신재생에너지 마이크로 그리드 최적화

Similar documents
High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

09권오설_ok.hwp

untitled

김기남_ATDC2016_160620_[키노트].key

(JBE Vol. 23, No. 2, March 2018) (Special Paper) 23 2, (JBE Vol. 23, No. 2, March 2018) ISSN

표준 회사소개서(제조업) 와이드용

19_9_767.hwp

DBPIA-NURIMEDIA

1. GigE Camera Interface를 위한 최소 PC 사양 CPU : Intel Core 2 Duo, 2.4GHz이상 RAM : 2GB 이상 LANcard : Intel PRO/1000xT 이상 VGA : PCI x 16, VRAM DDR2 RAM 256MB

<313120C0AFC0FCC0DA5FBECBB0EDB8AEC1F2C0BB5FC0CCBFEBC7D15FB1E8C0BAC5C25FBCF6C1A42E687770>

Ⅱ. Embedded GPU 모바일 프로세서의 발전방향은 저전력 고성능 컴퓨팅이다. 이 러한 목표를 달성하기 위해서 모바일 프로세서 기술은 멀티코 어 형태로 발전해 가고 있다. 예를 들어 NVIDIA의 최신 응용프 로세서인 Tegra3의 경우 쿼드코어 ARM Corte

목 차 Ⅰ. 정보기술의 환경 변화 Ⅱ. 차량-IT Convergence Ⅲ. 차량 센서 연계 서비스 Ⅳ. 차량-IT 융합 발전방향

(JBE Vol. 20, No. 5, September 2015) (Special Paper) 20 5, (JBE Vol. 20, No. 5, September 2015) ISS

서현수

(JBE Vol. 22, No. 3, May 2017) (Special Paper) 22 3, (JBE Vol. 22, No. 3, May 2017) ISSN (O

(JBE Vol. 24, No. 4, July 2019) (Special Paper) 24 4, (JBE Vol. 24, No. 4, July 2019) ISSN

1 : (Sunmin Lee et al.: Design and Implementation of Indoor Location Recognition System based on Fingerprint and Random Forest)., [1][2]. GPS(Global P

I

<343620B3EBB1A4C7F62DBDBAB8B6C6AEC6F9BFEB20C2F7BCB1C0CCC5BBB0E6BAB820BED6C7C3B8AEC4C9C0CCBCC720B0B3B9DF2E687770>

0806 블랙박스 메뉴얼 L5 원고작업_수정

2 : (Juhyeok Mun et al.: Visual Object Tracking by Using Multiple Random Walkers) (Special Paper) 21 6, (JBE Vol. 21, No. 6, November 2016) ht

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

untitled

Ch 1 머신러닝 개요.pptx

02( ) SAV12-19.hwp

Q50_kr_final.pdf

SchoolNet튜토리얼.PDF

FMX M JPG 15MB 320x240 30fps, 160Kbps 11MB View operation,, seek seek Random Access Average Read Sequential Read 12 FMX () 2

제 출 문 국토교통부장관(국가교통과학기술진흥원장) 귀하

solution map_....


(JBE Vol. 24, No. 2, March 2019) (Special Paper) 24 2, (JBE Vol. 24, No. 2, March 2019) ISSN

,. 3D 2D 3D. 3D. 3D.. 3D 90. Ross. Ross [1]. T. Okino MTD(modified time difference) [2], Y. Matsumoto (motion parallax) [3]. [4], [5,6,7,8] D/3

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

정보기술응용학회 발표

PCServerMgmt7

6.24-9년 6월

À±½Â¿í Ãâ·Â

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

장기계획-내지4차

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

PowerPoint Presentation

DIY 챗봇 - LangCon

보험판매와 고객보호의 원칙

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

04-다시_고속철도61~80p

방송공학회논문지 제18권 제2호

Æí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š

2013<C724><B9AC><ACBD><C601><C2E4><CC9C><C0AC><B840><C9D1>(<C6F9><C6A9>).pdf

歯경영혁신 단계별 프로그램 사례.ppt

2 D drive L L 8 4 CONTENTS Mercedes-Benz Truck Magazine no.26 cover story Winter Vol T F

레이아웃 1

02_연구보고서_보행자 안전확보를 위한 기술개발 기획연구( )최종.hwp

2 : (EunJu Lee et al.: Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest). (Advanced Driver Assistant System, ADA

