fm

Similar documents
77-81.fm

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

Endocrinol Metab. 25(2): , June 2010 DOI: /EnM ORIGINAL ARTICLE 지방세포에서비중을이용한지방유래줄기세포가풍부한분획의분리방법 김민경 박용순 박희순 1 최정묵 1 김원준 2 박

Lumbar spine

4(3)-2(총설).fm

untitled

Microsoft PowerPoint - Ch4. 생인공지방

fm

untitled

jaeryomading review.pdf

A 617

DBPIA-NURIMEDIA

心臟疾病細胞治療之臨床試驗簡介

7.ƯÁýb71ÎÀ¯È« š

Kaes010.hwp

슬라이드 1

Abstract Background : Most hospitalized children will experience physical pain as well as psychological distress. Painful procedure can increase anxie

10(3)-12.fm

페링야간뇨소책자-내지-16

12.077~081(A12_이종국).fm

Osteoblast Progenitor Cells Derived from Umbilical Cord Blood 167 μ μ α α μ β μ μ α μ μ μ μ β μ

김범수

00)14-1목차1~3

07.045~051(D04_신상욱).fm

untitled

hwp

10(3)-09.fm


이 발명을 지원한 국가연구개발사업 과제고유번호 KGM 부처명 교육과학기술부 연구관리전문기관 연구사업명 전북분원운영사업 연구과제명 저탄소 녹생성장을 위한 바이오매스/에너지 개발 주관기관 한국생명공학연구원 연구기간 2009년 01월 01일 ~ 2009년 12월

Treatment and Role of Hormaonal Replaement Therapy

레이아웃 1

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

스포츠과학 143호 내지.indd

45-51 ¹Ú¼ø¸¸

이 발명을 지원한 국가연구개발사업 과제고유번호 SI-1304 부처명 기획예산처 연구관리전문기관 산업기술연구회 연구사업명 정부출연 일반사업 연구과제명 생명통합정보시스템 활용 독창적 신약개발협동연구사업 기 여 율 1/1 주관기관 한국화학연구원 연구기간

농림수산식품부장관귀하 이보고서를 팥의대사성질환개선및기능성규명 에관한연구의최종보고서로제출 합니다 년 2 월 11 일 - 1 -

노인정신의학회보14-1호

황지웅

DBPIA-NURIMEDIA

<303520C0C7C7D0B0ADC1C220C0CCC0BAC1D62E687770>

γ

. 45 1,258 ( 601, 657; 1,111, 147). Cronbach α=.67.95, 95.1%, Kappa.95.,,,,,,.,...,.,,,,.,,,,,.. :,, ( )

<30382EC0C7C7D0B0ADC1C22E687770>

대한한의학원전학회지24권6호-전체최종.hwp

untitled

DBPIA-NURIMEDIA

975_983 특집-한규철, 정원호

molecular and cellular Biology Newsletter 전사인자들의발현중간엽줄기세포의연골분화유도을위한다양한기술들은생체내손상된연골의조직재생및기능회복을목적으로연구되고있다. 여러연골분화관련인자들중 Sox9은연골형성및발달에핵심적역할을하는전사인자로 Sox9

16(1)-3(국문)(p.40-45).fm

114-01(07-19).fm

충북의대학술지 Chungbuk Med. J. Vol. 27. No. 1. 1~ Charcot-Marie-Tooth Disease 환자의마취 : 증례보고 신일동 1, 이진희 1, 박상희 1,2 * 책임저자 : 박상희, 충북청주시서원구충대로 1 번지, 충북대학교

<31382D322D3420BDC5B1D4C8AF5FB3EDB9AE28C3D6C1BEBABB292E687770>

°ø±â¾Ð±â±â

fm

이가이드라인은세포치료제의주성분인세포의명명에대한원칙에대하 여식품의약품안전처의입장을기술한것으로대외적으로법적효력을가지 는것이아님을알려드립니다. 가이드라인 이란대외적으로특정한사안등에대하여식품의약품안 전처의입장을기술한것임 ( 식품의약품안전처지침등의관리에관한 규정제 2 조 ( 식

