untitled

Similar documents
17(1)-06.fm

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

14.fm

슬라이드 1

05À±Á¸µµ

16(5)-03(56).fm

국706.fm

< C6AFC1FD28B1C7C7F5C1DF292E687770>

KAERIAR hwp

16(5)-04(61).fm

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

00....

<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

12.077~081(A12_이종국).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

64.fm

歯김유성.PDF

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

2004math2(c).PDF

<30365F28BFCFB7E129BEC8BAB4C5C22E687770>

I. 회사의 개요 1. 회사의 개요 1. 연결대상 종속회사 개황(연결재무제표를 작성하는 주권상장법인이 사업보고서, 분기ㆍ 반기보고서를 제출하는 경우에 한함) 상호 설립일 주소 주요사업 직전사업연도말 자산총액 지배관계 근거 주요종속 회사 여부 (주)이수엑사보드 2004년

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

18(3)-10(33).fm

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

영남학17합본.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

KICET_

(72) 발명자 김창욱 경기 용인시 기흥구 공세로 , (공세동) 박준석 경기 용인시 기흥구 공세로 , (공세동) - 2 -

소개.PDF


fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

歯140김광락.PDF

가. 회사의 법적, 상업적 명칭 당사의 명칭은 주성엔지니어링 주식회사라고 표기합니다. 또한 영문으로는 JUSUNG Engineering Co., Ltd. 라 표기합니다. 나. 설립일자 및 존속기간 당사는 반도체, FPD, 태양전지, 신재생에너지, LED 및 OLED 제

( )45.fm

전용]

2004math2(a).PDF

1. Features IR-Compact non-contact infrared thermometer measures the infrared wavelength emitted from the target spot and converts it to standard curr

72.fm

19(1) 02.fm

ePapyrus PDF Document

18211.fm

NNFC 분석 / 특성평가장비의구성 구조 & 표면분석 Mechanical & Bio 분석 Electrical 특성측정 In-Line 측정 불량분석 RE 분석 FE-(S)TEM Cs-corrected STEM 3D FE-STEM In-situ TEM FE-SEM DB-F

( )-91.fm

실적 및 전망 09년 하반 PECVD 고객 다변화에 따른 실적개선 10년 태양광 R&D 장비 매출을 반으로 본격적인 상업생산 시작 1. 09년 3Q 실적 동사는 09년 3Q에 매출과 영업이익으로 각각 142 억원(YoY 16.7%, QoQ 142%), 6 억원(흑전환)

untitled

untitled

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha

DBPIA-NURIMEDIA

Crt114( ).hwp

PJTROHMPCJPS.hwp

44-3대지.08류주현c

감각형 증강현실을 이용한

16(5)-06(58).fm

푸른21탄소중립행사내지확정

歯174구경회.PDF

06...._......

09권오설_ok.hwp

50(4)-10.fm

Preliminary spec(K93,K62_Chip_081118).xls

LCD

12-17 총설.qxp

lastreprt(....).hwp

9(3)-4(p ).fm

45(3)-07(박석주).fm


08원재호( )

12¿ù06ƯÁý-06

#KM560

융합WEEKTIP data_up

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

01_피부과Part-01

Can032.hwp

Product A4

Chapter4.hwp



전기일반(240~287)


01-베타전지용(25)

18(3)-09(34).fm

02À±¼ø¿Á

한국성인에서초기황반변성질환과 연관된위험요인연구

#Ȳ¿ë¼®

04 박영주.hwp

관광스토리텔링2_내지

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

7 LAMPS For use on a flat surface of a type 1 enclosure File No. E Pilot Lamp File No. E Type Classification Diagram - BULB Type Part Mate


82-01.fm

page 1end

#KM-235(110222)

Transcription:

