26(6): (2016) 499 thoxyphenyl) propionic acid), (Kim HY 2008; Lee HH & Kim GH 2013; Park SY 2013;Yu MH 2009). (prebiotics) (probiotics)., (Han

Similar documents
제 출 문 경상북도 경산시 농업기술센터 귀하 본 보고서를 6차산업수익모델시범사업 농산물가공품개발 연구용역 과제의 최종보고서로 제출합니다 년 11 월 19 일 주관연구기관명 : 영남대학교 총괄연구책임자 : 한 기 동 연 구 원 : 김 상 욱 이 수 형 이 상

개최요강

Journal of Life Science 2011, Vol. 21. No μ μ

<C7D1BDC4BFAC20B1E8B5BFBCF6B9DABBE7B4D4676C75636F20C3D6C1BE5B315D2E687770>

DBPIA-NURIMEDIA

hwp

Lumbar spine

DBPIA-NURIMEDIA

139~144 ¿À°ø¾àħ

현대패션의 로맨틱 이미지에 관한 연구

012임수진

12 (09-42-수정).hwp

학술원논문집 ( 자연과학편 ) 제 50 집 2 호 (2011) 콩의식품적의의및생산수급과식용콩의자급향상 李弘䄷 * 李英豪 ** 李錫河 *** * Significance of Soybean as Food and Strategies for Self Suffici

09È«¼®¿µ 5~152s

82-01.fm

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

10(3)-10.fm

가자미식해의제조공정최적화 37., (Choi et al., 200).. 재료 재료및방법 (Verasper Jordan et Gilbert;, ), (, ), (, ) (, )., (, ), (, ), (, ), (, ), (, ), (, ). 가자미식해제조 (round

μ

03이경미(237~248)ok

03-서연옥.hwp

서론 34 2

歯49손욱.PDF

untitled

한약재품질표준화연구사업단 고삼 ( 苦參 ) Sophorae Radix 생약연구과

14.531~539(08-037).fm

untitled

한약재품질표준화연구사업단 작약 ( 芍藥 ) Paeoniae Radix 생약연구과

fm

<313120B9DABFB5B1B82E687770>

untitled

Alloy Group Material Al 1000,,, Cu Mg 2000 ( 2219 ) Rivet, Mn 3000 Al,,, Si 4000 Mg 5000 Mg Si 6000, Zn 7000, Mg Table 2 Al (%

DBPIA-NURIMEDIA

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

γ

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H


433대지05박창용

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(3)-12.fm

12.077~081(A12_이종국).fm


DBPIA-NURIMEDIA

Statistical Data of Dementia.


유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

( )Kju269.hwp

한약재품질표준화연구사업단 강활 ( 羌活 ) Osterici seu Notopterygii Radix et Rhizoma 생약연구과

한약재품질표준화연구사업단 단삼 ( 丹參 ) Salviae Miltiorrhizae Radix 생약연구과


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

Journal of Educational Innovation Research 2017, Vol. 27, No. 3, pp DOI: (NCS) Method of Con

< C6AFC1FD28C3E0B1B8292E687770>

본문.PDF

자기공명영상장치(MRI) 자장세기에 따른 MRI 품질관리 영상검사의 개별항목점수 실태조사 A B Fig. 1. High-contrast spatial resolution in phantom test. A. Slice 1 with three sets of hole arr

YEONGGWANG BEOPSEONGPO SALTED YELLOW CORVINA Exquisite taste, Interweaving of Water Wind Sunshine Salt And time By human

Journal of Educational Innovation Research 2018, Vol. 28, No. 1, pp DOI: * A Analysis of

?

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

46(6)완결.indd

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Introduction 신뢰성 있는 결과 높은 품질의 제품을 생산하기 위해서는 제품의 공정 시스템이 중요 품질관리실험실은 품질보증과정에서 매우 중요한 역할 분석시스템은 품질관리실험실의 매우 중요한 요소 분석시스템의 결과를 기본으로 하여 제품의 품질을 결정 R&D 실험실

노인정신의학회보14-1호

<35BFCFBCBA2E687770>

11¹ÚÇý·É


#Ȳ¿ë¼®

00....