Shin MS 의 변화와 더불어 외모가 가지는 사회 경제적 가치가 날로 커져 나가게 되었고 그 결과, 미용성형수술의 요구가 확대되 면서 우리나라의 미용성형외과도 빠른 속도로 정착되고 발 전하게 되었다. 2000년 이후 우리나라의 미용성형외과 분 야는 질적 및 양적으로

012임수진

139~144 ¿À°ø¾àħ

06.fm

May 10~ Hotel Inter-Burgo Exco, Daegu Plenary lectures From metabolic syndrome to diabetes Meta-inflammation responsible for the progression fr

(Microsoft PowerPoint - S13-3_\261\350\273\363\307\366 [\310\243\310\257 \270\360\265\345])


Wnt signaling 과 adipogenesis

I 서론 치과용 임플란트는 Brånemark 등1의 골유착 (osseointegration) 발견 이후 끊임없는 발전 을 거듭해 왔다. Brånemark 등 1 이 밝혀낸 골 유착은 임플란트의 표면과 living bone 사이에 연조직 층 의 생성이 없이 직접 골조직이

14.531~539(08-037).fm

51(6)-21(유태경130).fm

( )Jkstro011.hwp


10(3)-10.fm


大学4年生の正社員内定要因に関する実証分析

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

목차 1. 서론 줄기세포의간세포분화능평가시고려사항 간세포분화능평가시험법 분

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

fm


<30352EB0A3BAB4B8AE2E687770>

440 /

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

A C O N T E N T S A-132

노영남

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

( )Kjhps043.hwp

DBPIA-NURIMEDIA

DBPIA-NURIMEDIA

untitled


<30335FB9DAC3B6BFB55FC0FAC0DAB1B3C1A4B9DDBFB52E687770>

3Å׸¶(12¿ùÈ£)3053.ok

637

16(2)-7(p ).fm

03-서연옥.hwp

09È«¼®¿µ 5~152s

<BCBCB0E8B1E2B7CFC0AFBBEAB5EEC0E7BDC5C3BBBCAD5FBCF6C1A432C2F75F F46696E616C2E687770>

본문

제호

09구자용(489~500)

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

Transcription:

Biomaterials Research (2007) 11(3) : 91-95 <Review> Biomaterials Research 7 The Korean Society for Biomaterials w» s w š A Brief Review on Adipose Tissue-Derived Mesenchymal Stem Cells * Gun-Il Im* Š f e hœd Dept. of Orthopaedics, Dongguk University International Hospital ((Received July 19, 2007/Accepted August 1, 2007)) Adipose tissue can provide an abundant source of adult stem cells that may be used for cell therapy and tissue engineering. However, it is not confirmed whether adipose tissue can provide stem cells that have a potential for effective tissue regeneration equal to those from bone marrow. In this review are introduced the recent advances in the characterization, differentiation, and applications of adipose tissue-derived mesenchymal stem cells. Key words: Adipose tissue, Mesenchymal stem cell, Tissue engineering j, l. e f i l f igš f hf l Œ f Šf Š d f Œ Š Š f elš Šf Š. j hhš i f il f ŒŠ. j Š f f lš f Š j f Š hf d f f ƒ f i t ŒfŠ f eš lf h fl Š f. u h x Š f ilj ee f 4 l j j j Œ f lf f Š,, l ilf ŒŠ f Š CD73, CD90, CD105 f Šef lš CD45, CD14, CD11b, CD34, CD19, CD79a, HLA-DR f f Š. 1) j, h Œ, l, Œ il Š j l f f f f } f swš f ghf f esilf f. 2-3) wš f f swš ff Œ~, Šh ƒ, Œ f Š } rf ut f l i l Š f e Š. 4-5) *sf hf: gunil@duih.org l Š h lxš d f Œ f ff f. l (SVF, stromal vascular cell fraction)f f l ilf el Š (collagenase) s Š e Š Š l e l (ADSC, adipose tissue-derived stromal cell), l e j (ATMSC, adipose tissue derived mesenchymal stem cell)f SVF Š ilf Œ f Œf Š j f lf Œf Š f h d f xf. 6) u g l l l e j f ƒ, Œ x il Š f hd f h Š f Š.»» s p l e j il Š j f e Š f lš e f i l. f ff, l ilf i, ex,, i, l l Œ f f f f. 4,7-12) f f f f hf sw f sw e ll f f Œ f s 3,13) w e l f k f Œf 14) f l ilf Š Šh ex ƒ f f } g hf ƒ f l f. f l h sw l hh f tf f. 3) r f 91