08 박지훈.hwp

<372DBCF6C1A42E687770>


이도경, 최덕재 Dokyeong Lee, Deokjai Choi 1. 서론

3 : OpenCL Embedded GPU (Seung Heon Kang et al. : Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU). e

untitled

13 Who am I? R&D, Product Development Manager / Smart Worker Visualization SW SW KAIST Software Engineering Computer Engineering 3

01이국세_ok.hwp

2 : (Seungsoo Lee et al.: Generating a Reflectance Image from a Low-Light Image Using Convolutional Neural Network) (Regular Paper) 24 4, (JBE

0511버스교통(표1_4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 25(11),

thesis-shk

45-51 ¹Ú¼ø¸¸

(JBE Vol. 22, No. 2, March 2017) (Regular Paper) 22 2, (JBE Vol. 22, No. 2, March 2017) ISSN

09김수현_ok.hwp

I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3.

LIDAR와 영상 Data Fusion에 의한 건물 자동추출

그림 2. 5G 연구 단체 현황 앞으로 다가올 미래에는 고품질 멀 티미디어 서비스의 본격화, IoT 서 비스 확산 등의 변화로 인해 기하 급수적인 무선 데이터 트래픽 발생 및 스마트 기기가 폭발적으로 증대 할 것으로 예상된다 앞으로 다가올 미래에는 고품질 멀티미디어 서

그림 2. 최근 출시된 스마트폰의 최대 확장 가능한 내장 및 외장 메모리 용량 원한다. 예전의 피쳐폰에 비해 대용량 메모리를 채택하고 있지 만, 아직 데스크톱 컴퓨터 에 비하면 턱없이 부족한 용량이다. 또한, 대용량 외장 메모리는 그 비용이 비싼 편이다. 그러므로 기존

1 : 360 VR (Da-yoon Nam et al.: Color and Illumination Compensation Algorithm for 360 VR Panorama Image) (Special Paper) 24 1, (JBE Vol. 24, No

04김호걸(39~50)ok

08원재호( )

Manufacturing6

AORUS 노트북을 구매 하신 것을 축하 드립니다. 이 설명서는 당신이 새로 구매한 노트북을 처음 세팅 하는데 도움을 줄 것입니다. 마지 막 제품의 스펙은 당신 의 구매 시점에 따라 다를 수 있습니다. 이는 어로스사가 사전 서면의 통보 없이 변경할 수 있는 권리를 가지

(JBE Vol. 7, No. 4, July 0)., [].,,. [4,5,6] [7,8,9]., (bilateral filter, BF) [4,5]. BF., BF,. (joint bilateral filter, JBF) [7,8]. JBF,., BF., JBF,.

<4D F736F F D20B1E2C8B9BDC3B8AEC1EE2DC0E5C7F5>

8-VSB (Vestigial Sideband Modulation)., (Carrier Phase Offset, CPO) (Timing Frequency Offset),. VSB, 8-PAM(pulse amplitude modulation,, ) DC 1.25V, [2

10 이지훈KICS hwp

<31325FB1E8B0E6BCBA2E687770>

09È«¼®¿µ 5~152s

(, sta*s*cal disclosure control) - (Risk) and (U*lity) (Synthe*c Data) 4. 5.

03.Agile.key

HTML5* Web Development to the next level HTML5 ~= HTML + CSS + JS API

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 27(3),

63-69±è´ë¿µ

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

, Analyst, , Table of contents 2

08김현휘_ok.hwp

ARMBOOT 1

2005CG01.PDF

DBPIA-NURIMEDIA

15_3oracle

ISO17025.PDF

03-16-김용일.indd

3 Gas Champion : MBB : IBM BCS PO : 2 BBc : : /45

2 : (Minsong Ki et al.: Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types) (Regular) 21 4, (JBE

Transcription:

ADAS & AD October 31 th, 2017 ADAS : Advanced Driver Assistance System AD : Autonomous Driving

