DBPIA-NURIMEDIA

Similar documents
THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct , EBG. [4],[5],. double split ring resonator (D

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

04 최진규.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

04 김영규.hwp

<363720C0CCC1BEC0CD2DC1F7B7C420B1DEC0FCB5C820B5CE20B0B3C0C720B4D9C0CCC6FA2E687770>

04 박영주.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 26(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 4, Apr (planar resonator) (radiator) [2] [4].., (cond

韓國電磁波學會論文誌第 21 卷第 9 號 2010 年 9 月. PCS(Personal Communication Service), WCDMA(Wideband Code Division Multiple Access), WiBro(Wireless Broadband),, (dua

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 27(1), ISSN

PCB ACF 77 GHz. X,,.,. (dip brazing), (diffusion bonding), (electroforming),, [1],[2].. PCB(Printed Circuit Board), (anisotropic conductive film: ACF)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 28, no. 9, Sep [1]. RFID.,,,,,,, /,,, (,,,, ) [2] [4].., ( 99

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 26(12),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 27(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

05 목차(페이지 1,2).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 27(8),

<343420BFA9C1D8C8A32DC0CCB5BFC5EBBDC520B1E2C1F6B1B9BFEB20B1A4B4EBBFAA2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 12, Dec ,. VHF,, [1],[2].,.,,. [3] [9]., VHF.,. VHF.. 안

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 30(7),

00-2 목차.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 8, Aug [3]. ±90,.,,,, 5,,., 0.01, 0.016, 99 %... 선형간섭

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

<313620C1A4C3A2BFF82DB1A4B4EBBFAAC0C720C0CCC1DFB4EBBFAA20B5BFC0DBC0BB20C0A7C7D120504D50BFEB2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep [1],[2].,.,, [3],[4]., 4 MI- MO(Multiple Input

<323120C3A4B1D4BCF62DC0FDC0FCBCBEBCADBFEB20582DB9EAB5E520B4EBBFAA20C6D0C4A120BEEEB7B9C0CC20BEC8C5D7B3AA20BCB3B0E82E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Apr.; 26(4),

(2002).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 26(1), IS

. 서론,, [1]., PLL.,., SiGe, CMOS SiGe CMOS [2],[3].,,. CMOS,.. 동적주파수분할기동작조건분석 3, Miller injection-locked, static. injection-locked static [4]., 1/n 그림

DBPIA-NURIMEDIA

¼º¿øÁø Ãâ·Â-1

11 함범철.hwp

<313920C0CCB1E2BFF82E687770>

Microsoft Word - lab-06-monopole.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 27, no. 12, Dec 그러나 eloran 송신 안테나는 매우 넓은 영역을 차지한 다. 예를 들어 미국에

韓國電磁波學會論文誌第 21 卷第 11 號 2010 年 11 月 (a) (a) Frequency response (b) (b) Corresponding pole-zero diagram 그림 1. Fig. 1. Characteristic of multi-band filte

PCB PCB. PCB P/G de-cap [2],[3]., de-cap ESL(Equivalent Series Inductance) [3],. P/G [4], P/G. de-cap P/G, PCB.. 단일비아를이용한 P/G 면공진상쇄 2-1 P/G 면공진현상 PCB

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 29(5),

RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

Microsoft Word - lab-16-yagi-antenna.doc

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

ÁÖÀçÀ² Ãâ·Â

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 26(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE May; 26(5),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jul.; 27(7),

(2002).hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

PowerPoint Presentation

(JBE Vol. 21, No. 3, May 2016) (Regular Paper) 21 3, (JBE Vol. 21, No. 3, May 2016) ISSN

DBPIA-NURIMEDIA

24 GHz 1Tx 2Rx FMCW ADAS(Advanced Driver Assistance System).,,,. 24 GHz,, [1] [4]. 65-nm CMOS FMCW 24 GHz FMCW.. 송수신기설계 1 1Tx 2Rx FMCW (Local Oscillat

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

이 발명을 지원한 국가연구개발사업 과제고유번호 부처명 방송통신위원회 연구사업명 방송통신기술개발사업 연구과제명 안전한 전자파환경 조성 주관기관 한국전자통신연구원 연구기간 ~

Microsoft PowerPoint - 방송용안테나(061109)최종.ppt

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Oct.; 27(10),

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

09È«¼®¿µ 5~152s

Microsoft Word - lab-12-antenna-mutual-coupling.doc

Microsoft Word - KSR2016S168

08 조영아.hwp

< C6AFC1FD28B1C7C7F5C1DF292E687770>

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 12, Dec 또한, 최근 위성통신은 점차 많은 데이터량과 주파수 활용문제로 인하여 Ka 인 초고

<37305FB1E8B1D4C8AF2DC3CAB0EDC1D6C6C4BFEB20BCB1C7FC20C0CCB5E628C7D1B1DBBACEBAD020BFB5B9AEBCF6C1A4292E687770>

박선영무선충전-내지

09 남형기.hwp

PCB EMI,. LDWS..,. PCB.. LDWS,, Windshield. 1 LDWS,. PCB., (rise-time),, 5 40 (db/decade),. PCB 10, EMI PCB. Tool, EMI., Antenna. Source,,., EMI.. 제품구

<343620C0CCC1BEC0CD2DC1F6BBF3C6C420B5F0C1F6C5D020B9E6BCDB20BCF6BDC5BFEB20BCD2C7FC2E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 9, Sep GHz 10 W Doherty. [4]. Doherty. Doherty, C

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun Rate). STAP(Space-Time Adaptive Processing)., -

°í¼®ÁÖ Ãâ·Â

03 장태헌.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jan.; 25(1), IS

(JKONI 16(6): , Dec. 2012) 간결하고효과적인 X-band 위성통신용계단형셉텀편파기의설계방법 김지흥 *, 이재욱 *, 이택경 *, 조춘식 * Jee-Heung Kim *, Jae-Wook Lee *, Taek-Kyu

<303320C1A4C3A2BFF82DBCBFB7EAB7AF20B9D720C4BFB3BCC6BCBAF1C6BC20B4EBBFAA20C5EBC7D5BFEB20B5BFBDC3B5BFC0DBB8F0B5E52E687770>

07 최운성.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 6, Jun , [6]. E- [9],[10]. E- 3D EM(electromagnetic),,

