21 1 (2011 3 ) J Korean Soc Occup Environ Hyg 2011;21(1):62~71 Are Particulate Filtering Respirators Available in Korea Efficient for Nanoparticles? Don-Hee Han Department of Occupational Health and Safety Engineering, Inje University There is widespread concern that particulate filtering respirators (PFRs) available in Korea will be efficient for nanoparticles. The purpose of this review study was to analyse research literature and recommend PFRs suitable for protection against nanoparticles. In all studies, respirators containing electret filter media (N95, P100 and FFP2, FFP3) consistently have their MPPS below 100 nm and particle penetration levels at the MPPS can vary widely, but they comply with NIOSH or EN certification criterion. Electret filtering facepieces respirators (FFRs) were found to shift in the Most-Penetrating Particle Size(MPPS) from 30-60 to 200-300 nm range after the electric charges were removed, and FFRs were above their minimum penetrations of criterion. Korean special class and first class FFRs (the same as FFP3 and FFP2, respectively) would be effcient for nanoparticles unless FFRs are removed electric charges. It is difficult to evaluate if mechanical PFRs is efficient for nanoparticles due to the lack of related materials. Key Words : Particulate filtering respirators, Nanoparticles, Penetration, Electret filter media, Korea : 2011 1 11, : 2011 2 8 : ( 607, Tel: 055-320-3285, Fax: 055-325-2471, E-mail: dhan@inje.ac.kr)
63 Ultrafine particles(ufps),, 100 nm,. Nanoparticles(NPs),., UFPs.,. (hazard assessment),, NPs UFPs., UFPs (, TiO2) NPs UFPs (NIOSH, 2009). UFPs. 1 100 nm.. (potential). NIOSH (NIOSH, 2009)....,,.. NIOSH...,. - -. (face leakage).. CMD(Count Median Diameter): CPC(Condensation Particle Counter): DOP(Dioctyl Phthalate): NIOSH R-, P-,. Electret filter:, polymer fiber(, polypropylene).. (FFP: Filtering Facepiece). FFP1, FFP2, FFP3: EN FFR(Fitering Facepiece Respirator):. ( ). HEPA(High Efficiency Particulate Air): 300 nm 99.97% MMAD(Mass Median Aerodynamic Diameter): MMD(Mass Median Diameter): Mondisperse: MPPS(Most-Penetrating Particle Size):, 300 nm (0.3 ). N-, R-, P-series: Neutralized: 85 Kr.
64 Polydisperse: SMPS(Scanning Mobility Particle Sizer Spectrometer): (electrical mobility). WPS(Wide Range Particle Spectrometer):, (laser light scattering), (electrical mobility) (condensation particle counting) 10 10,000 nm. nanoparticle, ultrafine particle, particle size, penetration, particulate filtering respirator or mask, MPPS., Annals of Occupational Hygiene, Journal of Occupational Environmental Hygiene, Journal of International Society for Respiratory Protection, Journal of Aerosol Science.,, (KOSHA), OSHA, NIOSH, HSE,, AIHA, ACGIH, BOHS 10. (rat), (Oberdoorster Yu, 1990; Oberdoorster, 1992, 1994; Lison, 1997; Tran, 2000; Duffin, 2002; Renwick, 2004). (fine) UFPs (Kreiss, 1997; Gardiner, 2001). UFPs (Steenland, 1998; Garshick, 2004; Hart, 2006; Park, 2006; Ambroise, 2007)...,,,.. ( ) ( ) 2002 (, 2008) EN 143:2000 (BS EN, 2000, 2008) EN 149:2001(BS EN, 2001).. ( 1 ). 3, 1, 2 P3, P2, P1 FFP3, FFP2, FFP1. (P3) 99.95%, 1 (P2) 94%, 2 (P1) 80%. non-neutralized polydisperse NaCl. Filter penetration limit (at 95 L/min air flow) Attached to a face mask (EN 143) Filtering facepieces (EN 149) P1 (Second)* P2 (First)* P3 (Special)* 80% 94% 99.95% FFP1 (Second)* FFP2 (First)* FFP3 (Special)* 80% 94% 99%