歯5-2-13(전미희외).PDF

(5차 편집).hwp

(......).hwp

10 (10.1) (10.2),,

27 2, 1-16, * **,,,,. KS,,,., PC,.,,.,,. :,,, : 2009/08/12 : 2009/09/03 : 2009/09/30 * ** ( :

(....).hwp

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

인문사회과학기술융합학회

PJTROHMPCJPS.hwp

ÀÌÁÖÈñ.hwp

한약재품질표준화연구사업단 금은화 ( 金銀花 ) Lonicerae Flos 생약연구과

(01) hwp

DBPIA-NURIMEDIA

???? 1

한국성인에서초기황반변성질환과 연관된위험요인연구

(....).hwp

04-다시_고속철도61~80p

230 한국교육학연구 제20권 제3호 I. 서 론 청소년의 언어가 거칠어지고 있다. 개ㅅㄲ, ㅆㅂ놈(년), 미친ㅆㄲ, 닥쳐, 엠창, 뒤져 등과 같은 말은 주위에서 쉽게 들을 수 있다. 말과 글이 점차 된소리나 거센소리로 바뀌고, 외 국어 남용과 사이버 문화의 익명성 등


50(1)-09.fm

DBPIA-NURIMEDIA

jaeryomading review.pdf

歯140김광락.PDF

b

한수지 48(5), , 2015 Original Article Korean J Fish Aquat Sci 48(5), ,2015 Thermophilic bacillus 로제조한속성도루묵 (Arctoscopus japoncus) 액젓의이화학적특성

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

석사논문.PDF

대한한의학원전학회지24권6호-전체최종.hwp

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Transcription:

J East Asian Soc Diet Life 26(6): 498 506 (2016) http://dx.doi.org/10.17495/easdl.2016.12.26.6.498 498 Physicochemical Properties and Antioxidant Activities of Kimchi-added Croquette Taejoon Kim and Jeonghee Surh Dept. of Food and Nutrition, Kangwon National University ABSTRACT A croquette added with heat-treated kimchi at 20% showing higher sensory preferences was analyzed for its physicochemical properties and antioxidant activity using a croquette without kimchi as a control. Compared with the control, kimchi-added croquette had 3.3-fold higher organic acids content (p<0.001), resulting in a significant reduction of ph (p<0.001) and higher metal chelating activity (p<0.001). Upon addition of kimchi, total reducing capacity increased from 109.4 to 139.4 μg/g gallic acid equivalents (p<0.01), and DPPH radical scavenging activity also increased 2-fold, which corresponded to 54% of the electron-donating ability of 0.35 mm gallic acid. In addition, contents of free amino acids and γ-aminobutyric acid (GABA) appreciably increased by 1.6-fold (p<0.01) and 10-fold (p<0.001), respectively. This could be attributed to the ingredients of kimchi and/or enzymatic transformation of precursors by microorganisms during kimchi fermentation. Kimchi-added croquette was determined to be a good source of dietary fiber relative to its calorie content. Texture profile analysis showed no significant differences in hardness, springiness, cohesiveness, gumminess, and chewiness between the two croquettes with or without kimchi. Taken together, this study shows that utilization of heat-treated kimchi as a filling for croquette could be a good strategy to improve both the nutritional quality and antioxidant activity of croquette. Key words : Croquette, kimchi, dietary fiber, GABA, antioxidant activity Corresponding author : Jeonghee Surh, Tel: +82-33-540-3314, Fax: +82-33-540-3319, E-mail: jsurh@kangwon.ac.kr (croquette) (Wikipedia 2016),,, (Kim S 2013). (deep-fried), (Chang YS & Yang JH 2001),. (well-being) (needs), (Chae YC 2005; Chang YS & Yang JH 2001; Choi IS 2011)., (filling).,.,,,,, (Park KY 1996).,,, (phytoalexin), (Brecht JK 2008)., (phytochemicals),,, (Kim HY 2008; Kong YH 2007; Lee IH 2008)., γ-aminon-butyric acid(gaba), (3-(4 -hydroxyl-3,5 -dime-

