A. F., Boadi, D. K., Poncelet, D. and Neufeld, R. J. 1994. Immobilization of cells for application in the food industry. CRC Crit. Rev. Biotechnol. 14:75-107. Hansen, L. T., Allan-Wojtas P. M., Jin, Y. L. and Paulson, A. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium ssp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19:35-45. Heidebach, T., Först, P. and Kulozik, U. 2010. Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food. Eng. 98:309-316. Hisiao, H, C., Lian, W. C. and Chou, C. C. 2004. Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. J. Food Sci. Agric. 84:134-139. Huq, T., Khan, A., Khan, R. A., Riedl, B. and Lacroix, M. 2013. Encapsulation of probiotic bacteria in biopolymeric system. Crit. Rev. Food Sci. Nutr. 53:909-916. Iravani, S., Korbekandi, H. and Mirmohammadi, S. V. 2015. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol. 52:4679-4696. Jennings, T. A. 1999. Lyophilisation: Introduction and basic principles. CRC press, Boca Raton. Jung, J. K., Kil, J. H., Kim, S. K., Jeon, J. T. and Park, K. Y. 2007. Survival of double-microencapsulated Bifidobacterium breve in milk in simulated gastric and small intestinal conditions. J. Food Sci. Nutr. 12:58-63. Kebary, K. M. K., Hussein, S. A. and Badawi, R. M. 1998. Improving viability of Bifidobacterium and their effect 148 J Milk Sci Biotechnol Vol. 35, No. 3

Microencapsulation of Bifidobacterium spp. on frozen ice milk. J. Dairy Sci. 26:319-337. Krasaekoopt, W., Bhandari, B. and Deeth, H. 2006. Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT Food Sci. Technol. 39:177-183. Krasaekoopt, W., Bhandari, B. and Deeth, H. 2004. The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14:737-743. Krasaekoopt, W., Bhandari, B. and Deeth, H. 2003. Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J. 13:3-13. Lee, J. S., Cha, D. S., and Park, H. 2004. Survival of freezeddried Lactobacillus bulgaricus KFRI 673 in chitosancoated calcium alginate microparticles. J. Agric. Food Chem. 52:7300-7305. Lee, K. Y. and Heo, T. 2000. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salts solution. Appl. Environ. Microbiol. 66:869-873. Leverrier, P., Fremont, Y., Rouault, A., Boyaval, P. and Jan, G. 2005. In vitro tolerance to digestive stresses of propionibacteria: Influence of food matrices. Food Microbiol. 22:11-18. Lewis, Z. T., Shani, G., Masarweh, C. F., Popovic, M., Frese, S. A., Sela, D. A., Underwood, M. A. and Mills, D. A. 2015. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr. Res. 79:445-452. Lian, W. C., Hsiao, H. C. and Chou, C. C. 2002. Survival of bifidobacteria after spray-drying. Int. J. Food Microbiol. 74:79-86. Lian, W. C., Hsiao, H. C. and Chou, C. C. 2003. Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int. J. Food Microbiol. 86:293-301. McMaster, L. D., Kokott, S. A. and Slatter, P. 2005. Microencapsulation of Bifidobacterium lactis for incorporation into soft foods World. J. Microbiol. Biotechnol. 21:723-728. Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C. and Ross, R. 2008. Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106:1406-1416. Milani, C., Lugli, G. A., Duranti, S., Turroni, F., Bottacini, F., Mangifesta, M., Sanchez, B., Vlappiani, A., Mancabelli, L., Taminiau, B., Delcenserie, V., Barrangou, R., Margolles, A., van Sinderen, D. and Ventura, M. 2014. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl. Environ. Microbiol. 80:6290-6302. Morgan, C. A., Herman, N., White, P. A. and Vesey, G. 2006. Preservation of microorganisms by drying: A review. J. Microbiol. Meth. 66:183-193. Mortazavian, A. M., Ehsani, M. R., Azizi, A., Razavi, S. H., Mousavi, S. M., Sohrabvandi, S. and Reinheimer, J. A. 2008. Viability of calcium-alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during refrigerated storage and under simulated gastrointestinal conditions. Aust. J. Dairy Technol. 63:24-29. Mortazavian, A. M. and Sohrabvandi, S. 2006. Probiotics and Food Probiotic Products; Based on Dairy Probiotic Products. Eta Publication, Tehran. Mortazavian, A. M., Razavi, S. H., Ehsani, M. R. and Sohrabvandi, S. 2007. Principles and methods of microencapsulation of probiotic microorganisms. Iranian J. Biotechnol. 5:1-18. Neal-McKinney, J. M., Lu, X., Duong, T., Larson, C. L., Call, D. R., Shah, D. H. and Konkel, M. E. 2012. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLoS ONE. 7:e43928. Oetjen, G. W. 1999. Freeze-drying. Wiley-VCH, Weinheim. O Riordan, K., Andrews, D., Buckle, K. and Conway, P. 2001. Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J. Appl. Microbiol. 91:1059-1066. Patist, A. and Zoerb, H. 2005. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf., B. 40: 107-113. Peres, C. M., Peres, C., Hernández-Mendoza, A. and Malcata, F. X. 2012. Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria-with an emphasis on table olives. Trends Food Sci. Technol. 26:31-42. Picot, A. and Lacroix, C. 2004. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival J Milk Sci Biotechnol Vol. 35, No. 3 149