Synthesis and structural analysis of nano-semiconductor material 2005 2

Synthesis and structural analysis of nano-semiconductor material 2005 2

. 2005 2

(1) MOCVD ZnO (2) MOCVD gallium oxide < gallium oxide > < gallium oxide >

(3) Thermal evaporation gallium oxide (4) MOCVD 1 indium oxide

Abstract (1) Synthesis of ZnO nanorods by an MOCVD system The ZnO nanorods have synthesized on Si(100) substrates without a metal catalyst by a reaction of a diethylzinc (DEZn) and oxygen (O 2 ) mixture. At a substrate temperature of 450, the growth structure has changed from clusters to nanorods with increasing Ar/O 2 gas flow ratio. The ZnO nanorods had an average diameter of 30-70 nm, and transmission electron microscopy (TEM) showed a single crystalline structure. (2) Synthesis of gallium oxide nanowires by an MOCVD system < Single crystal gallium oxide nanowires> The monoclinic gallium oxide (β-ga 2 O 3 ) nanowires have synthesized on Au-coated Si substrates by a reaction of a trimethylgallium (TMGa) and oxygen (O 2 ) mixture. The β-ga 2 O 3 nanowires became progressively thinner from bottom to top, with diameters ranging from 10 to 200 nm and lengths of several micrometers. We found that Au-containing nanoparticles were attached to the tips of β-ga 2 O 3 nanowires and thus the nanowire growth could be a vapor-liquid-solid (VLS) process. < Amorphous gallium oxide nanowires> The large-scaled gallium oxide nanowire arrays have prepared on Si(100) substrates using a reaction of a trimethylgallium (TMGa) and oxygen (O 2 ) mixture. The cross-section of the gallium oxide

nanowires had a circular shape with the diameter of about 40-110 nm. Transmission electron microscopy and x-ray diffraction analysis together showed that the nanowires were amorphous phase. (3) Synthesis of gallium oxide nanobelts by thermal evaporation The production of gallium oxide (Ga 2 O 3 ) nanobelts demonstrated on various substrates by thermal evaporation of GaN powders. Scanning electron microscopy revealed that the product consisted of nanobelts with widths in the range of 100-10000 nm. X-ray diffraction and high-resolution electron microscopy indicated that the nanobelts were single-crystalline monoclinic structure of Ga 2 O 3. The photoluminescence spectrum under excitation at 325 nm showed a broad band with a prominent emission peak around 433 nm. (4) Catalyst-free MOCVD growth of In 2 O 3 one-dimensional materials One-dimensional (1-D) indium oxide (In 2 O 3 ) arrays have succeeded in synthesizing by metalorganic chemical vapor deposition (MOCVD) method. We have characterized the products by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). SEM images showed that the 1-D materials with the serrated surfaces had the cross sections of acute triangle. XRD and TEM studies revealed that the 1-D materials possessed single-crystalline cubic structure and had preferentially grown along the [111] direction.

1 4 4 4 5 8 9 9 10 11 11 13 14 16 16 18 19 20 21 22 23

23 24 26 26 27 27 29 29 30 31 32 37 37 38 39 45 46 48 48 49 49 61 62 65 65 66

67 80 81 82 82 83 84 93 94 95

p x = 2 h 2π h 2 2 p ( k) E = = k 2µ 2µ µ

E = E 0 2 2 π 1 1.8e + 2 2r µ ε r 2 2 r ε2

(a) 0-demension nanorod nanowire nanotube nanocable nanobelt (b) 1-demension (c) 2-demension Fig 2-1. The type of nanomaterials

Fig. 3-1. Schematic drawing of MOCVD system.

(a) (b) (c) 200nm 200nm 200nm Fig. 3-2. Plan-view SEM images of ZnO deposits grown at 450 with Ar/O 2 gas flow ratio (a) 0.3, (b) 1 and (c) 4.

(a) (b) Si substrate Fig. 3-3. Cross-sectional SEM images of ZnO nanorods at 450C with Ar/O 2 gas flow ratio (a) 1 and (b) 4.

Intensity (arb. units) 100 101 002 102 103 112 20 30 40 50 60 70 80 2θ (deg.) Fig. 3-4. XRD patterns recorded from deposits

(a) (b) 001 100 50nm [010] 100nm Intensity (arb. units) (c) C Zn O Cu Zn Zn 0 2 4 6 8 10 Energy (kev) Fig 3-5. Bright field TEM images of (a) ZnO nanorods grown on the Si substrate and (b) a ZnO nanorod (the inset shows corresponding SAED pattern recorded along the [010] zone axis). (c) Typical EDS spectrum of a ZnO nanorod ( the Cu and C peaks come from the supporting carbon-coated copper grids in TEM sample preparation).