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

KAERITR hwp

(수정).hwp

Ceramic Innovation `

Transcription:

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 15 논문 2008-45TC-8-3 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나 (EBG Resonator Antenna with a Stripline Type FSS Superstrate for PCS-band Base Station Antennas ) 여준호 *, 김동호 ** * (Junho Yeo and Dongho Kim ) 요 약 본논문에서는스트립라인형태의주파수선택적표면덮개층을이용하여 PCS 대역의기지국안테나로사용될수있는 EBG 공진기안테나를제안하였다. PCS 대역의기지국안테나에서요구되는안테나이득과대역폭을가지는 EBG 공진기안테나를설계하기위하여덮개층주기구조의단위셀시뮬레이션을이용한다양한설계파라미터의변화에따른공진주파수및대역폭의특성을분석하였다. 이를위하여여러구조들중에서많이사용되는스트립다이폴과스트립라인구조의특성을비교하였으며, 스트립라인구조가스트립다이폴구조에비해서 EBG 공진기의공진길이가더짧고대역폭조정이더쉬움을알수있었다. 단위셀시뮬레이션결과를이용하여 PCS 대역을만족하는평면구조의 EBG 공진기안테나와원통형 EBG 공진기안테나를설계하였다. Abstract In this paper, an EBG(Electromagnetic BandGap) resonator antenna with a stripline type FSS(Frequency Selective Surface) superstrate for PCS-band base station antennas is proposed. The characteristics of resonant frequency and -3dB bandwidth of a unit cell of a superstrate are first analyzed by varing several design parameters such as a strip width and a unit cell width in order to design an EBG resonator antenna satisfying the required antenna gain and bandwidth for PCS-band base station antennas. Among various unit cell shapes, strip dipole and stripline are considered and their characteristics are compared. It was found that a resonant length of the EBG resonator antenna becomes smaller when the stripline shape is used and the control of the bandwidth is also much easier. By using the unit cell simulation results, planar and cylindrical EBG resonator antennas at PCS-band are designed. Keywords : EBG(Electromagnetic BandGap) resonator antenna, Frequency Selective Surfaces(FSS), Stripline, PCS(Personal Communications Services)-band, Base Station Antenna Ⅰ. 서론 최근들어인공적으로합성되어자연계에서흔히볼 * 정회원, 대구대학교정보통신공학부 (School of Computer & Communication Eng., Daegu University) ** 정회원, 한국전자통신연구원전파방송원천기술연구팀 (Radio & broadcasting fundamental technology research team, Electronics and Telecommunications Research Institute) 본연구는대구대학교교내연구비지원으로이루어졌음. 접수일자 : 2008년7월20일, 수정완료일 : 2008년8월1일 수없는특수한전자기적성질을나타내는물질인메타물질 (Metamaterial) 에대한이론적인해석및다양한분야에대한응용에대한연구가전세계적으로활발히진행되고있다. 이러한메타물질에는광학밴드갭 (PBG, Photonic Bandgap) 혹은전자기밴드갭 (EBG, Electromagnetic Bandgap) 구조, 인공자기도체 (AMC, Artificial Magnetic Conductor) 구조, 단일 / 이중음의유전율 / 투자율 (Single/Double Negative Permittivity /Permeability) 물질, 음의굴절률 (NRI, Negative Refractive Index) 물질, Left-handed(LH) 물질등이있으며, 관심있는물질의특성에따라다르게명명되어 (592)