65 Oil resistance Rating Filter penetration limit (at 85 L/min air flow) N95 95% Not oil resistant N99 99% N100 99.97% R95 95% Oil Resistant R99 99% R100 99.97% P95 95% Oil Proof P99 99% P100 99.97% NaCl 40 1200 nm MMD 600 nm 50 1700 nm MMD 400 nm(en number median Stockes diameter 400 nm GSD=1.82 ). 95 L/min. NIOSH ( ) 42 CFR part 84 (Federal Register, 1995).,, the worst case test condition. ( 2 ). 9. N-, R-, P- 95, 99, 100., N95, N99, N100 R- P- 9. N- (electret filter ) Not resistant to oil N. P100 HEPA. 95 95%, 99 99%, 100 99.97%. N- neutralized polydisperse NaCl, R-, P- DOP. NaCl CMD 75 20 nm GSD 1.86 (NIOSH, 2005a). MMAD 347 nm MMD 238 nm. DOP CMD 185 20 nm GSD 1.60. MMAD 359 nm MMD 395 nm (NIOSH, 2005b). 85 L/min. (filtration mechanism).. (media) (fiber). 300 nm (impaction), (interception) (gravitational settling) 200 nm (diffusion), (electrostatic attraction) (Hinds, 1999). MPPS 300 nm., 20 nm MPPS. 2000, N95 P100 (Martin Moyer, 2000; Balazy, 2006; Huang, 2007; Rengasamy, 2007, 2008b; Eninger, 2008b; Eshbaugh, 2009).
66 (Rengasamy, 2009). 85 L/min NaCl. NIOSH.., WPS (Balazy, 2006; Eninger, 2008b), SMPS (Huang, 2007; Rengasamy, 2007; Rengasamy, 2008a, 2009; Eshbaugh, 2009). (P100, N99, N95) (FFP1, FFP2, FFP3) MPPS 200 nm. MPPS 100 nm N95 40 60 nm. MPPS. Rengasamy (2007) 20 400 nm 11 monodisperse NaCl 5 N95 40 nm 1.4 5.2%. N95 8.8% (Eshbaugh, 2009), 10% (Martin Moyer, 2000).,,. 1 N95 4 400 nm (Rengasamy, 2008b). 85 L/min (4 30 nm) NaCl (20 400 nm) FFP. MPPS 40 nm MPPS 4.2%. MPPS. (diffusion). MPPS 200 nm.,, (electret) (mechanical). MPPS 200 400 nm. (polarization forces) MPPS 100 nm (Balazy, 2006). MPPS., (Haruta, 2008; Eshbaugh, 2009). MPPS. MPPS. NIOSH MMAD 300 nm MPPS the worst case.
67 NIOSH MPPS. NIOSH (forward light scattering photometer) polydisperse (mass-based detection). EN. (Eninger, 2008a). (, TSI 8130) 100 nm. NIOSH (count-based method) (Eninger, 2008a). monodisperse (Martin Moyer, 2000; Rengasamy, 2007; Eninger, 2008a). MPPS. (thermal velocity)... 2.5 nm (Heim, 2005; Kim, 2006; Kim 2007). NIOSH N95, P100 EN FFP2, FFP3 4 nm ((Rengasamy, 2008b, 2009). FFP1(Huang, 2007) FFP3(Golanski, 2008). MPPS
68. EN FFP1, FFP2, FFP3( 2, 1, ). 2 (FFP1) NaCl (Paraffin oil) 80% 2. 2 1 (FFP2). 1,, EN FFP2, FFP3. Rengasamy (2009) N95, P100 FFP2, FFP3 polydisperse monodisperse. Polydisperse MMD 238 nm NaCl (PAT: NIOSH ), monodisperse 4 30 nm (MAT-1) 20 400 nm NaCl (MAT-2) NIOSH 85 L/min. PAT N95 FFP2 1%, P100 FFP3 0.03% NIOSH. MAT MPPS ( 4 ) 30 60 nm N95, FFP2, P100 FFP3 <4.28%, <2.22%, <0.009%
69 <0.164% ( 2 ).. isopropanol FFR MPPS 200 300 nm PAT MAT ( 3 ). 85 Kr neutralizer 30 1000 nm NaCl isopropanol. SMPS 30 1000 nm CPC. 4. (electret FFR) MPPS 100 nm Rengasamy (2009) N95, P100 FFP2, FFP3 MPPS 30 60 nm. MPPS. MPPS EN NIOSH. MPPS 30 60 nm 200 300 nm EN NIOSH. (<100nm) N95 FFP2 P100 FFP3. EN NIOSH N-, P-