(a) (b) Fig 3-6. SEM images of ZnO deposits grown at 400C (a) plan-view (b) cross-sectional

(a) (b) Fig 3-7. Growth mechanism of the ZnO nanorods grown by MOCVD system without catalyst (a) reality and (b) ideal.

(a) (b) (c) (d) (e) (f) Ga 2 O 3 thin film Fig. 4-1. SEM images of gallium oxide deposits grown on Si(100) substrate at 600C when Ar carrier gas flow rate is 30sccm and O 2 gas flow rate is (a,b) 0sccm, (c,d) 6sccm, (e,f) 10sccm.

(a) (c) (e) (b) (d) (f) Fig. 4-2. SEM images of gallium oxide nanowires grown on Si(100) substrate at (a) 600C, (b) 650C, (c-f) 700C when Ar carrier gas flow rate is 30sccm and O 2 gas flow rate is 6sccm.

20 30 40 50 60 70 80 90 2θ (deg.) Intensity (arb. units) Fig. 4-3. X-ray diffraction patterns recorded from Ga 2 O 3 nanowires.

(a) (b) 500nm 100nm (c) Intensity (arb. units) C Ga O Cu Ga Cu Ga 0 2 4 6 8 10 Energy (kev) Fig. 4-4. TEM characterization of the Ga 2 O 3 nanowires. (a) Low magnification TEM image. (b) High resolution TEM image (inset : corresponding electron diffraction pattern). (c) EDS spectra of the nanowire.

Fig. 4-5. Growth mechanism of the Ga 2 O 3 nannowires grown by MOCVD system without catalyst.

(a) (b) Fig. 4-6. (a) Plan-view and (b) side-view SEM images of the deposited nanowires.

β 30 40 50 60 70 80 90 2θ (deg.) Intensity (arb. units) 004 211 304 017 024 10 10 Fig. 4-7. X-ray diffraction patterns recorded from the Ga 2 O 3 nanowires

(a) 100nm (c) C O Ga Au Tip Cu Cu Ga (b) Amorphous layer 10nm d=0.46nm (102) 0 2 4 6 8 10 0 2 4 6 8 10 C O Ga Energy (kev) Stem Fig. 4-8. (a) TEM and (b) HRTEM images of a single β-ga 2 O 3 nanowire. The nanowire terminates with a nanoparticle. (c) EDS spectra of the nanowire tip and the nanowire stem. Cu Cu Ga

1

Fig. 4-9. Growth mechanism of the Ga 2 O 3 nannowires using Au catalyst by MOCVD system.

β

4 GaN ( s ) 4 Ga ( g ) + 2 N 2( g ) Ga( s) + 3O ( g) 2Ga O ( ) 4 2 2 3 s Upper holder Out Heating units Distance (5mm) Substrate GaN powder N 2 In Lower holder Themocouple Fig. 5-1. Schematic drawing of thermal furnace system.

Intensity (arb. units) 004 or 104 202 111 111 113 213 217 20 30 40 50 60 70 80 2θ (deg.) Fig. 5-2. XRD pattern of the as-deposited products on Si(100) substrate

Ǻ Ǻ Ǻ (a) (b) (c) (d) 2nm Si(100) Fig. 5-3. (a),(b),(c) SEM and (d) TEM images showing ther general morphology of as-deposited products. (a) plan-view image, (b) side-view image, (c) high-magnification image and (d) high resolution images.

(a) (b) (c) (d) Fig. 5-4. SEM images of gallium oxide deposits using Ir catalyst. Gallium oxide deposits grown at (a),(b) 900C and (c),(d) 970C.

970 C 900 C 200 300 400 500 600 700 800 900 Wavelength (nm) Fig. 5-5. Room temperature PL spectra of the products at growth temperatures of 900 º C and 970 º C with an excitation wavelength of 325 nm. Intensity (arb. units)

(a) (b) 101 113 111 202 500nm 500nm [121] (c) 101 2nm Fig. 5-6. (a) TEM image of Ga 2 O 3 nanobelts. (b) TEM image of a β- Ga 2 O 3 nanobelt. The inset shows the corresponding SAED pattern recorded. (c) HRTEM image.