26(6): 498 506 (2016) 499 thoxyphenyl) propionic acid), (Kim HY 2008; Lee HH & Kim GH 2013; Park SY 2013;Yu MH 2009). (prebiotics) (probiotics)., (Han KH 2006; Lee JJ 2011; Lee MA 2008), (Roh HJ & Kim GE 2009; Choi H 2013).,, (Ko YT & Baik IH 2002; Kim S 2013)., (Kim S 2013), (Ko YT & Baik IH 2002)...,,.. 1. (Sokcho, Korea)., ( 8.3%, 27.6%, 27.6%,,,,,,,,,, ), 20%. 55 g. (FDU-1200, Eyela, Tokyo Rikakikai Co., LTD, Tokyo, Japan) 20., 20. Folin-Ciocalteu's phenol reagent, gallic acid, 3-(2-pyridyl)-5,6-dihpenyl-1,2,4-triazine-p,p - disulfonic acid monosodium salt hydrate(ferrozine TM iron reagent), ethylenediaminetetraacetic acid(edta), 2,2 -diphenyl-1- picrylhydrazyl(dpph) Sigma-Aldrich(St. Louis, MO, USA), sodium hydroxide(naoh), sodium carbonate(na 2 CO 3 ), methanol, ethanol Showa Chemical Industry Co.(Tokyo, Japan).. 2..,, 20 30 5 ( 5 ) 2 (overall acceptability). (Sokcho, Korea)., ( 0.29%), ( 0.52%), ( 0.86%) 3. 10 (Heat-treated) (Untreated) 6. 6 1%, 5%, 10%, 15%, 20% 30.,. (1.8 L soybean oil/ 2 L capacity) 175 (DF 520, Huiyang Allan Plastic & Electric Industries Co. Huizhou, China) 5 30. 3.., AOAC (AOAC

500 1990). (Digestion unit K-424, Buchi, Flawil, Switzerland), (Kjelflex K-360, Buchi), (702 SMTirino Metrohm, Buchi) micro-kjeldahl, 6.25. 600 (MF31G, Jeio Tech, Gimpo, Korea). diethyl ether Soxhlet (E-816, Buchi). 100 ( + + + ). (amylase, protease, amyloglucosidase) (digestion) ethanol, (filtration) (Fibertec System E 1023 Filtration Module, Foss, Switzerland). 4. (Na)., 0.2 g H 2 O 2 2 ml, HNO 3 7 ml (Microwave Digestion System, Ethos Touch Control, Milestone Inc, Sorisole, Italy). 3 85, 9 145 4 180 15. 20 ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometer, Vista-Pro, Varian, Belrose, Australia) reflected power 1.2 kw, flow gas argon, plasma flow 15 L/min, auxiliary gas flow rate 1.5 L/min, nebulizer gas flow rate 0.7 L/min 588.995 589.592 nm multi-channel detector(simultaneous polychromators, Echelle polychromator). Na 0 10 ppm 3., 0.5 g 25 ml homogenizer(wise Mix Hg-15, Daihan Scientific, Seoul, Korea) 1, (5810R, Eppendorf, Hamburg, Germany) 3,061 g 10. Mohr 10% K 2 CrO 4 1 ml, 0.01 N AgNO 3. 5. ph,, ph (ph meter 725P, Istek, Seoul, Korea), (soluble solid), (titratable acidity). (refractometer, N-1α, Atago, Tokyo, Japan) (Degrees Brix, Bx),. 0.005 N NaOH NaOH (lactic acid, 90.08 g/mol). 6. Hitachi (Instruction manual, Hitachi, 2001)., 400 500 mg 6 N HCl 10 ml 110 22. HCl, 100 ml 0.45 μm Syringe filter(ad. 13CP045AS, Advantec, Houston, TX, USA) (Hitach L-8800 Amino acid, Hitachi, Tokyo, Japan). 50 ml 5 g 70% 30 ml 1 10 min. 15,000 rpm 15 min,, 70% 25 ml 2., 150 ml, 0.45 μm Syringe filter(ad. 13- CP045AS, Advantec) (Hitach L- 8800 Amino acid, Hitachi). (Ion Exchange column, lithium form, 4.6 mm 60 mm) ph buffer. reaction coil ninhydrin. 570 nm 440 nm. 30 70, 135, 0.35 ml/min, 20 μl. 1. 7. (Texture), (CR400, Konica Minolta Sensing, Osaka, Japan)