16 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 불려지고있다. [1] 이중에서전자파 (Electromagnetic Wave) 의전파 (Propagation) 를효율적으로제어할수있는 EBG 구조를마이크로파소자및시스템에응용하는연구가마이크로파및안테나공학분야에서활발히연구되고있다. EBG 구조는광학분야에서오래전부터연구되어오던 Photonic Crystal 혹은 PBG 구조에서유래되었으며, 이러한구조를마이크로파나밀리미터파대역에적용하면서 EBG 구조라고부르고있다. EBG 구조는특정한모양을가지는단위셀 (Unit Cell) 구조가주기적으로반복되는구조로서특정주파수대역의전자파의전파가허용되지않는주파수차단 (Band Stop) 특성을갖는다. 이러한 EBG 구조를안테나에적용할경우안테나의기판 (Substrate) 이나덮개층 (Superstrate 혹은 Cover) 로사용될수있다. [2] 안테나의기판으로사용될경우고유전율 (High Permittivity) 의기판을사용할때발생하는표면파 (Surface Wave) 를감소시켜안테나의방사특성개선및이득을향상시킬수있다. 또한여러안테나가배열되어있을경우안테나사이에적용될경우안테나간의상호결합 (Mutual Coupling) 을줄여주는역할도할수있다. [3] 안테나의덮개층으로사용될경우안테나의지향성 (Directivity) 을향상시킬수있으며배열안테나 (Array Antenna) 에서필요로하는복잡한급전구조가필요없게된다. 이러한개념은결국고지향성의얇은빔 (narrow beam) 을만들기위해서는동위상을가지는큰등가개구면 (Aperture) 을가지는방사체가필요하다는것을의미하며, 다이폴안테나, 패치안테나, 개구면안테나와같은간단한방사원 (Radiation Source) 을이용하여간단하게만들수있다. [4] 덮개층으로사용할수있는구조로는다층유전체층 (Multiple Dielectric Layer), 유전체봉 (Dielectric Rod) 을이용한전자기밴드갭 (EBG) 구조, Woodpile 형태의전자기밴드갭구조그리고주기적인금속물질을이용한주파수선택적표면 (FSS, frequency selective surface) 구조등이있다. 또한, 유전율이 0과 1사이인 ENZ(Epsilon Near Zero) 물질도사용될수있다. 이러한 EBG 공진기안테나해석을위해서크게두가지접근방법이연구되어왔다. 첫번째방법은전체안테나를누설파 (Leaky Wave) 안테나로해석한다. Jackson 등은패치안테나위에한층혹은다층유전체층을놓아패치안테나의지향성이향상됨을보였고, 이를누설파이론을이용하여설명하였으며유전층의두께와유전상수를적절히조절하여지향성향상이나타나는주파수를조절할수있음을보였다. [5~6] Zhao 등은이것을금속패치 (Metallic Patch) 나금속평면에슬롯 (Slot) 으로이루어진 2차원주기구조에대해서확장하였다. [7~8] 두번째방법은안테나의덮개층을부분반사표면 (PRS, Partially Reflecting Surface) 으로간주하여전체안테나를 Fabry-Perot Cavity 형태의안테나로해석한다. 이경우부분반사표면과접지면 (Ground plane) 에의해이루어지는 Fabry-Perot Cavity에서두표면사이의거리가주파수의반파장이될때발생하는공진기개념을이용하여지향성향상을설명한다. Trentini 는접지면이있는도파관앞에부분반사표면을두고접지면과부분반사표면사이를금속벽으로둘러쌈으로서지향성향상이가능함을처음소개하였고 [4], Alexopoulos 등은패치안테나위에단일혹은다중유전체층을놓아패치안테나의지향성이향상을시킬수있음을보였고이때공진조건을파선이론 (Ray Theory) 과 Fabry-Perot Interferometer를이용하여, 방사패턴을가역정리 (Reciprocity) 와전송선이론 (Transmission Line Theory) 을이용하여유도하였다. [9~10] Feresidis 등은 Jackson 등이제안한이론을바탕 으로부분반사표면의반사계수 (Reflection Coefficient) 의크기와위상을이용하여 Boresight 이득과대역폭을구할수있는식을유도하고넓은주파수대역에서동작할수있는최적화된부분반사표면을이용한고이득안테나설계를소개하였으며 [11], 패치안테나의접지면으로완전전기도체 (PEC, Perfect Electric Conductor) 대신에인공자기도체 (AMC) 를사용하여스트립다이폴형태의주파수선택표면으로구성된부분반사표면과접지면사이에필요한거리인공진길이 (Resonant length) 를절반, 즉파장의 1/4로줄일수있음을보였다 [12]. Cheype 등은유전체봉 (Dielectric Rod) 로구성된 EBG 구조를덮개층으로사용하여밴드갭대역내에결함모드 (Defect Mode) 를만들어서패치안테나의지향성을향상시킬수있는방법을제안하였다 [13]. Lee 등은같은구조에서두가지결함모드를발생할수있는방법을소개하고이들모드를조절할수있는단위셀시뮬레이션방법을제시하고, 이를이용하여이중대역안테나, 이중대역이중편파그리고광대역안테나등과같은여러종류의고지향성 EBG 공진기안테나를제안하였다. [14] 또한, Lee 등은단위셀 (593)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 17 시뮬레이션을이용하여스트립다이폴형태의주파수선택표면을덮개층으로구성된고지향성안테나의지향성을구하는방법을제안하였고 [15], 이중대역에서지향성을향상시킬수있는두층의주파수선택적표면으로구성된덮개층을제안하였다 [16]. 최근에 Pirhadi 등은단일층 (Single layer) 의주파수선택적표면과접지면으로인공자기도체 (AMC) 를사용한이중대역 EBG 공진기안테나를소개하였다. 이중대역지향성향상을위해서두층의주파수선택적표면을사용하지않고단일층으로이중대역에서공진하도록두개의루프 (Double Loop Element) 를사용하였으며, 두번째공진대역의경우전기장이접지면에서최대인홀수모드 (Odd Mode) 를사용하기위해서완전전기도체 (PEC) 대신에인공자기도체 (AMC) 를사용하였다. 이렇게함으로써이중대역의주파수간격을더좁힐수있다. [17] 한편, Gardelli 등은 EBG 공진기안테나의방사원으로패치안테나대신에배열안테나를사용할경우배열안테나의간격을일반배열안테나의경우보다훨씬넓힐수있고배열안테나소자의수도줄이고결국배열안테나소자사이의상호결합도줄일수있음을보였다. [18] 대부분의논문에서발표된 EBG 공진기안테나의경우덮개층과접지면이모두평면인구조를다루고있으나, 원통형 (Cylindrical) EBG 구조에대한연구도몇몇연구그룹에서진행되고있다. Vardaxoglou 등은전방향성방사패턴을가지는 2.4 GHz 대역의무선랜 (Wireless LAN) 용안테나를패치형태의주파수선택적표면을사용한원통형 EBG 구조를이용하여설계하였다. [19] Jecko 등은 5.2 GHz 대역의무선랜 (HiperLAN2) 용기지국안테나를원통형 EBG 구조를이용하여제작하였다. 얇은금속봉 (Metallic rod) 형태의부분반사표면이사용되었으며방사원으로두개의다이폴안테나가사용되었다. [20] 그러나이들논문에서설계된원통형 EBG 공진기안테나의지향성은 8dBi 혹은 14 dbi 정도이며실제안테나의이득에대한정보는소개되지않았다. 한편, Boutayeb 등은무한금속선 (Infinite Metallic wire) 으로구성된원통형 EBG 구조에대한이론적해석과지향성안테나설계에대한연구를소개했다. 이경우원점에전방향성방사원이있다는가정하에금속선 (Metallic Wire) 으로이루어진다층의원통형주파수선택적표면이부분반사표면을구성할때이구조가 원통구조의원주 (Circularly) 및반지름 (Radially) 에주기적인것을이용하여전송계수 (Transmission Coefficient) 를구하는방법을제시하였다. 또한주기구조에결함 (Defect) 를발생시켜원하는방향각과빔폭을갖는지향성안테나를설계하는방법도소개하였다. 제작된안테나의이득은 1.77 2.17 GHz 대역에서 12.2 15.8 db 이였다. [21] 본논문에서는스트립라인형태의주파수선택적표면을이용하여 PCS(Personal Communications Services) 대역 (1.75 1.87 GHz) 용기지국안테나로사용될수있는 EBG 공진기안테나를제안하였다. PCS대역의기지국안테나에서요구되는 15dB이상의안테나이득과 120MHz의대역폭을가지는 EBG 공진기안테나를설계하기위하여공진기의부분반사표면인덮개층주기구조의단위셀시뮬레이션을이용한다양한설계파라미터의변화에따른공진주파수및대역폭의특성을분석하였다. 단위셀시뮬레이션결과를이용하여 PCS대역을만족하는평면구조의 EBG 공진기안테나를설계하였으며, 평면구조의 EBG 공진기안테나를이용하여원통형 EBG 공진기안테나를설계하였다. Ⅱ. PCS 대역주파수선택적표면덮개층설계 PCS대역에서동작하는주파수선택적표면형태의덮개층을설계하기위해본논문에서는두가지형태의단위셀 (Unit Cell) 구조, 즉스트립다이폴 (Strip Dipole) 구조와스트립라인 (Stripline) 구조를비교분석하였다. 그림 1에는스트립다이폴및스트립라인단위셀구조가나타나있으며, 단위셀의 x축방향주기는 px, y축방향주기는 py, 스트립다이폴과스트립라인의폭은 w 1, 스트립다이폴과 x축단위셀과의간격은 g, 스트립다이폴의길이를 l 1 이다. 스트립라인의경우스트립라인의길이는 y축방향주기 py와같다. 스트립다이폴과스트립라인구조는그형태가유사하지만스트립다이폴구조는금속도체가유한한길이를가지고서로떨어져있는반면에스트립라인은금속도체가서로연결되어무한하게긴도체로볼수있다. 스트립라인구조는등가회로로표현했을때인덕터 (Inductor) 로볼수있으며 DC주파수에서반사계수가 1 이되는저역통과필터 (Low Pass Filter) 로볼수있다. 반면에, 스트립다이폴구조는등가회로로표현했을때인덕터와커패시터 (Capacitor) 가직렬로연결된것으로볼수있으며인덕턴스 (Inductance) 값과커패시턴스 (594)