Song et al. in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14:505-515. Picot, A. and Lacroix, C. 2003. Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. Int. Dairy J. 13:455-462. Puccio, G., Cajozzo, C., Meli, F., Rochat, F., Grathwohl, D. and Steenhout, P. 2007. Clinical evaluation of a new starter formula for infants containing live Bifidobacterium longum BL999 andprebiotics. Nutrition. 23:1-8. Roy, D. 2005. Technological aspects related to the use of bifidobacteria in dairy products. Lait. 85:39-56. Saarela, M., Rantala, M., Hallamaa, K., Nohynek, L., Virkajärvi, I. and Mättö, J. 2004. Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J. Appl. Microbiol. 96:1205-1214. Saarela, M., Virkajärvi, I., Alakomi, H. L., Sigvart-Mattila, P. and Mättö, J. 2006. Stability and functionality of freezedried probiotic Bifidobacterium cells during storage in juice and milk. Int. Dairy J. 16:1477-1482. Sakata, S., Kitahara, M., Sakamoto, M., Hayashi, H., Fukuyama, M. and Benno, Y. 2002. Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. Int. J. Syst. Evol. Microbiol. 52:1945-1951. Sela, D. A. and Mills, D. A. 2010. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18:298-307. Schell, M. A., Karmirantzou, M., Snel, B., Vilanova, D., Berger, B., Pessi, G., Zwahlen, M. C., Desiere, F., Bork, P., Delley, M., Pridmore, R. D. and Arigoni, F. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. U.S.A. 99:14422-14427. Sela, D., Chapman, J., Adeuya, A., Kim, J., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M. and Mills, M. A. 2008. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105:18964-18969. Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N. and Shimoni, E. 2010. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res. Int. 43:193-202. Shah, N. P., Lankaputhra, W. E. V., Britz, M. L. and Kyle, W. S. A. 1995. Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int. Dairy J. 5:515-521. Sheu, T. Y. and Marshall, R. T. 1993. Microentrapment of lactobacilli in calcium alginate gels. J. Food Sci. 58: 557-561. Simpson, P. J., Stanton, C., Fitzgerald, G. F. and Ross, R. P. 2005. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J. Appl. Microbiol. 99:493-501. Smidsrod, O. and Skjak-Braek, G. 1990. Alginate as immobilization matrix for cells. Trends Biotechnol. 8:71-78. Su, L., Lin, C. and Chen, M. 2007. Development of an oriental-style dairy product coagulated by microcapsules containing probiotics and filtrates from fermented rice. Int. J. Dairy Technol. 60:49-54. Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. 2000. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62:47-55. Sun, W. and Griffiths, M. W. 2000. Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int. J. Food Microbiol. 61:17-25. Sun, Z., Zhang, W., Guo, C., Yang, X., Liu, W., Wu, Y., Song, Y., Kwok, L. Y., Cui, Y., Menghe, B., Yang, R., Hu, L. and Zahng, H. 2015. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: A snapshot of its genetic diversity and evolution. PLoS ONE. 10: e0117912. Truelstrup Hansen, L., Allan-Wojtas, P. M., Jin, Y. L. and Paulson, A. T. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19:35-45. Yeung, T. W., Arroyo-Maya, I. J., McClements, D. J. and Sela, D. A. 2016. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads. Food Funct. 7:1797-1804. 150 J Milk Sci Biotechnol Vol. 35, No. 3

Microencapsulation of Bifidobacterium spp. Watson, R. R. and Preedy, V. R. 2015. Probiotics, prebiotics, and synbiotics: bioactive foods in health promotion. Boston, MA: Academic Press. Zhang, Z., Zhang, R., Decker, E. A. and McClements, D. J. 2015. Development of food-grade filled hydrogels for oral delivery of lipophilic active ingredients: ph-triggered release. Food Hydrocoll. 44:345-352. J Milk Sci Biotechnol Vol. 35, No. 3 151