video slide

Similar documents
Output file

歯19-손태중.PDF

생명과학으로의 입문 : 생명의 과학적 기초

#Ȳ¿ë¼®

민속지_이건욱T 최종

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

6 영상기술연구 실감하지 못했을지도 모른다. 하지만 그 이외의 지역에서 3D 영화를 관람하기란 그리 쉬운 일이 아니다. 영화 <아바타> 이후, 티켓 파워에 민감한 국내 대형 극장 체인들이 2D 상영관을 3D 상영관으로 점차적으로 교체하는 추세이긴 하지만, 아직까지는 관

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Can032.hwp

대한한의학원전학회지24권6호-전체최종.hwp

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

<B3EDB9AEC1FD5F3235C1FD2E687770>


untitled

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

( )Kju269.hwp

제1장 건강, 체력 및 경기력 향상을 위한 영향

DBPIA-NURIMEDIA



아니라 일본 지리지, 수로지 5, 지도 6 등을 함께 검토해야 하지만 여기서는 근대기 일본이 편찬한 조선 지리지와 부속지도만으로 연구대상을 한정하 기로 한다. Ⅱ. 1876~1905년 울릉도 독도 서술의 추이 1. 울릉도 독도 호칭의 혼란과 지도상의 불일치 일본이 조선

DBPIA-NURIMEDIA

135 Jeong Ji-yeon 심향사 극락전 협저 아미타불의 제작기법에 관한 연구 머리말 협저불상( 夾 紵 佛 像 )이라는 것은 불상을 제작하는 기법의 하나로써 삼베( 麻 ), 모시( 苧 ), 갈포( 葛 ) 등의 인피섬유( 靭 皮 纖 維 )와 칠( 漆 )을 주된 재료

Chapter 26

우리들이 일반적으로 기호

- 2 -

IKC43_06.hwp

대한한의학원전학회지26권4호-교정본(1125).hwp

Slide 1

I&IRC5 TG_08권

Page 2 of 5 아니다 means to not be, and is therefore the opposite of 이다. While English simply turns words like to be or to exist negative by adding not,


歯4.PDF

untitled

<4D F736F F F696E74202D20B9CCBBFDB9B0C7D0315F32C0E55FB9CCBBFDB9B0B0CBC3E2B9FD>

Page 2 of 6 Here are the rules for conjugating Whether (or not) and If when using a Descriptive Verb. The only difference here from Action Verbs is wh

<B1A4B0EDC8ABBAB8C7D0BAB8392D345F33C2F75F E687770>

<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

<32382DC3BBB0A2C0E5BED6C0DA2E687770>


02양은용

Coriolis.hwp

歯kjmh2004v13n1.PDF

Vol.259 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

2005CG01.PDF

PowerPoint 프레젠테이션


Á¶´öÈñ_0304_final.hwp


<303720C7CFC1A4BCF86F6B2E687770>

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

NNFC 분석 / 특성평가장비의구성 구조 & 표면분석 Mechanical & Bio 분석 Electrical 특성측정 In-Line 측정 불량분석 RE 분석 FE-(S)TEM Cs-corrected STEM 3D FE-STEM In-situ TEM FE-SEM DB-F

03¹ü¼±±Ô


Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

歯1.PDF

05À±Á¸µµ

À±½Â¿í Ãâ·Â

석사논문.PDF

0125_ 워크샵 발표자료_완성.key

45-51 ¹Ú¼ø¸¸

발간사 반구대 암각화는 고래잡이 배와 어부, 사냥하는 광경, 다양한 수륙동물 등 약 300여점의 그림이 바위면에 새겨져 있는 세계적 암각화입니다. 오랜 기간 새겨진 그림들 가운데 고래를 잡는 배와 어부모습은 전 세계적으로 유례를 찾기 힘들 정도로 그 중요성과 가치가 큽

서론 34 2

WRIEHFIDWQWF.hwp

<BFA9BAD02DB0A1BBF3B1A4B0ED28C0CCBCF6B9FC2920B3BBC1F62E706466>

삼교-1-4.hwp

012임수진

Microsoft Word doc

pdf 16..