18 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 (a) 스트립다이폴 (a) Strip Dipole (a) 크기 (a) Magnitude (b) 스트립라인 (b) Stripline 그림 1. 스트립다이폴과스트립라인단위셀구조 Fig. 1. Geometry of unit cells with strip dipole and stripline. (Capacitance) 값에따라대역이결정되는대역통과필터 (Band Pass Filter) 특성을가진다. [22] 1. 부분반사표면단위셀구조의반사계수특성 PCS 대역에서동작하는덮개층을설계하기위해 y 축방향단위셀주기를 py = 80 mm 로고정하고 x 축 방향단위셀주기 px 와스트립다이폴과스트립라인 의폭 w 1 을변화시킬때스트립다이폴과스트립라인 구조의단위셀의반사계수 (Reflection Coefficient) 의 크기 (Magnitude) 와위상 (Phase) 의변화를비교하였다. 먼저 x 축방향단위셀주기를 px = 47 mm 로고정하 고스트립다이폴과스트립라인의폭 w 1 을 9 mm 에서 45 mm 로 6 mm 간격으로증가시킬경우반사계수가그 림 2 와 3 에나타나있다. 이때스트립다이폴의길이는 (b) 위상 (b) Phase 그림 2. 스트립폭 w 1 에따른스트립다이폴단위셀의 반사계수 (px = 47 mm, py = 80 mm, l 1 = 77 mm) Fig. 2. Reflection coefficient of a strip dipole unit cell as a function of strip width w 1(px = 47 mm, py = 80 mm, l 1 = 77 mm). l 1 = 77 mm 이고, 스트립다이폴과 x 축단위셀과의간 격은 g = 1.5 mm 이다. 본논문에서사용된시뮬레이션 은 CST 사의 Microwave Studio 2008 을사용하였다. 스트립다이폴의경우그림 2 에나타나있듯이스트 립폭 w 1 이증가할수록반사계수의크기가 0 db 근처에 있는대역폭이늘어나고반사계수위상의기울기가완 만해짐을알수있다. 반면에, 스트립라인의경우스트 립폭 w 1 이증가할수록반사계수의크기가 0 db 에가까 워지고반사계수위상이 180 o 에근접함을알수있다. 다음으로스트립다이폴과스트립라인의폭 w 1 을 9 mm 로고정하고, x 축방향단위셀주기 px 를 11 mm 에서 47 mm 까지 6 mm 간격으로증가시킬경우반사계 수가그림 4 와 5 에나타나있다. 이때스트립다이폴의 길이는 l 1 = 77 mm 이고, 스트립다이폴과 x 축단위셀 (595)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 19 (a) 크기 (a) Magnitude (b) 위상 (b) Phase 그림 3. 스트립폭 w 1 에따른스트립라인단위셀의반사계수 (px = 47 mm, py = 80 mm) Fig. 3. Reflection coefficient of a stripline unit cell as a function of strip width w 1 (px = 47 mm, py = 80 mm). (a) 크기 (a) Magnitude (b) 위상 (b) Phase 그림 4. x축방향단위셀주기 px에따른스트립다이폴단위셀의반사계수 (w 1 = 9 mm, py = 80 mm, l 1 = 77 mm) Fig. 4. Reflection coefficient of a strip dipole unit cell as a function of x-direction unit cell periodicity px(w 1 = 9 mm, py = 80 mm, l 1 = 77 mm). (a) 크기 (a) Magnitude (b) 위상 (b) Phase 그림 5. x축방향단위셀주기 px에따른스트립라인단위셀의반사계수 (w 1 = 9 mm, py = 80 mm) Fig. 5. Reflection coefficient of a stripline unit cell as a function of x-direction unit cell periodicity px(w 1 = 9 mm, py = 80 mm). (596)