. 2 1 1 Intensity (arb. units) β-(004) β-(104) β-(202) β-(111) β-(111) Ir-(111) GaIr-(110) β-(113) β-(213) Ir-(200) 25 30 35 40 45 50 55 2θ (deg.) Fig. 5-7. XRD pattern of the as-deposited products on Pt-coated SiO 2 substrate at 900 º C

(a) (b) Fig. 5-8. SEM images of gallium oxide deposits using Pt catalyst. (a) Side-view image and (b) high-magnification image of gallium oxide deposits at 900C

200 300 400 500 600 700 800 900 Wavelength (nm) Intensity (arb. units) Fig. 5-9. Room temperature PL spectrum of the products with an excitation wavelength at 325nm 1

(a) (b) 111 111 100 [011] 0.5µm 0.2µm (c) 111 111 (d) 200 [011] d=0.56nm (100) 1µm 2nm Fig. 5-10. (a) TEM image of the products. TEM image of a single Ga 2 O 3 nanobelt with (b) a width of 150nm and (c) a with of 1000nm. The insets are the corresponding SAED pattern recorded along the [011] zone axis. (d) HRTEM image of a monoclinic β-ga 2 O 3 nanobelts.

(a) (b) (c) (d) Fig. 5-11. SEM images showing ther general morphology of as-deposited products grown with Au-coated Si substrate. (a) Side-view image, (b) plan-view image, (c),(d) high-magnification image.

(a) (b) [100] 100 002 1µm 5nm [010] (c) [010] (d) d=0.28nm (202) 111 111 020 [101] [010] 202 [101] 1µm 2nm Fig. 5-12. (a) Low magnification TEM image of the nanobelts. (b) TEM image of a single β-ga 2 O 3 nanobelt (Inset: Corresponding SAED pattern recorded along the [010] zone axis). (c) Low magnification TEM image of a piece of a wide nanobelt (Inset: Corresponding SAED pattern recorded along the [101] zone axis). (d) HRTEM image corresponding to an area enclosed by the square in Fig. 5-12 (c).

1 1 2 1 1

1

(a) (b) Si substrate (c) (d) Fig. 6-1. SEM images of indium oxide deposits grown on Si(100) substrate at 350C when Ar carrier gas flow rate is 20sccm and O2 gas flow rate is 5sccm. (a) Side-view image, (b) plan-view image, (c),(d) highmagnification image.

(a) (b) (c) (d) Fig. 6-2. SEM images of indium oxide deposits grown on Si(100) substrate at 350C when deposition time is (a), (c) 5min and (b), (d) 10min. (a), (b) Plan-view image, (c), (d) side-view image.

(222) Intensity (arb. units)(444) Si-(004) 2θ ( deg.) Fig. 6-3. XRD patterns recorded from indium oxide deposits

(a) Intensity (arb. units) c (b) Cu Cu 0 4 8 12 14 18 22 Energy (kev) [111] 62 Fig. 6-4. (a) Typical EDS spectrum and (b) side-view schematic drawing of a single 1-D materials.

(c) 100 nm 101 321 222 [121] (d) 2 nm d = 0.29 nm ( 2 2 2 ) d = 0.72 nm ( 1 0 1 ) Fig. 6-4. (c) TEM image showing the tip part of a 1-D material. The inset shows a typical SAED pattern taken perpendicular to the stem of the 1-D materials. (d) Lattice-resolved HRTEM image of the rectangular box marked in Fig. 6-4 (c).

(e) [111] 031 222 211 100 nm [213] (f) d = 0.32 nm ( 0 3 1 ) d = 0.29 nm ( 2 2 2 ) d = 0.41 nm ( 2 1 1 ) 5 nm Fig. 6-4. (e) TEM image showing nanobumps residing along the exterior of a 1-D material. The inset is a SAED pattern taken perpendicular to the stem of the nanobumps. (f) Lattice-resolved HRTEM image corresponding to the rectangular box marked in Fig. 6-4 (e).

2 1

3 1