92 f f l f hf f jg w Š il Œ f f el. h 15) l yl l f Œ Dulbecco s modified Eagle s medium f α-mem Š hf f Œ l rf. f 11) d f r h r f f lf f x. Š Œ lf 16) N-acetyl- L-cysteine, L-ascorbic acid 2-phosphate f x l j f g f l ~. l e 17) j e j Š lf l f elš h if gfff f f FGF-2 PDGFf fš d tl. 18) l e j f ehf lf Š l f f fdš ƒhilf f Œe hf x ŠdŠ. h FACS (fluorecence activated cell sorting) fdš l e j e j Š ehf lf 1% h f rf f f h. ƒ 11) j r l HLA-DRf f hf df f f lf l e j if f fd fff Š. 19)»» s y ƒ j l, e,,, ef ŒŠ f f f. Œ h ƒf h ff f d j ef ŒŠ f f h Œ (transdifferentiation) Š. l e j j ef d ef f, f ŒŠ f f r Œ (crossdifferentiation) Š. y l e j l f ŒŠ. f ŒŠ f Š l f ƒlf adiponectinf leptinf Š catecholaminef Š f l f ŠŠ lf l Œ. 10) l f f f d, Œ, i hh il f g (fistula) f Crohn f d eš fd f. ƒ 20) poly-lactic-co-glycolic acid sphere l Œ ~ j r ~ jfœlltf f f ilg e Š d f. 21) y f il Š f f h (precursor cells) d } Œ g f f f f l ilf ƒ edš. f g f g g i ŠŠ f g ff Š l e j f f hd f g f. l ilf sw e Œ rf f Œ f f h swš l e j Šl f STRO-1, CD106 Še f h, l h, lœ h, lf Œ h d Š f h f. 22) Š Š j Šl ef j Š d hf Œ f Š. 23) hff Œ h l l l gfff i f fdš f f f Œ ef j Š hfl Š. 24) f f h Š e Š Š f l e j hf f Œ f eš gi f r eš eš lš. u f Š f l ej f TGF-β dt h l f f TGF fšl fef BMP Š d TGF-β dtf l Š hf Œ f Šf. 25) h ff u Š gfff išf Š TGF-β BMP-7f iš hf Œ f f TGF-β IGF-If Š d Š Œ f l f edš fd f f (Figure 1). d f fš f Œ e Š f ff l gff BMP-6, BMP-7, FGF-2f f. 26-28) Šl Š Š l e j fš f hf Œ je g fš if Œ f f. 29) / (muscle, myocardium) y l e j IL-3. IL-6 ŠŠ t ~ f methylcellulose l Š f e Š Œ(phenotype) ƒfš lf l ŒŠ f. f Œ f hf f f 30) adrenaline acetylcholine g e e Š fš. k ŠŠ t f l j f Š f Œ, Œ Œ ƒfš l ff f r. 31,32) l e j (skeletal myoblast) ŒŠ ƒfš e l fdš f ƒ (myotube) Œ Š (striated muscle)f lf l ŒŠ f. f mdx mice (Duchenne f l k) f Š f ef g lff dystrophinef f r. l j 33) Biomaterials Research 2007