26(6): 498 506 (2016) 501 (L, lightness), (a, redness), (b, yellowness). calibration, L 0( ) 100( ), a ( ) 80( ) 100( ), b ( ) 70( ) 70( ), 6 ±. Texture Analyzer(Instron 5542, Instron, Norwood, USA) 50 mm probe 2 (two-bite compression test). Pre-test speed 50.0 mm/ min, test speed 3.3 mm/sec, post-test speed 50.0 mm/min, force-time curve. 8. 3 g 70%(v/v) 30 ml 25 shaking water bath(bs-21, Jeio Tech) 150 rpm 12. 3,061 g 10 (5810R, Eppendorf) (Whatman qualitative filter paper No.2, Whatman, Marlborough, USA). 70%. Folin-Ciocalteu's reagent Folin-Ciocalteu's reagent (Singleton VL 1999). 1 ml 10% NaCO 3 Folin-Ciocalteu's reagent 1 ml, vortexing 1. 3,061 g 10 (5810R, Eppendorf) spectrophotometer(uv-1650, Shimadzu, Kyoto, Japan) 700 nm. (gallic acid) (gallic acid equivalents, GAE)., Fe 2+ ferrozine complex (Chew YL 2009). 100 μl 1 mm FeCl 2 40 μl 5 1.2 mm Ferrozine 2 ml vortexing. 10 562 nm (UV-1650, Shimadzu) (A 1 ). Blank (A 0 ). blank (Metal chelating activity(%) = 100 (A 0 A 1 )/A 0 ). 2.0 mm EDTA. 9. DPPH (Brand-Williams W 1995). 70% 500 μ L 0.2 mm DPPH(in ethanol) 1 ml 5. 15 5 525 nm (Eon, BioTek, Vermont, USA). DPPH,. 0.35 mm gallic acid DPPH. 10. 3,. t-test (Microsoft Office Excel, Redmond, WA, USA). 1.. 1, 5, 10, 15, 20%. (Fig. 1), 0.52%. 5., 0.52% 20%. 2. (Table 1),,,, (p<0.01) (p<0.01). 1.6, 1 (55 g) (19 64 ) 1 4.1 5.9% 1

김태준 서정희 502 東아시아 食生活學會誌 Fig. 1. Overall acceptability of kimchi-added croquette depending on the titratable acidity and heat treatment of kimchi. Table 1. Proximate compositions of croquette added with kimchi Table 2. Taste-related chemical compositions of croquette added with kimchi Composition (%) Control Kimchi-added Significance1) Composition Control Kimchi-added Significance1) Moisture 60.38±1.55 59.15±0.11 Na (%)2) 0.21±0.01 0.27±0.02 Protein 5.33±0.01 5.44±0.03 ** Salinity (%)3) 0.67±0.02 0.76±0.00 ** Ash 0.77±0.04 0.93±0.13 1.44±0.00 4.76±0.11 *** Fat 6.51±0.72 6.92±0.40 Titratable acidity (% as lactic acid) Carbohydrate 27.01 27.56-2) ph 6.62±0.08 6.06±0.04 *** Dietary fiber 4.09±0.04 6.35±0.08 *** Soluble solid ( Brix) 0.89±0.00 0.89±0.00 1) 1) 2) ** and *** represent significant difference between values within a same row at p<0.01 and p<0.001, respectively. means not significant. Carbohydrate content was calculated by a following equation; 100(moisture+protein+ash+fat), here moisture, protein, ash, and fat are the average contents of triplicate analysis. Therefore, statistical significance is not applicable. 이섬유소 충분섭취량 의 14.0 17.5%를 공급해주는 칼로리 대비 식이섬유소의 기여도 가 높은 식품으로 평가되었다. 한편, 김치 첨가로 인한 Na와 염 함량의 변화를 확인한 결 과(Table 2), 김치 크로켓의 Na 함량은 유의적이지는 않았으 나, 김치 무첨가군인 대조군보다 높은 경향을 나타내었으며, 이에 따라 Mohr 법으로 측정한 염 함량 역시 대조군과 김치 첨가군 각각에서 0.67%와 0.76%로 나타나, 김치 첨가군에서 상대적으로 높았다(p<0.01). 또한, 대조군에서 측정된 유기산 ** and *** represent significant difference between values within a same row at p<0.01 and p<0.001, respectively. means not significant. 2), 3) Na and salinity were determined by ICP-MS and chloride Mohr titration, respectively. 함량은 젖산 기준으로 1.44%이었으나, 김치 첨가 후 유기산 함량이 4.76%로 대조군 대비 3.3배 증가하였다(p<0.001, Table 2). 이로 인해 김치 첨가군(pH 6.06)은 대조군(pH 6.62)보다 유의적으로 낮은 ph를 나타내었다(p<0.001, Table 2). 그러나 당, 염, 산 등 수용성 물질들이 유발하는 굴절률로 측정된 수 용성 고형분 함량은 김치 첨가에 의해 유의적으로 변화하지 않았다(Table 2). 김치 크로켓은 총 질소(total nitrogen)로 측정된 조단백질 함량이 대조군에 비해 유의적으로 높았으나(p<0.01, Table 1), 총 아미노산 함량은 4,216.9 mg%로 대조군(4,258.5 mg%)과