20 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 과의간격은 g = 1.5 mm 이다. 스트립다이폴의경우 x 축방향단위셀주기 px 가 감소할수록반사계수의크기가 0 db 근처에있는대역 폭이늘어나고반사계수위상의기울기가완만해짐을 알수있다. 반면에, 스트립라인의경우 x 축방향단위 셀주기 px 가감소할수록반사계수의크기가 0 db 에가 까워지고반사계수위상이 180 o 에근접함을알수있다. 2. EBG 공진기안테나의단위셀구조의특성 EBG 공진기안테나는부분반사표면역할을하는 덮개층과접지면으로이루어지는 Fabry-Perot Cavity 와 방사원으로구성된다. 방사원으로는다이폴및모노폴 안테나, 개구면안테나, 마이크로스트립패치안테나, 혼 (Horn) 안테나, 배열안테나등이사용될수있다. EBG 공진기안테나의공진주파수, 즉지향성이향상되는주 파수와그대역폭을예측하기위해서 EBG 공진기안테 나덮개층주기구조의단위셀을시뮬레이션하는방법 이제안되었다. [14] 이방법에서는그림 6 에나타나있듯 이접지면의특성을이용하여덮개층을포함한접지면 위의구조를접지면에대해서대칭되도록단위셀구조 를만든후평면파 (Plane Wave) 를아래쪽에서입사시켜 덮개층위쪽에서전송계수 (Transmission Coefficient) 를 계산한다. 이방법은 EBG 공진기안테나전체를시뮬레 이션하지않아도되므로공진주파수를빠르고손쉽게 알수있으며공진기에존재할수있는여러공진모드 들 (Resonant Modes) 을제공한다. 이러한공진모드들 중에서접지면에서의접선전기장성분을이용하여실 제접지면과방사원을사용하여공진기안테나를구성 했을경우존재할수있는공진모드를선택할수있다. 그림 6. EBG 공진기안테나의단위셀구조 Fig. 6. Geometry of a unit cell of an EBG resonator antenna. 접지면으로완전전기도체 (PEC) 가사용될경우접선전기장성분이 0이되어야하며, 완전자기도체 (PMC) 나인공자기도체 (AMC) 가사용될경우접지면에서최대가된다. 부분반사표면와완전전기도체접지면으로구성된 Fabry-Perot Cavity의경우공진이발생하는길이, 즉공진길이 (Resonant Length) d는식 (1) 을이용하여구할수있다. [4] (1) 여기서, c는빛의속도, f c 는공진주파수, 는덮개층으로사용된부분반사표면의반사계수의위상, m = 0, 1, 2,... 이다. 식 (1) 에서접지면으로완전전기도체가사용되어서반사계수위상 - (-180 o ) 가사용되었다. 스트립다이폴및스트립라인단위셀구조를부분반사표면으로사용할경우, 식 (1) 과그림 2와 3에서구한반사계수의위상을이용하여스트립폭 w 1 에따른공진길이의변화가그림 7에나타나있다. 이공진길이는 EBG 공진기안테나에서발생할수있는가장낮은모드에대응하는것이다. 스트립다이폴의경우 1.73 GHz 보다낮은주파수에서는스트립폭 w 1 이증가할수록공진길이가짧아지나 1.73 GHz 보다높은주파수에서는스트립폭이감소할수록공진길이가짧아진다. 스트립라인의경우스트립폭이감소할수록공진길이가짧아짐을알수있다. 또한, 스트립다이폴과스트립라인을비교할경우같은스트립폭일때스트립라인을단위셀로사용할경우가공진길이가더짧아짐을알수있다. 예를들면, 공진주파수가 PCS대역의중심주파수인 1.81 GHz 이고스트립폭이 9 mm일때, 스트립다이폴의경우공진길이가 86.4 mm이고스트립라인의경우 74.85 mm로서 10mm이상짧다. 위에서구한공진길이를이용하여그림 6의대칭구조를만들어서평면파를아래쪽에서입사한후위쪽에서전송계수 S 21 을구한결과가그림 8에나타나있다. 앞에서설명했듯이여러모드들중에서 2번째모드가실제 EBG 공진기안테나에존재할수있는가장낮은 모드이며 [15] 이모드만을나타내었다. 스트립다이폴의 경우공진길이는스트립폭이 45 mm일때의 87.13 mm를사용하고스트립폭을변화시켰다. 스트립폭이줄어들수록공진주파수가낮은주파수로조금이동하고대역폭도조금줄어듦을알수있다. w 1 = 45mm일때 (597)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 21 (a) 스트립다이폴 (a) Strip Dipole (b) 스트립라인 (b) Stripline 그림 7. 스트립폭 w 1 에따른 EBG 공진기안테나단위셀의공진길이의변화 Fig. 7. Variation of a resonant length of a unit cell of an EBG resonator antenna as a function of strip width w 1. (a) 스트립다이폴 (a) Strip Dipole (b) 스트립라인 (b) Stripline 그림 8. 스트립폭 w 1 에따른 EBG 공진기안테나단위셀의공진주파수및 -3dB 대역폭의변화 Fig. 8. Variations of resonant frequency and -3dB bandwidth of a unit cell of an EBG resonator antenna as a function of strip width w 1. -3dB 대역이 1.785 1.814 GHz로 PCS대역의일부분만을차지한다. 스트립라인의경우공진길이는스트립폭이 9 mm일때의 74.85 mm를사용하고마찬가지로스트립폭을변화시켰다. 이경우스트립폭이증가할수록공진주파수가높은주파수로이동하고대역폭은줄어듦을알수있으며스트립다이폴에비해서공진주파수나대역폭의변화가훨씬큼을알수있다. 특히, w 1 = 9mm일때 -3dB 대역이 1.742 1.858 GHz로 PCS 대역과거의비슷함을알수있다. 표 1에는스트립폭에따른 EBG 공진기안테나단위셀의공진주파수와 -3dB 대역폭이정리되어있다. x축방향단위셀주기 px에따른공진길이의변화도식 (1) 과그림 4와 5를이용하여그림 9에나타나있다. 스트립다이폴의경우 1.73 GHz 보다낮은주파수 표 1. 스트립폭 w 1 에따른 EBG 공진기안테나단위셀의공진주파수및 -3dB 대역폭 Table 1. Resonant frequency and -3dB bandwidth of a unit cell of an EBG resonator antenna as a function of w 1. Strip Dipole Stripline w 1(mm) -3dB BW -3dB BW f c(ghz) f c(ghz) (MHz) (MHz) 9 1.79 19.07 1.7975 116.08 15 1.7915 20.77 1.859 51 21 1.795 24.12 1.906 20.78 27 1.7985 27.11 1.9425 6.05 33 1.802 29.16 1.967 39 1.802 29.43 1.9825 45 1.7985 28.61 1.9875 에서는 x축방향단위셀주기 px가감소할수록공진길이가짧아지나 1.73 GHz 보다높은주파수에서는 x (598)

