06...._......

Similar documents
[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

KAERIAR hwp

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

-

Microsoft Word - IT부품정보.doc

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

12-17 총설.qxp

<313920C0CCB1E2BFF82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

untitled

<31345FC3E1B0E8C7D0C8B8BBF3BCF6BBF3C0DAC7C1B7CEC7CA5F F D E687770>

<BCBCC1BEB4EB BFE4B6F72E706466>

歯TR PDF


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

歯전기전자공학개론

19(1) 02.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

12.077~081(A12_이종국).fm


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

00....

주요국 에너지 Profile 분석_아랍에미리트

전기설비의 검사˚점검 및 시험등


08ÇÐȸ¼Ò½Ä

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 28(2),


슬라이드 1

DBPIA-NURIMEDIA

농학석사학위논문 폴리페닐렌설파이드복합재료의기계적및열적 특성에영향을미치는유리섬유 환원된 그래핀옥사이드복합보강재에관한연구 The combined effect of glass fiber/reduced graphene oxide reinforcement on the mecha


64.fm

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과

05À±Á¸µµ


<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

02_4_특집_김태호_rev4_ hwp

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

2 : (JEM) QTBT (Yong-Uk Yoon et al.: A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM) (Special Paper) 22 5, (JBE Vol. 2

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR


½Éº´È¿ Ãâ·Â

1 5 0

정보기술응용학회 발표

<91E6308FCD5F96DA8E9F2E706466>

67~81.HWP

KAERI/TR-2128/2002 : SMART 제어봉구동장치 기본설계 보고서

<30382E20B1C7BCF8C0E720C6EDC1FD5FC3D6C1BEBABB2E687770>

歯4.PDF

ㅇ / (, / ) 1 AI (20 ) % 80 N/A N/A 2 AI 10 N/A N/A 3 % % / 93% (, MS ) 80%(, ) fps 30 N/A N/A 6 2 N/A N/A 1 AI 6 SW 2 7 SW (BM) : ( ),

<443A5CB1E8BFC144425CBAB8B0EDBCAD5CB4EBC7D0C7F5BDC5B0FAB0E6C0EFB7C228C3D6C1BE295F E2E2E>

Microsoft Word - 1-차우창.doc

13_1_학회소식_rev5_ hwp

PowerPoint 프레젠테이션

KARAAUTO_4¿ù.qxd-ÀÌÆå.ps, page Normalize

전기일반(240~287)


23

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

ePapyrus PDF Document

국706.fm

Contents 2016 August vol.29 Solar Technology Brief 106 태양광 해외기술정보 Technology Brief 110 세라믹스 해외기술정보 전시회 나노코리아 단신 동정 125 단신 및 동정_취재부 과학터치 126 빛

< B4EBC7D0BBFDC8B0BEC8B3BB28C0DBBEF7292E687770>

Statistical Data of Dementia.

yonsei429

歯김미성원고.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

PCB ACF 77 GHz. X,,.,. (dip brazing), (diffusion bonding), (electroforming),, [1],[2].. PCB(Printed Circuit Board), (anisotropic conductive film: ACF)

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Company Report N/R 현재주가 (2014/07/04) 9,960원 목표주가 (6M) -원 신건식 미디어,엔터/스몰캡 (02) 아이원스(114810) 선명해지는 실적 개선 반도체 및 디

hwp

2/21

untitled

10 (10.1) (10.2),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

대표이사등의 확인, 서명 I. 회사의 개요 1. 회사의 개요 가. 회사의 법적, 상업적 명칭 당사의 명칭은 '엘아이지에이디피주식회사'('LIG에이디피주식회사'라 칭하며), 영문으 로는 'LIG ADP Co.,Ltd.'(약호 LIG ADP)라 표기합니다. 나. 설립일자

Slide 1

歯김유성.PDF

14.fm

목 록( 目 錄 )

02-1기록도전( )

03-1영역형( )

Microsoft PowerPoint - [ ][금요과학터치]-upload 버전.ppt

<4D F736F F F696E74202D2028B9DFC7A5BABB2920C5C2BEE7B1A420B8F0B5E220C8BFC0B220BDC7C1F520BDC3BDBAC5DB5FC7D1B1B94E4920C0B1B5BFBFF85F F726C F72756D>

세종대 요람

main.hwp

14.531~539(08-037).fm

jaeryomading review.pdf

ePapyrus PDF Document

Transcription:

Development of High-efficiency Thermoelectric Devices Using Nanowires Jong Wook Roh and Woo Young Lee Department of Materials Science and Engineering, Yonsei University 1. 21.. (,,,, ). (thermoelectric effect) Seebeck (1821 ) Peltier (1843 ).( 1 ) (energy consumption) (energy generation),,,.,,, IT, BT.( 2) 1. (a) Seebeck (b) Peltier 33

2. 10%,,... 2. 1821 T. J. Seebeck, Abram Ioffe Seebeck 100 4%. (thermoelectric figure of merit, ZT m ). S Seebeck, (electrical conductivity), k (thermal 3. (Ref.[5]) conductivity). (parameter) (carrier concentration).., 1950 Bi 2 Te 3 (ZT m 1) 2000.( 3) 1993 MIT Dresselhaus power factor(s 2 ) 4 1,2). Dresselhaus (quantum confinement effect), power factor (phonon) (scattering source) Seebeck,.( 5) 2001 RTI(Research 34

.. Bi 1. 3. 4. n-type Bi (Ref.[6, 7]) 5. (a) (b) Triangle Institute, ) Venkatasubramanian Bi 2 Te 3 /Sb 2 Te 3 ZT m =2.4 (T m =300K) 3), MIT Harman PbSeTe 1.6. 4) Dresselhaus power factor (heat carrier), (1) MIT Dresselhaus, (2 ) (1 )., 2000 NASA,,, (DOE: Department of Energy) 3,000 2009. MIT, Caltech, U.C. Berkeley. Bi. 8) MIT Dresselhaus 1993 Bi. Dresselhaus semiclassical transport model band structure model 10nm Bi. 6) (pressure injection method) Bi, 65nm Bi - (semimetal to semiconductor 35

transition). 9,10) Bi, Bi Bi array 2 Bi.( 6) 2006 Caltech Heath Bi Seebeck suspended device 72nm Bi Seebeck 25 V/K. Bi Seebeck Bi(Seebeck : 50~100 V/K), - (semimetal-tosemiconductor transition). 11) Si, (ZT m =0.01). 2008 Berkeley Yang Caltech Heath Nature Si. Si,. Caltech Heath Si 200K 1. 12) Berkeley 6. Dresselhaus (MIT) (a) Bi array (b) Bi array (Ref. [9]) 7. (a) Heath polycrystalline Bi (b) Seebeck (Ref.[11]) 36

. core/shell. Li 10 (a) Te/Bi 2 Te 3 core/shell two-step solution phase 8. Yang (U. C. Berkeley) rough surface Si (a) TEM (b) Si (c) TEM (d), Te/Bi 2 Te 3 core/shell bulk composite., 0.55W/ m-k. 14) 2003 Berkeley Majumdar Si/SiGe microsuspended device, phonon alloy scattering. 15) 9. Si (Ref.[12]) Yang rough surface Si, 0.8W/m-K Si 100,. 13) Yang Si (nano-ribbon), phonon 300K 1.14. Yang rough Si Si 10. (a) Te/Bi 2 Te 3 core/shell TEM (b) Te/Bi 2 Te 3 core/shell Seebeck 37

(2) (ZT~0.8),, LG,. In 4 Se 3-705K 1.48 KIST,, Bi 2 Te 3 2. 16) ETRI top-down 50nm n-type Si - 118µV/K Seebeck. 1,. Bi Bi Bi. 10) Si/SiO 2 Bi Bi (thermodynamic driving force) Bi. Bi aspect ratio.( 11) 120nm Bi 76900cm 2 /Vs, 1.35 m. 17,18) (stress-induced method) whisker,. 19,20) Bi 2 Te 3 compound semiconductor. 21) Bi (nano particles), 11. (a) Bi (b) Bi (c) Bi 38

Bi 50.. array,. Bi suspended micro-device Bi Seebeck. 13 (a) suspended micro- 12. Bi suspended micro-device (a) (b) (c) Bi 13. Seebeck (a) (b) 39

14. (a) All-in-one MEMS (b) All-in-one MEMS device. 22,23) suspended micro-device SiN x heater Bi, sensing coil (thermal conductance). membrane (thermal resistance) dual-beam Focused ion beam thermal contact 13 (b). Bi 23,24), 98nm Bi 0.8W/m-K Bi( : 8W/m-K) 10. Seebeck Seebeck. 25) 14 (a) Bi Seebeck. micro heater Joule heat (thermal gradient), 4 (4-pointelectrode). 120nm Bi Seebeck 70 V/K, Bi Seebeck. Seebeck. Allin-one MEMS(micro-electromechanical systems), Seebeck. 14 All-in-one MEMS Seebeck, suspended structure, 4. MEMS 4 thermal contact ohmic contact plasma etching. All-in-one MEMS membrane, plasma etching Bi. thermal contact ohmic contact 40