ProSense : www.prosensetek.com

개요 알고리즘 : ADAS & AD 비즈니스모델

그래픽기반자율주행시뮬레이터 자율주행차개발의全영역 ( 데이터획득, 데이터처리, 응용개발, 검증 ) 에시뮬레이션방법론을적용함. 개발 Cycle 실차량 센서데이터획득 센서융합 데이터저장 Dataset 마련 딥러닝학습 지도제작 AD SDK CUDA 알고리즘 H/W : Drive PX2 S/W : DriveWorks TensorRT, cudnn 시뮬레 이션 가상센서데이터 가상센서융합 가상 Dataset 자동생성 딥러닝학습 가상지도자동생성 AD SDK CUDA 알고리즘 H/W : Drive PX2 S/W : DriveWorks TensorRT, cudnn

Test Platform : Real-time Perception, Self-driving An SUV for real-time perception and a self-driving car including control algorithms Multi-Camera Multi-Radar Drive PX2

ADAS Directions : Algorithms Licensing 3D Lane & Road, Radar Fusion High Accuracy AEB : Depth/VD/PD Vision Cruise : High Curvature Robustness

AD (Autonomous Driving) Directions Perception : Real Time High Accuracy Better Control by better perception Service : Last Mile Mobility Simulation based AD Development

Algorithms : VD, PD, LD, 6D, Tracking, CNN-OD, Stixel, SVM

Stereo Matching & Stixel Real-time depth map estimation 20ms (avg.) with GTX 1080 200~300ms with Jetson TX1 STIXEL (Stick + Cell) Used to detect and to represent obstacles INPUT Depth STIXEL 9

Robust Stereo Matching Matching costs Matching costs Challenging outdoor environment 2 1 Random forest d C(, k) Cˆ( p, d ) Q ( p )C( p,d) (1 Q( p )) p D k D Confidence-based cost modulation Overlaid d Disp. map 3 Learning-based confidence measure selection and training 4 Semi-global matching Proposed method Confidence prediction Min-Gyu Park and Kuk-Jin Yoon, Leveraging Stereo Matching with Learning-based Confidence Measures," IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015 10

Lane Detection Classical lane detection approach (300fps with 3.00GHz CPU) Input image IPM image Filter & Threshold Detect lanes Result Deep learning-based lane detection Dataset : 1,500 images Train dataset : 60,000 images (augmentation) Fully Convolutional Network 10ms (100fps) with Jetson TX1 11

12 Vehicle Detection Real-time vehicle detection Under development HoG + Kernel SVM ACF + Boosting (aggregated channel features) 15ms with Jetson TX1 Feature extraction VGA ROI definition QVGA Expandable to PD (pedestrian detection)

ADAS current project : Vision based Cruise Control When the blue vehicle changes lane, the red vehicle should drive steadily without abrupt acceleration Current target vehicle speed : 60km/h Target vehicle changes lane after sometime. Current subject vehicle speed : 60km/h After target vehicle changes the lane, subject vehicle speed up to 100km/h (Cruise speed : 100km/h) Radar Radius : 150m Camera

Adaptive Cruise Control Implementation details Fusion: Radar + Camera Lane monitoring by Camera Ego-lane detection Medium curvature Proprietary Radar algorithm Calibration Radar + Camera

ADTF Architecture for Surround View Monitoring System

Key competences Photogrammetry algorithms 3D Reconstruction algorithms ADAS algorithms System engineering Mature development processes (Scrum, Kanban, Waterfall) CEVA MM-3101 & XM4 optimization CUDA & OpenCL intensive computation FPGA programming

Stereo vision algorithm High performance 20 fps (Zynq 7020, HD resolution) Low latency 50 ms (Zynq 7020, HD resolution) Sparse disparity map 60000-110000 features (HD resolution)

Forward Collision Avoidance Functions Stereo SGM, AD-Census Stixels & CNN-based obstacle detection Collision estimation (tracking & trajectory & time to collision) Free space to drive

Forward Collision Avoidance CNN Object detection Classes car, pedestrian, cyclist CNN YOLOv2 Training set 90110 images map 0.7-0.8 Performance Platform nvidia Drive PX2 20 fps Resolution 512x288 px