지방에서 유래한 간엽줄기세포에 대한 소고 93 Induction of chondrogenesis from adipose tissue -derived mesenchymal stem cell in a pellet culture ( 100 Safranin-O staining). The cellular differentiation and the degree of metachromasia increased with combined treatment of TGF-β2 (5 ng/ml) and BMP-7 (50 ng/ml) or with high dose of combined TGF-β2 (15 ng/ml) and IGF (500 ng/ml). Figure 1. 세포는 일반적으로 골수기원간엽줄기세포에 비하여 근육으로 분화능력이 전반적으로 약한 것으로 관찰되며 근육세포와의 직 접접촉이 분화에 필요하다. 혈관내피세포(Vascular endothelial cell)로의 분화 쥐에서 분리한 지방기원간엽줄기세포는 혈관형성의 능력을 가지고 있고 VEGF, HGF, placental growth factor, FGF등의 혈관형성에 관계된 유전자를 대량 분비한다. 골수줄기세포와 비 교하여 동등한 정도의 혈관 형성능력이 관찰되어 허혈성 질환 의 치료에 유용할 것으로 사료된다. 신경계(neuron)로의 분화 지방기원간엽줄기세포를 일반적인 신경유도조건하에서 배양하 면 신경계 분화인자인 type III β-tubulin을 분비하게 된다. 또한 더 복잡한 신경유도배지하에서 생쥐와 사람의 지방줄기세 포에서 glial fibrillary acidic protein(gfap)와 nestin, NeuN, intermediate filament M 등이 발현된다. 아직 그 작용기전 이 밝혀지지 않았지만 뇌졸종후 기능회복을 위하여 연구되고 34) 16,35-37) 38) 있다. 췌장섬세포(pancreas islet cell)로의 분화 사람의 지방기원간엽줄기세포는 activin-a, exendin-4, HGF, pentagastrin등의 분화인자를 쓸 경우 췌장섬세포로 분화할 수 있음이 밝혀졌다. 이 세포는 췌장섬세포의 분화에 관여하는 전사인자인 ISl-1, Pax-6, Ipf-1, Ngn-3 등을 표현한다. 또한 이렇게 분화된 세포는 췌장섬세포의 제일 중요한 기능인 insulin, glucagon, IGF 등의 호르몬을 분비하여 앞으로 사람의 제 1형 당뇨병에 세포치료로 이용될 수 있는 가능성이 제시되 고 있다. 간세포(hepatocyte)로의 분화 지방기원간엽줄기세포에 HGF(hepatocyte growthfactor), oncostatin M(OSM), DMSO를 처리할 경우 albumin과 αfetoprotein을 분비하는 간세포의 기능을 가진 세포로 분화할 수 있다. 이 분화된 세포들은 low-density lipoprotein을 흡 수하고 요소를 생산하는 등의 고도의 간세포기능도 가질 수 있 39) 40) 41) Vol. 11, No. 3