22 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 축방향단위셀주기가증가할수록공진길이가짧아진다. 스트립라인의경우 x축방향단위셀주기가증가할수록공진길이가짧아짐을알수있다. 또한, 스트립다이폴과스트립라인을비교할경우같은 x축단위셀주가를사용할때스트립라인을단위셀으로사용할경우가공진길이가더짧아짐을알수있다. 이경우에도마찬가지로위에서구한공진길이를이용하여그림 6의대칭구조를만들어서평면파를아래쪽에서입사한후위쪽에서전송계수 S 21 을구한결과가 2번째모드에대해서그림 10에나타나있다. 스트립폭은모두 9 mm를사용하였다. 스트립다이폴의경우공진길이는 86.4 mm를사용하고 x축방향단위셀주기를변화시켰다. x축방향단위셀주기가증가할수 표 2. x축방향단위셀주기 px에따른 EBG 공진기안테나단위셀의공진주파수및 -3dB 대역폭 Table 2. Resonant frequency and -3dB bandwidth of a unit cell of an EBG resonator antenna as a function of x-direction unit cell periodicity px. Strip Dipole Stripline px(mm) -3dB BW -3dB BW f c(ghz) f c(ghz) (MHz) (MHz) 11 1.816 29.02 1.9875 17 1.822 32.91 1.968 23 1.823 33.29 1.9385 7.91 29 1.822 30.90 1.904 22.61 35 1.817 27.39 1.866 45.6 41 1.812 22.74 1.83 76.88 47 1.802 17.71 1.7975 116.08 (a) 스트립다이폴 (a) Strip Dipole (b) 스트립라인 (b) Stripline 그림 9. x축방향단위셀주기 px에따른 EBG 공진기안테나단위셀의공진길이의변화 (w 1 = 9 mm) Fig. 9. Variation of a resonant length of a unit cell of an EBG resonator antenna as a function of x-direction unit cell periodicity px. (a) 스트립다이폴 (a) Strip Dipole (b) 스트립라인 (b) Stripline 그림 10. x축방향단위셀주기 px에따른 EBG 공진기안테나단위셀의공진주파수및 -3dB 대역폭의변화 Fig. 10. Variations of resonant frequency and -3dB bandwidth of a unit cell of an EBG resonator antenna as a function of x-direction unit cell periodicity px. (599)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 23 록공진주파수가조금높아지고대역폭이늘어나다가 px = 35 mm일때부터다시공진주파수가낮은주파수로이동하고대역폭도조금줄어듦을알수있다. 스트립라인의경우공진길이는 74.85 mm를사용하고마찬가지로 x축방향단위셀주기를변화시켰다. 이경우스트립폭이증가할수록공진주파수가높은주파수로이동하고대역폭은줄어듦을알수있으며스트립다이폴에비해서공진주파수나대역폭의변화가훨씬큼을알수있다. x축방향단위셀주기에따른 EBG 공진기안테나단위셀의공진주파수와 -3dB 대역폭이표 2에정리되어있다. EBG 공진기안테나의단위셀시뮬레이션을통해스트립라인구조의단위셀을사용할경우스트립다이폴구조에비해 PCS대역에사용할수있는충분한대역폭을제공할수있고공진주파수도조절이용이함을알수있다. 사용하여다이폴안테나를방사원으로평면구조의 EBG 공진기안테나를설계하였다. 설계하고자하는 PCS대역기지국안테나는 1.75 1.87 GHz 대역에서 15 db이상의이득을가져야한다. 그림 11에는최종설계된 9 16 평면구조 PCS대역 EBG 공진기안테나가나타나있다. 단위셀의 x축방향주기는 px = 47 mm, y축방향주기는 py = 80 mm, 스트립다이폴과스트립라인의폭은 w 1 = 9 mm이다. 공진길이와다이폴안테나의위치및길이는 PCS대역기지국안테나의규격을만족시키기위해서최적화되었다. 최적화된공진길이 d = 76.35 mm이고, 다이폴안테나는접지면으로부터 l s = 19 mm 위에위치한다. 다이폴안테나의길이는 l d = 68 mm이고폭은 w d = 2 mm이다. 그림 12에는 9 16 평면구조 PCS대역 EBG 공진기안테나의입력반사계수 (Input Reflection Coefficient) Ⅲ. 평면구조의 PCS 대역 EBG 공진기안테나 설계 앞절에서얻은 PCS 대역 EBG 공진기안테나의단 위셀시뮬레이션결과를바탕으로스트립라인구조를 (a) x-z 평면 (a) x-z Plane (a) 입력반사계수 (a) Input Reflection Coefficient (b) y-z 평면 (b) y-z Plane (c) 3 차원도 (c) 3D View 그림 11. 9 16 PCS 대역평면 EBG 공진기안테나의구조 Fig. 11. Geometry of a 9 16 planar EBG resonator antenna at PCS band. (b) 지향성및이득 (b) Directivity and Realized Gain 그림 12. 9 16 PCS대역평면 EBG 공진기안테나의입력반사계수, 지향성및이득 Fig. 12. Input reflection coefficient, directivity and realized gain of the 9 16 planar EBG resonator antenna at PCS band. (600)