Kbcs002.hwp

현대영화연구

GEAR KOREA

< FC7D1BEE7B4EB2DB9FDC7D0B3EDC3D132382D332E687770>

12Á¶±ÔÈŁ

11¹Ú´ö±Ô

6(final)

①국문지리학회지-주성재-OK

본문01

감각형 증강현실을 이용한

퇴좈저널36호-4차-T.ps, page Preflight (2)


Vol.257 C O N T E N T S M O N T H L Y P U B L I C F I N A N C E F O R U M

step 1-1

12이문규

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

목차 1. 서론 1.1. 연구의 배경 및 목적 1.2. 연구의 내용 및 방법 2. 제품스타일 분석 2.1. 제품이미지 2.2. 미래지향적 스타일 3. 신세대 감성분석 3.1. 라이프스타일 3.2. 광고전략 3.3. 색채에 따른 제품구매 분석 4. 결론 *참고문헌 ( )

[ 영어영문학 ] 제 55 권 4 호 (2010) ( ) ( ) ( ) 1) Kyuchul Yoon, Ji-Yeon Oh & Sang-Cheol Ahn. Teaching English prosody through English poems with clon

03신경숙내지작업

<302DC5EBC0CFB0FA20C6F2C8AD28BFCF292E687770>

01_피부과Part-01

2

Microsoft PowerPoint - Chap7note

63-69±è´ë¿µ

04-다시_고속철도61~80p

video slide

......

<B3EDB9AEC1FD5F3235C1FD2E687770>

week1.hwp

지능정보연구제 16 권제 1 호 2010 년 3 월 (pp.71~92),.,.,., Support Vector Machines,,., KOSPI200.,. * 지능정보연구제 16 권제 1 호 2010 년 3 월

,.,..,....,, Abstract The importance of integrated design which tries to i

Transcription:

CHAPTER 4 A Tour of the Cell

Today Microscopic methods to study cells A picture show of cellular diversity Next times The components of cells Membranes and membrane proteins Cell wall /extracellular matrix Nucleus Ribosomes The endomembrane system Mitochondria and Chloroplasts (structure and origin) and chloroplasts Cytoskeleton, cilia and flagella Modern methods to visualize organelles

The Microscopic World of Cells Cells were discovered in 1665 by Robert Hooke. The microscopic observations later led to the cell theory. All living things are composed of cells. Cells are the smallest unit of life All cells are formed from previously existing cells.

Although cells are small, their complexity is comparable to that of an airplane. Each cell is a - micro-machine composed of nano-machines; - micro-reactor composed of nano-reactors; - micro-computer composed of nano-computers. The human eye can only resolve objects 0.1 mm = 100 µm but cells are usually <0.02 mm = 20 µm Animal cells 1 mm = 1,000 µm

Microscopes as a Window on the World of Cells Much of cell complexity is understood with the help of microscopes - Optical microscopes (LIGHT interacts with the sample) - Electron microscopes (ELECTRONS interact with the sample) - Scanning probe microscopes (A SCANNING PROBE interacts with the sample) - Most important scanning probe microscope: Atomic force microscope Several Nobel prizes were awarded for the invention of microscopes Atomic force microscope Copyright 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings

The light microscope The light microscope was the key tool that allowed discovery of the cell It is still used by most scientists Magnification ( 배율 ) = increase in the specimen s apparent size is up to 2,000x Resolving power ( 해상력 ) = ability to show two objects as separate is 0.2 µm Robert Hooke s microscope Current light microscope

Cultured cells Bright-field Phase contrast Differential-interferencecontrast Dark field

Stained cell preparations under the traditional light microscope Tissue section Blood cells Chromosomes

Using a laser, cells or groups of cells can be isolated under the microscope Laser-capture microdissection Before After Isolated cells http://www.bioopticsworld.com/articles/print/volume-5/issue-04/features/from-bench-to-business-nih-tech-transfer-needs-industry.html

Another application of lasers: The confocal laser scanning microscope Higher resolution Depth-dependent measurements (optical tomography)

High-resolution imaging of cell skeleton with confocal laser scanning microscopy

The electron microscope (EM) Uses a beam of electrons. Has a higher resolving power than the light microscope. Can magnify up to 2,000,000X Such power reveals the diverse parts within a cell.

The transmission electron microscope

Budding viruses Cell Protein molecules DNA molecules

The scanning electron microscope

Cell budding viruses Ant Cell surface with protein complexes (freeze-fracture technique)

The atomic force microscope (AFM) Advantages compared with electron microscope AFM does not require vacuum Does not require special sample treatment Provides a true 3D picture Has higher theoretical resolution than SEM

The atomic force microscope (AFM)

Tip of an atomic force microscope. A platinum electrode measuring one hundredth of a nanometer has been deposited on the tip via focused ion beam (FIB) deposition.