26(6): 498 506 (2016) 503 (Table 3), 77.5% 79.9%. (non-protein nitrogen; NPN). urea(p<0.01), ethanolamine(p<0.001), pho- sphoethanolamine(p<0.001)., (Table 3), (p<0.01) GABA(γ-amino- n-butyric acid, p<0.001). GABA 100 g 1.2 mg, 12.5 mg 10.,, Table 3. Amino acids (AA) composition and non-protein nitrogen (NPN) compounds of croquette added with kimchi AA NPN 1) Composition (mg%) Control Total AA 4,258.5±112.0 4,216.9±75.8 (100) 1) (100) Bound AA 4,178.1±112.9 (98.1±0.1) Free AA Essential AA Kimchiadded Nonessential AA γ-amino-nbutyric acid (GABA) Urea Ammonia Ethanolamine Phosphoethanolamine 80.4±0.9 (1.9±0.1) 1,152.7±24.9 (27.1±0.1) 3,105.8±87.1 (72.9±0.1) 1.2±0.0 (0.03±0.00) 19.1±0.0 (0.45±0.01) 157.1±3.7 (3.69±0.01) 1.1±0.0 (0.02±0.00) 0.0±0.0 (0.00±0.00) 4,090.9±77.8 (97.0±0.1) 125.9±2.1 (3.0±0.1) 1,159.1±41.0 (27.5±1.5) 3,057.8±116.8 (72.5±1.5) 12.5±0.2 (0.30±0.01) 30.5±1.3 (0.72±0.02) 158.3±12.2 (3.75±0.22) 1.6±0.0 (0.04±0.00) 5.7±0.2 (0.14±0.01) Significance 2) (**) ** (**) () () *** (***) ** (**) () *** (***) *** (**) Value in parenthesis is a relative percentage to the content of total amino acids. 2) ** and *** represent significant difference between values within a same row at p<0.01 and p<0.001, respectively. means not significant.. glutamic acid decarboxylase GABA (Lee HH & Kim KH 2013; Park SY 2013). 3.. (L) (b), (a) (p<0.05) (Table 4). (Ku KH 2003; Lee MA 2008)., TPA (Fig. 2)., Fig. 2 force-time curve (hardness), (springiness), (cohesiveness) (hardness cohe- siveness) (hardness cohesiveness springiness),. 4. (Table 5), 139.4 GAE μg/g (109.4 GAE μg/g) (p<0.01).,, (bioavailability) (Park JM 2011; Park SY 2013). 41.3% 63.0% (p<0.001). Table 4. Color properties of kimchi-added croquette after cooking Color property Control Kimchi-added Significance 1) L (lightness) 49.35±1.28 48.73±2.02 a (redness) 9.62±0.43 11.11±0.46 * b (yellowness) 35.82±0.96 36.23±1.18 1) * represents significant difference between values within a same row at p<0.05. means not significant.