94 f f. l e j HGF Š mitogenf f dš f dtf tyrosine kinase f l f c-met ŠŠ fdš. OSMf IL-6 cytokine j Š f Œ e Š. hh Š f k h f l e j h j Š d f g f f f r Œ Š t f f g edš f ff f f Š. 42) l e j f f f f g hf f f f f lš. e j d e Š f Œf l fl eš ilf ŒŠ lf f rf f ff f ilg f hf f eš hh Š Œe ff h Š d h Š Šf. l f l (A060215)f l ef Š f š x 1. M. Dominici, K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, Dj. Prockop, and E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement, Cytotherapy, 8, 315-317 (2006). 2. L. Casteilla, V. Planat-Bénard, B. Cousin, J. S. Silvestre, P. Laharrague, G. Charrière, A. Carrière, and L. Pénicaud, Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases?, Arch. Mal. Coeur. Vaiss., 98, 922-926 (2005). 3. M. J. Oedayrajsingh-Varma, S. M. van Ham, M. Knippenberg, M. N. Helder, J. Klein-Nulend, T. E. Schouten, M. J. Ritt, and F. J. van Milligen, Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissueharvesting procedure, Cytotherapy., 8, 166-177 (2006). 4. S. Kern, H Eichler, J. Stoeve, H. Klüter, and K. Bieback., Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue, Stem. Cells, 24, 1294-1301 (2006). 5. R. Izadpanah, C. Trygg, B. Patel, C. Kriedt, J. Dufour, J. M. Gimble, and B. A. Bunnell, Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue, J. Cell. Biochem., 99, 1285-1297 (2006). 6. W. Wagner, F. Wein, A. Seckinger, M. Frankhauser, U. Wirkner, U. Krause, J. Blake, C. Schwager, V. Eckstein, W. Ansorge, and A. D. Ho, Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood, Exp. Hematol., 33, 1402-1416 (2005). 7. R. A. Musina, E. S. Bekchanova, and G. T. Sukhikh., Comparison of mesenchymal stem cells obtained from different human tissues, Bull. Exp. Biol. Med., 139, 504-509 (2005). 8. P. A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, and M. H. Hedrick, Human adipose tissue is a source of multipotent stem cells, Mol. Biol. Cell, 13, 4279-4295 (2002). 9. P. A. Zuk, M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick, Multilineage cells from human adipose tissue: Implications for cell-based therapies, Tissue Eng., 7, 211-228 (2001). 10. A. Dicker, K. Le Blanc, G. Aström, V. van Harmelen, C. Götherström, L. Blomqvist, P. Arner, and M. Rydén, Functional studies of mesenchymal stem cells derived from adult human adipose tissue, Exp. Cell Res., 308, 283-290 (2005). 11. R. H. Lee, B. Kim, I. Choi, H. Kim, H. S. Choi, K. Suh, Y.C. Bae, and J. S. Jung, Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue, Cell Physiol. Biochem., 14, 311-324 (2004). 12. Y. Xu, P. Malladi, D. R. Wagner, and M. T. Longaker, Adiposederived mesenchymal cells as a potential cell source for skeletal regeneration, Curr. Opin. Mol. Ther., 7, 300-305 (2005). 13. I. A. Peptan, L. Hong, and J. J. Mao, Comparison of osteogenic potentials of visceral and subcutaneous adipose-derived cells of rabbits, Plast. Reconstr. Surg., 117, 1462-1470 (2006). 14. B. Prunet-Marcassus, B. Cousin, D. Caton, M. André, L. Pénicaud, and L. Casteilla, From heterogeneity to plasticity in adipose tissues: Site-specific differences, Exp. Cell Res., 312, 727-736 (2006). 15. P. Smith, W. P. Jr Adams, A. H. Lipschitz, B. Chau, E. Sorokin, R. J. Rohrich, and S. A. Brown, Autologous human fat grafting: Effect of harvesting and preparation techniques on adipocyte graft survival, Plast. Reconstr. Surg., 117, 1836-1844 (2006). 16. H. Nakagami, R. Morishita, K. Maeda et al., Adipose tissuederived stromal cells as a novel option for regenerative cell therapy, J. Atheroscler. Thromb., 13, 77-81 (2006). 17. T. M. Lin, J. L. Tsai, S. D. Lin, C. S. Lai, and C. C. Chang, Accelerated growth and prolonged lifespan of adipose tissuederived human mesenchymal stem cells in a medium using reduced calcium and antioxidants, Stem. Cells Dev., 14, 92-102 (2005). 18. H. Y. Song, E. S. Jeon, J. S. Jung, and J. H. Kim, Oncostatin M induces proliferation of human adipose tissue-derived mesenchymal stem cells, Int J Biochem Cell Biol, 37, 2357-2365 (2005). 19. B. Puissant, C. Barreau, P. Bourin, C. Clavel, J. Corre, C. Bousquet, C. Taureau, B. Cousin, M. Abbal, P. Laharrague, L. Penicaud, L. Casteilla, and A. Blancher, Immunomodulatory effect of human adipose tissue-derived adult stem cells: Comparison with bone marrow mesenchymal stem cells, Br. J. Haematol., 129, 118-129 (2005). 20. D. García-Olmo, M. García-Arranz, D. Herreros, I. Pascual, C. Peiro, and J. A. Rodríguez-Montes, A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation, Dis. Colon. Rectum., 48, 1416-1423 (2005). 21. Y. S. Choi, S. N. Park, and H. Suh, Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres, Biomaterials, 26, 5855-5863 (2005). 22. G. Charrière, B. Cousin, E. Arnaud, M. André, F. Bacou, L. Penicaud, and L. Casteilla, Preadipocyte conversion to macrophage. Evidence of plasticity, J. Biol. Chem., 278, 9850-9855 (2003). 23. I. A. Peptan, L. Hong, and J. J. Mao, Comparison of osteogenic Biomaterials Research 2007