Traffic sign detection Implementation details SSD-M with MobileNet features High performance 20 fps on Jetson TX2 High accuracy 0.74 map European, Russian, South Korean traffic signs ~30000 images Classifying speed limits ~17000 images Low model size 22 Mb Detection performance TX2: 35 ms, PX2: 24 ms Classification performance TX2: 6 ms, PX2: 4 ms Accuracy F1-score 0.89

그래픽기반자율주행시뮬레이터 (1/3) 자율주행을위한그래픽기반가상 Dataset 의효용성이검증됨. 또한실제로구현이어려운상황의경우그래픽기반가상 Dataset 의효용성은더욱증대됨.

그래픽기반자율주행시뮬레이터 (2/3) 그래픽기반가상 Dataset 을통한학습과실영상기반학습을병행한경우더욱우수한인식성능 < 그래픽객체예시및가상카메라배치 > < 학습효과의성능비교 >

AD current project : Last Mile Mobility We are now collaborating with Korean mini-bus makers and Korean local governments.

전기차기반자율주행버스아르메 (ARMA) Lidar 센서 : 환경을매핑하여위치지정, 3D 인식 GPS RTK : GPS 센서와기지국간통신 ( 차량의정확한위치결정 ) Odometer : 변위및바퀴속도측정 차량속도추정, 위치확인 카메라스테레오비전 : 도로환경분석및정보추출 Arma Device Route http://navya.tech/

자율주행버스 EZ10 다중센서 localization 기술, 장애물감지및회피, 탐색, 경로계획및제어, 연결성 (V2V, V2I), 차량관리, 안전및사이버보안 3가지작동모드 (Metro 모드 : 모든역에서정차, Buses 모드 : 요청시에정차, On-demand 모드 : 호출가능 ) 3 modes Hybrid localization http://easymile.com/

Bus Rapid Transit(BRT) : 전용차선에서운영. 속도, 규칙성, 빈도, 다수의수송인원 Buses : 경로명확. 상업적, 경제적, 생태적효율성 Tram-train : 도시지역의경전철트랙과교외지역의철도트랙에서작동 Metro : Roissy-Charles de Gaulle의공항터미널, 기차역및주차장을연결하는전기메트로 CDGVal 운영 BRT Bus Tram-train Metro https://www.transdev.com/en/

전용가이드웨이에서운행하는자율주행셔틀 ( 안전성, 유연성보장 ) 4~6 人승객 PRT 차량 ( 택시 ), 16~24 人승객 GRT 차량 ( 버스 ) 대중교통운영모니터링및감독 (TOMS), 차량제어시스템 (VCS), 안내제어시스템 (GCS) TOMS GRT https://www.2getthere.eu/technology/vehicle-types/

다수의마이크로공장을이용한오픈소스차량디자인의소량생산 자율주행버스 Olli 개발 (IBM Watson의고급인지능력통합 ) 360도센서 원격차량모니터링, 관리및경고시스템 Autonomous vehicle Inside the vehicle https://localmotors.com/

자율주행버스개발 ( 대학캠퍼스, 비즈니스파크및주거지역내여행용 - 2 인승, 6 인승, 12 인승셔틀버스 ) 기후제어, Lidar 및 Camera 로 360 도감지, 장애물탐색및회피등 Autonomous vehicle Running the car https://auro.ai/

물류서비스 모바일어플리케이션을통해승용차와운전자를연결 원하는차량서비스선택가능 ( 이코노미, 프리미엄, 카풀등 ) Utilization the Uber taxi Apps for driver partners https://www.uber.com/ko-kr/

자율주행을위한확장가능 full-stack 소프트웨어솔루션 대규모자치차량을통해 point-to-point 이동성을제공하는솔루션개발中. ( 도시에서의자율주행, 스마트폰기반승차, 차량경로및관리, 원격조작을통해차량을제어하는소프트웨어 ) 미국, 싱가포르및유럽에서테스트完. Autonomous vehicle NuCore software http://www.nutonomy.com/

Thank you very much! Paul Kang paulkang@prosensetek.com