70 FFP2( 1 ), FFP3( ). (, ).. REFERENCES. ( 2008-77 ); 2008, p103-124. Ambroise D, Wild P, Moulin J-J. Update of a meta-analysis on lung cancer and welding. Scand J Work Environ Health 2007;32(1) :22-31. Balazy A, Toivola M, Reponen T, Podgorski A, Zimmer A,Grinshpun SA. Manikin-based performance evaluationof N95 filtering-facepiece respirators challenged with nanoparticles. Ann Occup Hyg. 2006;50:259-269. BS EN. Respiratory protective devices. Filtering half masks to protect against particles. Requirements, testing, marking (BS EN 149). London, UK: BSI British Standards. 2001. BS EN. Respiratory protective devices-methods for test-part 7: determination of particle filter penetration (BS EN 13274-7). London, UK: BSI British Standards. 2008. BS EN. Respiratory protective devices. Particle filters- Requirements, testing, marking (BS EN 143). London, UK: BSI British Standards. 2000. Duffin R, Tran CL, Clouter A, Brown DM, MacNee W, Stone V, Donaldson K. The importance of surface area and specific reactivity in the acute pulmonary inflammatory response to particles. Ann Occup Hyg 2002;46:242-245. Eninger RM, Honda T, Reponen T, McKay R, Grinshpun SA. What does respirator certification tell us about filtration of ultrafine particles- J Occup Environ Hyg. 2008a; 5:286-295. Eninger RM, Honda T, Adhikari A, Heinonen-Tanski H, Reponen T, Grinshpun SA. Filter performance of N99 and N95 facepiece respirators against viruses and ultrafine particles. Ann Occup Hyg. 2008b;52:385-396. Eshbaugh JP, Gardner PD, Richardson AW. N95 and P100 respirator filter efficiency under high constant and cyclic flow. J Occup Environ Hyg. 2009;6:52-61. Federal Register. Respiratory protective devices. Final Rules and Notice. 60:30335-98. 1995. Gardiner K, van Tongeren M, Harrington M. Respiratory health effects from exposure to carbon black: results of the phase 2 and 3 cross sectional studies in the European carbon black manufacturing industry. Occup Environ Med 2001; 58(8):496-503. Garshick E, Laden F, Hart JE, Rosner B, Smith TJ, Dockery DW, Speizer FE. Lung cancer in railroad workers exposed to diesel exhaust. Environ Health Perspect 2004;112(15):1539-1543. Golanski L, Guiot A, Tardif F (2008) Are conventional protective devices such as fibrous filter media, respirator cartridges, protective clothing and gloves also efficient for nanoparticles- In: European Strategy for Nanosafety, 2008;pp1-8. Hart JE, Laden F, Schenker MB, Garshick E. Chronic obstructive pulmonary disease mortality in diesel-exposed railroad workers. Environ Health Perspect 2006;114(7):1013-1017. Haruta H, Honda T, Eninger RM, Reponen T, McKay R,Grinsphun SA. Experimental and theoretical investigation of the performance of N95 respirator filters against ultrafine aerosol particles tested at constant and cyclic flow rates. J Int Soc Res Prot 2008; 25:75-88. Heim M, Millins BJ, Wild M, Meyer J. Filtration efficiency of aerosol particles below 20 nanometers. Aerosol Sci Technol 2005; 39:782-789. Hinds WC. Properties, behavior, and measurement of airborne particles, 2nd edn. Wiley-Interscience Publication, John Wiley & Sons, Inc, New York. 1999. Huang SH, Chen CW, Chang CP, Lai CY, Chen CC. Penetration of 4.5 nm to 10 nm aerosol particles through fibrous filters. J Aerosol Sci. 2007; 38(7):719-727. Kim CS, Bao L, Okuyama K, Shimada S, Niinuma H. Filtration efficiency of a fibrous filter for nanoparticles. J Nanopart Res 2006; 8:215-221. Kim