24 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 (a) x-z 평면 (a) x-z Plane 진기안테나를이용하여원통형구조의 EBG 공진기안테나를설계하였다. 현재기지국안테나들은대부분 360 o 를 3개섹터 (Sector) 로나누어서각섹터 (120 o ) 를하나의안테나가담당을한다. 따라서 9 16 평면구조 PCS대역 EBG 공진기안테나를이용하여한섹터를담당할수있는원통형구조의 PCS대역 EBG 공진기안테나를설계하였다. 그림 14에나타나있듯이원통형구조 EBG 공진기안테나는 9 16 주파수선택적표면형태의덮개층과접지면을원통형구조로변형시켰으며, 덮개층과접지면사이의공진길이는평면구조와동일하다. 덮개층의반지름은 359.1 mm이며, 접지원통도체의반지름은 282.7 mm이다. 그림 15에는 9 16 원통구조 PCS대역 EBG 공진기안테나의입력반사계수 S 11 과지향성및이득이나타나있다. 지향성은최대값이 1.77 GHz에서 14.7 dbi이고 -3dB 대역은 1.332 1.84 GHz이다. 이득의경우최대값이 1.79 GHz에서 14.1 db이고 -3dB 대역은 1.727 (b) y-z 평면 (b) y-z Plane 그림 13. 1.81 GHz 에서 9 16 PCS 대역평면 EBG 공진기안테나의방사패턴 Fig. 13. Radiation patterns of the 9 16 planar EBG resonator antenna at 1.81 GHz. S 11 과지향성 (Directivity) 및이득 (Realized Gain) 이나 타나있다. 지향성은최대값이 1.81 GHz 에서 18.87 dbi 이고 1.624 1.87 GHz 대역에서 15dBi 이상이다. 이득 의경우최대값이 1.814 GHz 에서 18.86 db 이고 1.75 1.87 GHz 대역에서 15 db 이상이다. PCS 대역중심주파수인 1.81 GHz 에서 9 16 평면구 조 PCS 대역 EBG 공진기안테나의방사패턴은그림 13 에나타나있다. Ⅳ. 원통형구조의 PCS 대역 EBG 공진기안테나 설계 앞절에서설계한 9 16 평면구조 PCS 대역 EBG 공 (a) 9 16 덮개층 (a) 9 16 Superstrate (b) 9 32 덮개층 (b) 9 32 Superstrate 그림 14. 9 16 및 9 32 PCS대역원통형 EBG 공진기안테나의구조 Fig. 14. Geometry of 9 16 and 9 32 cylindrical EBG resonator antennas at PCS band. (601)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 25 Ⅴ. 결론 (a) 입력반사계수 (a) Input Reflection Coefficient (b) 지향성및이득 (b) Directivity and Realized Gain 그림 15. 9 16 PCS대역원통형 EBG 공진기안테나의입력반사계수, 지향성및이득 Fig. 15. Input reflection coefficient, directivity and realized gain of the 9 16 cylindrical EBG resonator antenna at PCS band. 1.843 GHz 이다. 원통구조 EBG 공진기안테나의지 향성과이득이 4dB 정도줄어든이유는원통형구조의 곡률반경으로인해실제다이폴안테나에서정면, 즉 Boresight 방향으로보는덮개층의배열수가줄어들어 서 유효개구면적이줄어들기때문이다. 안테나이득 을높이기위해원주방향배열수를 2 배로증가시킨 9 32 원통형 EBG 안테나의결과가그림 15 에나타나 있다. 이경우지향성은최대값이 1.76 GHz 에서 16.21 dbi 로 1.5 db 정도증가했고, 이득의경우최대값이 1.784 GHz 에서 15 db 로 0.9 db 정도증가했다. 원통형 EBG 공진기안테나의경우접지면으로사용 되는원통도체의크기로인해안테나전체높이가평면 EBG 공진기안테나에비해서매우크나원통도체내 부가비어있는경우높이를많이줄일수있다. 본논문에서는 PCS 대역의기지국안테나로사용될 수있는스트립라인형태의주파수선택적표면덮개 층을이용한 EBG 공진기안테나를설계하였다. PCS 대역의기지국안테나는 15dB 이상의안테나이득을 1.75 1.87 GHz 대역에서제공해야하며, 이러한특 성을가지는 EBG 공진기안테나를설계하기위하여 부분반사표면으로사용된덮개층주기구조의단위 셀시뮬레이션을이용하였고다양한설계파라미터의 변화에따른공진주파수및대역폭의특성을분석하였 다. 이를위하여여러구조들중에서많이사용되는스 트립다이폴과스트립라인구조의특성을비교하였으 며, 스트립라인구조가스트립다이폴구조에비해서 EBG 공진기의공진길이가더짧고대역폭조정이더 쉬움을알수있었다. 단위셀시뮬레이션결과를이용하여 PCS 대역을만 족하는최적화된 9 16 평면구조 EBG 공진기안테나 를설계하였다. 설계된안테나이득은최대값이 1.814 GHz 에서 18.86 db 이고 1.75 1.87 GHz 대역에서 15 db 이상이여서 PCS 대역기지국안테나의요구규격을 만족한다. 마지막으로평면구조의 EBG 공진기안테나 를이용하여원통형 EBG 공진기안테나를설계하였다. 같은 9 16 덮개층을원통형구조로설계할경우원통 형구조의곡률반경으로인해실제다이폴안테나에서 보는덮개층의배열수가줄어들고 Boresight 방향으로 유효개구면적이줄어들어안테나이득이 4dB 정도줄 어들었다. 안테나이득을높이기위해원주방향배열 수를 2 배로증가시켜 9 32 원통형 EBG 안테나를설계 하였다. 이경우지향성은최대값이 1.76 GHz 에서 16.21 dbi 로 1.5 db 정도증가했고, 이득의경우최대값 이 1.784 GHz 에서 15 db 로 0.9 db 정도증가했으나 PCS 대역기지국안테나의요구규격을만족시키지는못 했다. 원통형구조에서안테나지향성과이득을더증가시 키기위해서는원주방향배열수를더증가시키거나 여러층의원통형주파수선택적표면덮개층을이용한 방법을적용해야할것이다. 참고문헌 [1] 박면주, LH Metamaterial 의마이크로파응용, 한국전자파학회지, 제 16 권, 제 4 호, 62-75 쪽, 2005 년 (602)