김태준 서정희 504 Fig. 2. Texture profile analysis of croquette added with kimchi. Measurement by two-bite compression test was made three times, and most representative graph was taken for each sample. Table 5. Antioxidant activities of croquette added with kimchi Antioxidant activity Control Total reducing capacity 109.4±2.7 (μg gallic acid/ g dry wt.) Metal-chelating activity2) 1) 2) 41.3±1.3 Kimchiadded Significance1) 139.4±7.0 ** 63.0±3.5 *** ** and *** represent significant difference between values within a same row at p<0.01 and p<0.001, respectively. Metal-chelating activity of 2.0 mm EDTA used for comparison was 98.0±1.3%. 등 양이온의 전이금속을 소거할 수 있는 물질들은 이들 과 강한 정전기적 인력으로 결합할 수 있는 음전하의 유기산 들이다. 실제로 김치 첨가로 크로켓의 유기산 함량은 3.3배 나 유의적으로 증가하였다(Table 2). 김치 속 o-coumaric acid 와 ferulic acid 등 페놀산(phenolic acids) 형태의 유기산들이 (Park JM 등 2011) 금속 소거능뿐 아니라, 수소공여능 등 우 수한 환원력을 지닌다는 점을 고려하면 이 결과는 김치 크로 켓의 증가된 총 환원력 결과와도 연관될 수 있다. 한편, 금속 소거능을 대표적 금속 킬레이터로 알려진 EDTA와 비교한 결과, 김치 크로켓의 금속 소거능은 2.0 mm EDTA가 지닌 금 속 소거능(98.0%)의 64%에 상응하는 활성으로 확인되었다. 라디칼 소거활성 측정을 위해 크로켓 메탄올 추출물과 DPPH 라디칼을 반응시켰을 때(Fig. 3), 15분 경과 후 대조군 과 김치 첨가군 각각은 첨가된 라디칼의 14.1%와 27.4%를 소거함으로써 김치 첨가에 의해 크로켓의 라디칼 소거활성 이 2배가량 증가하였음을 보여주었다. 특히 김치 첨가군은 모니터링 시간 전반에 걸쳐 대조군에 비해 현저하게 높은 라 Fe2+ 東아시아 食生活學會誌 Fig. 3. Kinetics of the DPPH radical scavenging activity of Kimchi-added croquette as a function of time. 0.35 mm gallic acid and a control croquette without kimchi were used for comparison. 디칼 소거활성을 나타내었다. 이는 김치 첨가로 크로켓 내부 에서 DPPH 라디칼에 수소를 공여해줄 수 있는 물질들이 증 가하였음을 시사해준다. 페놀성 물질들의 공명구조 형성능력 과 아르코르브산의 탁월한 수소 공여능을 고려하면, 김치 첨 가로 크로켓에 부가된 이러한 환원성 물질들이(Table 5) 크로 켓의 라디칼 소거활성을 증가시킨 것으로 해석된다. 한편, 김 치 크로켓의 라디칼 소거활성은 동일한 조건에서 측정된 0.35 mm gallic acid 전자공여능의 54%에 상응하는 활성으로 확 인되었다. 요약 및 결론 김치의 숙성 정도, 열처리 유무, 첨가량을 달리하여 제조 된 크로켓들 중 관능적 기호도가 가장 높았던 김치 크로켓은 산도 0.52%의 김치를 열처리하여 20% 첨가한 크로켓이었다. 종합적 기호도가 높았던 이 김치 크로켓의 품질 특성을 김치 무첨가 크로켓을 대조군으로 하여 이화학적 특성과 항산화 활성 측면에서 평가하였다. 김치 크로켓은 대조군에 비해 단 백질(p<0.01)과 식이섬유(p<0.001)가 유의적으로 높았으며, 특히 영양 평가 결과, 칼로리 대비 식이섬유 기여도 가 높은 식품으로 확인되었다. 김치 첨가로 크로켓의 염도는 대조군 의 1.1배 수준에 불과하였으나, 유기산 함량은 대조군의 3.3 배로 유의적 증가를 나타내었다(p<0.001). 김치 크로켓에서 관찰된 높은 유리 아미노산(p<0.01)과 GABA(p<0.001) 함량 은 미생물의 효소 작용이 관여하는 발효식품 고유의 특성에 서 기인한 것으로 김치 첨가가 주 요인으로 해석되었다. 크로 켓 메탄올 추출물의 항산화 활성을 평가한 결과, 김치 첨가