SE, Harrington MS, Pui DYH. Experimental study of nanoparticles penetration through commercial filter media. J Nanopart Res 2007; 9:117-125. Kreiss K, Mroz MM, Zhen B, Wiedemann H, Barna B. Risks of beryllium disease related to work processes at a metal, alloy, and oxide production plant. Occup Environ Med 1997; 54(8):605-612. Lison D, Lardot C, Huaux F, Zanetti G, Fubini B. Influence of particle surface area on the toxicity of insoluble manganese dioxide dusts. Arch Toxicol 1997;71(12):725-729. Martin SB Jr, Moyer ES. Electrostatic respirator filtermedia: filter
71 efficiency and most penetrating particle size effects. Appl Occup Environ Hyg. 2000;15:609-617. NIOSH. Approaches to Safe Nanotechnology: Managing the Health and Safety Concerns Associated with Engineered Nanomaterials. Available from:url:http://www.cdc.gov/niosh/ docs/2009-125/pdfs/2009-125.pdf; 2009. NIOSH. Procedure No. RCT-APR-STP-0051, 0052, 0053, 0054, 0055, 0056, Revision 1.1, Pittsburgh, PA: DHHS, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory. Available from: URL:http://www.cdc. gov/niosh/npptl/stps/pdfs/rct-apr-0051%2052%2053 %2054%2055%2056.pdf; 2005b. NIOSH. Procedure no. RCT-APR-STP-0057, 0058, 0059, Revision 1.1, Pittsburgh, PA: DHHS, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, National Personal Protective Technology Laboratory. Available from: URL: http://www.cdc.gov/niosh/npptl/stps/ pdfs/rct-apr-0057%2058%2059.pdf; 2005a. Oberdoorster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. Role of the alveolar macrophage in lung injury-studies with ultrafine particles. Environ Health Perspect 1992;97:193-199. Oberdoorster G, Ferin J, Lehnert BE. Correlation between particlesize, in-vivo particle persistence, and lung injury. Environ Health Perspect 1994; 102(S5):173-179. Oberdoorster G, Yu. The carcinogenic potential of inhaled diesel exhaust: a particle effect? J Aerosol Sci 1990;21:S397-S401. Park RM, Bowler RM, Eggerth DE, Diamond E, Spencer KJ, Smith D, Gwiazda R. Issues in neurological risk assessment for occupational exposures: the Bay Bridge welders. Neurotoxicology 2006;27(3):373-384. Rengasamy A, Verbofsky R, King WP, Shaffer RE. Nanoparticle penetration through NIOSH-approved N95 filtering-facepiece respirators. J Int Soc Res Prot. 2007; 24:49-59. Rengasamy S, Eimer B, Shaffer RE. Comparison of nanoparticle filtration performance of NIOSH-approved and CE marked filtering-facepiece respirators. Ann Occup Hyg 2009;53:117-128. Rengasamy S, Eimer B, Shaffer RE. Nanoparticle filtration performance of commercially available dust masks. J Int Soc Respir Prot 2008a; 25:27-41. Rengasamy S, King WP, Eimer B, Shaffer RE. Filtration performance of NIOSH-approved N95 and P100 filteringfacepiece respirators against 4-30 nanometer size nanoparticles. J Occup Environ Hyg 2008b; 5:556-564. Renwick LC, Brown D, Clouter A, Donaldson K. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup Environ Med 2004;61:442-447. Steenland K, Deddens J, Stayner L. Diesel exhaust and lung cancer in the trucking industry: exposure-response analyses and risk assessment. Am J Ind Med 1998;34(3):220-228. Tran C, Buchanan LD, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 2000;12(12):1113-1126.