26 스트립라인형태의주파수선택적표면덮개층을이용한 PCS 대역기지국용 EBG 공진기안테나여준호외 10월 [2] P. de Maagt, R. Gonzalo, Y. C. Vardaxoglou, and J.-M. Baracco, Electromagnetic bandgap antennas and components for microwave and (sub)millimeter wave applications, IEEE Trans. Antennas and Propagation, Vol. 51, no. 10, pp. 2667-2677, Oct. 2003. [3] F. Yang and Y. Rahmat-Samii, Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: a low mutual coupling design for array applications, IEEE Trans. Antennas and Propagation, Vol. 51, no. 4, pp. 2936-2946, Oct. 1956. [4] G. V. Trentini, Partially reflecting sheet arrays, IRE Trans. Antennas and Propagation, Vol. 4, pp. 666-670, Oct. 1956. [5] D. R. Jackosn and A. A. Oliner, A leaky-wave analysis of the high-gain printed antenna configuration, IEEE Trans. Antennas and Propagation, Vol. 36, no. 7, pp. 905-910, Jul. 1988. [6] D. R. Jackosn, A. A. Oliner, and A. Ip, Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure, IEEE Trans. Antennas and Propagation, Vol. 41, no. 3, pp. 344-348, Mar. 1993. [7] T. Zhao, D. R. Jackson, J. T. Williams, H. Y. Yang, and A. A. Oliner, 2-D periodic leaky-wave antennas part I: metal patch design, IEEE Trans. Antennas and Propagation, Vol. 53, no. 11, pp. 3505-3514, Nov. 2005. [8] T. Zhao, D. R. Jackson, and J. T. Williams, 2-D periodic leaky-wave antennas part II: slot design, IEEE Trans. Antennas and Propagation, Vol. 53, no. 11, pp. 3515-3524, Nov. 2005. [9] D. R. Jackson and N. G. Alexopoulos, Gain enhancement methods for printed circuit antennas, IEEE Trans. Antennas and Propagation, Vol. 33, no. 9, pp. 976-987, Sep. 1985. [10] H. Y. Yang and N. G. Alexopoulos, Gain enhancement methods for printed circuit antennas through multiple superstrates, IEEE Trans. Antennas and Propagation, Vol. 35, no. 7, pp. 860-863, Jul. 1987. [11] A. P. Feresidis and J. C. Vardaxoglou, High gain planar antenna using optimised partially reflective surfaces, IEE Proceedings-Microwave, Antennas and Propagation, Vol. 148, no. 6, pp. 345-350, Dec. 2001. [12] A. P. Feresidis, G. Goussetis, S. Wang, and J. C. Vardaxoglou, Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas, IEEE Trans. Antennas and Propagation, Vol. 53, no. 1, pp. 209-215, Jan. 2005. [13] C. Cheype, C. Serier, M. Thevenot, T. Monediere, A. Reineix, and B. Jecko, An Electromagnetic BandGap resonator antenna, IEEE Trans. Antennas and Propagation, Vol. 50, no. 9, pp. 1285-1290, Sep. 2002. [14] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, Application of Electromagnetic Bandgap(EBG) Superstrates with Controllable Defects for a Class of Patch Antennas as Spatial Angular Filters, IEEE Trans. Antennas and Propagation, Vol. 53, No. 1, Part 1, pp. 224-235, Jan. 2005. [15] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, Design of a High-Directivity Electromagnetic Band Gap (EBG) Resonator Antenna Using a Frequency Selective Surface (FSS) Superstrate, Microwave & Optical Technology Letters, Vol. 44, No. 6, pp. 462-467, Dec. 2004. [16] D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, Design of Novel Thin Frequency Selective Surface (FSS) Superstrates for Dual-band Directivity Enhancement, IET Proceedings Special Issue on Metamaterials (RF/ Microwave and Millimetre-wave Applications), Vol. 1, No. 1, pp. 248-254, Feb. 2007. [17] A. Pirhadi, M. Hakkak, F. Keshmiri, and R. K. Baee, Design of Compact Dual Band High Directive Electromagnetic Bandgap (EBG) Resonator Antenna Using Artificial Magnetic Conductor, IEEE Trans. Antennas and Propagation, Vol. 55, No. 6, pp. 1682-1690, Jun. 2007. [18] R.gardelli, M. Albani, and F. Capolino, Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement, IEEE Trans. Antennas and Propagation, Vol. 54, No. 7, pp. 1979-1990, Jul. 2006. [19] G. K. Paliekaras, A. P. Feresidis, and J. C. Vardaxoglou, Cylindrical Electromagnetic BandGap structures for directive base station antennas, IEEE Antennas and Wireless Propagation Letters, Vol. 3, pp. 87-89, 2004. [20] H. Chreim, E. Pointereau, B. Jecko, and P. Dufrane, Omnidirectional Electromagnetic BandGap antenna for base station applications, IEEE Antennas and Wireless Propagation Letters, Vol. 6, pp. 499-502, 2007. [21] H. Boutayeb, T. A. Denidni, K. Mahdjoubi, A.-C. Tarot, A.-R. Sebak, and L. Talbi, Analysis and (603)

2008 년 8 월전자공학회논문지제 45 권 TC 편제 8 호 27 design of a cylindrical EBG-based directive antenna, IEEE Trans. Antennas and Propagation, Vol. 54, No. 1, pp. 211-219, Jan. 2006. [22] B. A. Munk, Frequency Selective Surfaces- Theory and Design, John-Wiley & Sons, Inc., pp. 5-6, 2000. 저자소개 여준호 ( 정회원 ) 1992년경북대학교 전자공학과학사졸업. 1994년경북대학교 전자공학과석사졸업. 2003년미국 Pennsylvania State University 전기공학과 박사졸업 1994년 3월~1999년 6월국방과학연구소연구원 2003년 9월~2004년 6월미국 Pennsylvania State University 박사후과정 2004년 8월~2007년 2월한국전자통신연구원 RFID 시스템연구팀선임연구원 2007년 3월~현재대구대학교정보통신공학부 교수 < 주관심분야 : Antenna design using EBG structures, FSS & AMC design, RFID tag antenna design, RFID sensor tag, development of numerically efficient methods in electromagnetics> 김동호 ( 정회원 ) 1998 년 2 월경북대학교전자공학과공학사 2000 년 2 월경북대학교전자공학과공학석사 2006 년 2 월한국과학기술원전자전산학과공학박사 2000 년 1 월 현재한국전자통신연구원방송통신융합부문전파방송원천기술연구팀선임연구원 < 주관심분야 : Metamaterials, antennas, FSS, AMC, periodic structure analysis, EM theory> (604)