, Seebeck., array.. p-type n-type. (parylene),., (glass transition temperature) 90 290.. 4.. 2000,.,,,.,.,,.. 15. 2009 (2009-0093823). 41

1. Hicks, L.D. and M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993. 47(24): p. 16631. 2. Hicks, L.D. and M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 1993. 47(19): p. 12727. 3. Venkatasubramanian, R., et al., MOCVD of Bi2Te3, Sb2Te3 and their superlattice structures for thin-film thermoelectric applications. Journal of Crystal Growth, 1997. 170(1-4): p. 817-821. 4. Harman, T.C., et al., Quantum dot superlattice thermoelectric materials and devices. Science, 2002. 297(5590): p. 2229. 5. Majumdar, A., Thermoelectricity in semiconductor nanostructures. Science, 2004. 303(5659): p. 777-778. 6. Lin, Y.M., X.Z. Sun, and M.S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Physical Review B, 2000. 62(7): p. 4610-4623. 7. Dresselhaus, M.S., et al., The promise of lowdimensional thermoelectric materials. Microscale Thermophysical Engineering, 1999. 3(2): p. 89-100. 8. Gallo, C.F., B.S. Chandrasekhar, and P.H. Sutter, Transport Properties of Bismuth Single Crystals. Journal of Applied Physics, 1963. 34(1): p. 144. 9. Lin, Y.M., et al., Transport properties of Bi nanowire arrays. Applied Physics Letters, 2000. 76(26): p. 3944-3946. 10. Zhang, Z.B., et al., Electronic transport properties of single-crystal bismuth nanowire arrays. Physical Review B, 2000. 61(7): p. 4850-4861. 11. Boukai, A., K. Xu, and J.R. Heath, Size-Dependent Transport and Thermoelectric Properties of Individual Polycrystalline Bismuth Nanowires. Advanced Materials, 2006. 18(7): p. 864. 12. Boukai, A.I., et al., Silicon nanowires as efficient thermoelectric materials. Nature, 2008. 451(7175): p. 168-171. 13. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451(7175): p. 163-U5. 14. Zhang, G.Q., W. Wang, and X.G. Li, Enhanced Thermoelectric Properties of Core/Shell Heterostructure Nanowire Composites. Advanced Materials, 2008. 20(19): p. 3654-+. 15. Li, D.Y., et al., Thermal conductivity of Si/SiGe superlattice nanowires. Applied Physics Letters, 2003. 83(15): p. 3186-3188. 16. Rhyee, J., et al., Peierls distortion as a route to high themoelectric perdormance in In 4 Se 3-δ Crystal Nature, 2009. 459(18): P. 965. 17. Shim, W., et al., On-Film Formation of Bi Nanowires with Extraordinary Electron Mobility. Nano Letters, 2008. 9(1): p. 18. 18. Shim, W., et al., Shubnikov--de Haas oscillations in an individual single-crystalline bismuth nanowire grown by on-film formation of nanowires. Applied Physics Letters, 2009. 95(23): p. 232107. 19. Ham, J., et al., Self-assembled Bi interconnections produced by on-film formation of nanowires for in situ device fabrication. Nanotechnology, 2010. 21(16). 20. Lee, S., et al., Direct observation of the semimetalto-semiconductor transition of individual singlecrystal bismuth nanowires grown by on-film formation of nanowires. Nanotechnology, 2010. 42

21(40). 21. Ham, J., et al., Direct Growth of Compound Semiconductor Nanowires by On-Film Formation of Nanowires: Bismuth Telluride. Nano Letters, 2009. 9(8): p. 2867. 22. Roh, J.W., et al., Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires. Applied Physics Letters, 2010. 96(10): p. 103101. 23. Li, D.Y., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003. 83(14): p. 2934-2936. 24. Li, W.X., et al., Phonon transport and thermal conductivity in dielectric quantum wire. Journal of Physics D-Applied Physics, 2003. 36(23): p. 3027-3033. 25. Jang, S.Y., et al., Transport properties of singlecrystalline n-type semiconducting PbTe nanowires. Nanotechnology, 2009. 20(41). 43