26(6): 498 506 (2016) 505 (p<0.01), (p<0.001), DPPH.,., TPA,,,,. 20%, GABA,. REFERENCES AOAC (1990) Official Methods of Analysis of AOAC Intl. 15th ed. Association of Official Analytical Chemists, Washington, DC. p 788. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28(1): 25-30. Brecht JK, Ritenour MA, Haard NF, Chism GW (2008) Postharvest physiology of edible plant tissues. pp 975-1049. In: Food Chemistry. Damodaran S, Parkin KL, Fennema OR (eds). CRC Press, Boca Raton, FL, USA. Chae YC (2005) Quality characteristics of pork cutlet by cooking method. Korean J Food Cookery Sci 21(4): 490-495. Chang YS, Yang JH (2001) Oxidative stability of tallow heated by different frying conditions. Korean J Postharvest Sci Technol 8(3): 331-337. Chew YL, Goh JK, Lim YY (2009) Assessment of in-vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in Peninsular Malaysia. Food Chem 116(1): 13-18. Choi H, Lee H, Yoon S (2013) Fermentation of rice flour with Weissella koreensis HO20 and Weissella kimchii HO22 isolated from kimchi and its use in the making of jeolpyeon. Korean J Food Cookery Sci 29(3): 267-274. Choi IS, Choi SK, Lee YS (2011) Analysis of free fatty acid formation and oxidative rancidity for deep frying oil produced by traditional and modified fryers. Korean J Culinary Research 17(4): 316-325. Han KH, Park JK, Lee CH (2006) Manufacture and product evaluation of fermented sausages inoculated with freezedried kimchi powder and starter culture. Korean J Food Sci Ani Resour 26(4): 486-490. Kim HY, Noh JS, Song YO (2008) Inhibition effect of 3-(4 - hydroxyl-3,5 -dimethoxyphenyl) propionic acid in kimchi with anti-atherogenic activity on the accumulation of lipids in the organs of ApoE ( / ) mice. J Korean Soc Food Sci Nutr 37(11): 1415-1421. Kim S, Kim MJ, Kim HJ, Song YO (2013) Development and evaluation of kimchi menus for elementary school food service. J Korean Soc Food Sci Nutr 42(7): 1148-1156. Ko YT, Baik IH (2002) Changes in ph, sensory properties and volatile odor components of kimchi by heating. Korean J Food Sci Technol 34(6): 1123-1126. Kong YH, Cheigh HS, Song YO, Jo YO, Choi SY (2007) Antiobesity effects of kimchi tablet composition in rats fed high-fat diet. J Korean Soc Food Sci Nutr 36(12): 1529-1536. Ku KH, Cho MH, Park WS (2003) Characteristics analysis for the standardization of commercial kimchi. Korean J Food Sci Technol 35(2): 316-319. Lee HH, Kim GH (2013) Changes in the levels of γ-aminobutyric acid and free amino acids during kimchi fermentation. Korean J Food Cookery Sci 29(6): 671-677. Lee IH, Lee SH, Lee IS, Park YK, Chung DK, Choue R (2008) Effects of probiotic extracts of kimchi on immune function in NC/Nga mice. Korean J Food Sci Technol 40(1): 82-87. Lee JJ, Jung HO, Lee MY (2011) Development of dduk-galbi added with ripened Korean cabbage kimchi. Korean J Food Sci Ani Resour 31(2): 304-310. Lee MA, Han DJ, Choi JH, Choi YS, Kim HY, Jeong JY, Paik HD, Kim CJ (2008) Effect of hot air dried kimchi powder on the quality characteristics of low-fat sausages. Korean J Food Sci Ani Resour 28(2): 146-153. Park JM, Shin JH, Gu JG, Yoon SJ, Song JC, Jeon WM, Suh HJ, Chang UJ, Yang CY, Kim JM (2011) Effect of antioxidant activity in kimchi during a short-term and over-ripening fermentation period. J Biosci Bioeng 112(4): 356-359. Park KY, Ha JO, Rhee SH (1996) A study on the contents of dietary fibers and crude fiber in kimchi ingredients and kimchi. J Korean Soc Food Nutr 25(1): 69-75. Park SY, Shim HY, Kim KS, Lim SD (2013) Physiological characteristics and GABA production of Lactobacillus plantarum K74 isolated from kimchi. Korean J Dairy Sci Technol 31(2): 143-152. Roh HJ, Kim GE (2009) Fermentation of Cucurbita maxima extracts with microorganisms from kimchi. KSBB J 24(2):

506 149-155. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299C: 152-178. Wikipedia (2016) https://en.wikipedia.org/wiki/croquette. Accessed October 5, 2016 Yu MH, Im HG, Im NK, Hwang EY, Choi JH, Lee EJ, Kim JB, Lee IS, Seo HJ (2009) Anti-hypertensive activities of Lactobacillus isolated from kimchi. Korean J Food Sci Technol 41(4): 428-434. Date Received Date Revised Date Accepted Oct. 10, 2016 Nov. 2, 2016 Nov. 2, 2016