l e Š j Š 95 potentials of visceral and subcutaneous adipose-derived cells of rabbits, Plast. Reconstr. Surg., 117, 1462-1470 (2006). 24. G. I. Im, Y. W. Shin, and K. B. Lee, Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells, Osteoarthritis Cartilage, 13, 845-853 (2005). 25. T. Hennig, H. Lorenz, A. Thiel, K. Goetzke, A. Dickhut, F. Geiger, and W. Richter, Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGF-beta receptor and BMP profile and is overcome by BMP-6, J. Cell Physiol., 211, 682-691 (2007). 26. B. T. Estes, A. W. Wu, and F. Guilak, Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6, Arthritis Rheum., 54, 1222-1232 (2006). 27. M. Knippenberg, M. N. Helder, B. Zandieh Doulabi, P. I. Wuisman, and J. Klein-Nulend, Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells, Biochem. Biophys. Res. Commun., 342, 902-908 (2006). 28. M. Chiou, Y. Xu, and M. T. Longaker, Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells, Biochem. Biophys. Res. Commun., 343, 644-652 (2006). 29. J. L. Dragoo, G. Carlson, F. McCormick, H. Khan-Farooqi, M. Zhu, P. A. Zuk, and P. Benhaim, Healing full-thickness cartilage defects using adipose-derived stem cells, Tissue Eng., 14 [Epub ahead of print] (2007) 30. V. Planat-Bénard, C. Menard, M. André, M. Puceat, A. Perez, J. M. Garcia-Verdugo, L. Pénicaud, and L. Casteilla, Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells, Circ. Res., 94, 223-229 (2004). 31. Y. Miyahara, N. Nagaya, M. Kataoka, B. Yanagawa, K. Tanaka, H. Hao, K. Ishino, H. Ishida, T. Shimizu, K. Kangawa, S. Sano, T. Okano, S. Kitamura, and H. Mori, Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction, Nat. Med., 12, 459-465 (2006). 32. B. M. Strem, M. Zhu, Z. Alfonso, E. J. Daniels, R. Schreiber, R. Beygui, W. R. MacLellan,M. H. Hedrick, J. K. Fraser, Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury, Cytotherapy., 7, 282-291 (2005). 33. A. M. Rodriguez, D. Pisani, C. A. Dechesne, C. Turc-Carel, J. Y. Kurzenne, B. Wdziekonski, A. Villageois, C. Bagnis, J. P. Breittmayer, H. Groux, G. Ailhaud, and C. Dani, Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse, J. Exp. Med., 201, 1397-1405 (2005). 34. G. Di Rocco, M. G. Iachininoto, A. Tritarelli, S. Straino, A. Zacheo, A. Germani, F. Crea, and M. C. Capogrossi, Myogenic potential of adipose-tissue-derived cells., J. Cell Sci., 119, 2945-2952 (2006). 35. V. Planat-Benard, J. S. Silvestre, B. Cousin, M. André, M. Nibbelink, R. Tamarat, M. Clergue, C. Manneville, C. Saillan- Barreau, M. Duriez, A. Tedgui, B. Levy, L. Pénicaud, L. Casteilla, Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives, Circulation, 109, 656 663 (2004). 36. M. H. Moon, S. Y. Kim, Y. J. Kim, S. J. Kim, J. B. Lee, Y. C. Bae, S. M. Sung, and J. S. Jung, Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia, Cell Physiol. Biochem., 17, 279-290 (2006). 37. H. Nakagami, K. Maeda, R. Morishita, S. Iguchi, T. Nishikawa, Y. Takami, Y. Kikuchi, Y. Saito, K. Tamai, T. Ogihara, and Y. Kaneda, Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose issue-derived stromal cells, Arterioscler. Thromb. Vasc. Biol., 25, 2542-2547 (2005). 38. Y. A. Romanov, A. N. Darevskaya, N. V. Merzlikina, and L. B. Buravkova., Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities, Bull. Exp. Biol. Med., 140, 138-143 (2005). 39. S. K. Kang, D. H. Lee, Y. C. Bae, H. K. Kim, S. Y. Baik, and J. S. Jung, Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats, Exp. Neurol., 183, 355-366 (2003). 40. K. Timper, D. Seboek, M. Eberhardt, P. Linscheid, M. Christ- Crain, U. Keller, B. Müller, and H. Zulewski, Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells, Biochem. Biophys. Res. Commun., 341, 1135-1140 (2006). 41. M. J. Seo, S. Y. Suh, Y. C. Bae et al., Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo, Biochem. Biophys. Res. Commun., 328, 258-264 (2005). 42. M. J. Seo, S. Y. Suh, Y. C. Bae, and J. S. Jung, Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse, Microsurgery, 23, 424-431 (2003). Vol. 11, No. 3