AFM image of a cell surface

AFM images of molecules Protein complexes Aquaporin Fo of ATP synthase AFM image of complex of DNA with DNA-cutting enzyme

The same cell type seen with different visualization methods The protist Euglena, photographed with three different methods

A eukaryotic cell with budding viruses

Light microscope can magnify up to 2 thousand times Electron Microscope can magnify up to 2 million times Atomic force microscopes can in principle visualize atoms (but only in vacuum) Atomic force microscope

The Two Major Categories of Cells Prokaryotic cells Eukaryotic cells

Prokaryotic cells Are smaller than eukaryotic cells. Lack internal structures surrounded by membranes. Lack a nucleus. DNA is coiled in a nucleoid region, which is not partitioned from the rest of the cell by membranes Copyright 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Examples of prokaryotic cells ( Try to identify the visualization method)

Examples of prokaryotic cells Cyanobacteria

Streptomyces (Eubacteria) Escherichia coli (Eubacteria)

Methanococcus (Archebacteria)

Halophiles (Archaebacteria)

Eukaryotic cells are much more complex than prokaryotic cells

A Panoramic View of Eukaryotic Cells An idealized animal cell An idealized plant cell Copyright 2007 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Examples of eukaryotic cells

Ciliates (Protozoa)

Flagellates (Protozoa)

Amoeba (Protozoa) Yeast (Fungi)

Plant cells

Animal cells White blood cell (macrophage) eating bacteria White blood cell (lymphocyte) Nerve cell Glia cells

Endothelial cells (blood vessel wall)

Summary comparison: Prokaryotic and eukaryotic cells differ in several respects.

Summary A tour of the cell Microscopes play a major role in the study of cells. Resolution of the human eye: ~0.1-0.2 mm (100 µm). Typical eukaryotic cells are 0.01 0.02 mm (10-20 µm). Typical prokaryotic cells are ~ 0.001 mm (1 µm). Microscopes probe the sample with light, electrons, or via electrostatic/van der Vaals interaction. Light microscope (resolution ~ 0.2 µm, magnification up to 2,000). Cells are often translucent; for microscopy they are stained (which may kill) or contrast-enhanced (phase contrast microscope); resolution is improved with the laser scanning confocal microscope. Structures seen: Eukaryotic cells, bacteria, cell organelles like nucleus, cytoskeletal fibers, condensed chromosomes. Electron microscope (resolution 0.2 nm, magnification typically up to 2,000,000). Transmission electron microscope (TEM): Electrons that penetrate the sample are measured. Used to visualize inner structures (membranes, substructure of organelles, viruses, large biomolecules). Scanning electron microscope (SEM): Measures reflections caused by electrons. Used to visualize details of surfaces, but only gives a pseudo-3d image (cannot measure the z-dimension). Atomic force microscope (resolution slightly better than electron microscope). A probe scans along the unaltered sample surface. No vacuum needed, gives a real 3D image (measures the z-dimension). Probes can also move atoms. The size of an atom: 0.03 0.3 nm. All cells on earth fall into two structural categories. Prokaryotes: 1 cell = 1 compartment ( box ). No details can be seen in the light microscope. Eukaryotes: 1 cell = many compartments (organelles such as nucleus, mitochondria, chloroplasts, Golgi, endoplasmic reticulum) ( boxes in a box ). The largest organelles can be seen in the light microscope.

요약 - 세포속으로여행 현미경은세포의연구에중요한역할을한다. 인간눈의해상도 : ~0.1-0.2 mm (100 um). 전형적인진핵세포들은 0.01-0.02 mm (10-20 um). 전형적인원핵세포들은 ~0.001 mm (1 um). 현미경은빛, 전자, 또는정전기 / 반데르발스상호작용을통해표본을검출할수있다. 광학현미경 ( 해상도 ~0.2 um, 최대배율 2,000 배 ). 세포들은대부분반투명하다 ; 현미경으로관찰을위해서세포들을염색하거나 ( 세포를죽일수도있음 ) 대비를높인다 ( 위상차현미경 ); 해상도는공초점레이져현미경으로향상할수있다. 볼수있는구조들 : 진핵세포, 원핵세포, 핵과같은세포소기관들, 세포골격섬유들, 응집된염색체들. 전자현미경 ( 해상도 0.2 nm, 일반적으로최대 2,000,000 배까지확대 ) 투과전자현미경 (TEM): 샘플을투과하는전자를측정. 내부구조들 ( 세포막들, 소기관들의구조, 바이러스, 큰생체분자들 ) 을확인하기위해사용되곤한다. 주사전자현미경 (SEM): 전자들에의해발생되는반사를측정한다. 표면의세부적인부분을가시화하기위해사용되곤하나, 오직가짜 -3D 영상만줄수있다 (z 축은측정할수없다 ). 원자간력현미경 ( 해상도는전자현미경보다약간더좋다.) 프로브는변하지않은시료의표면을따라탐색할수있다. 진공이필요없으며, 실제 3D 영상을줄수있다 (z 축을측정한다 ). 프로브는또한원자로이동할수있다. * 프로브 : 계측의목적으로사용되는빔 원자의크기 : 0.03-0.3 nm. 지구상의모든세포들은두개의구조적범위안에들어간다. 원핵세포들 : 1 개세포 = 1 칸 (" 박스 ). 광학현미경에서미세구조를확인할수없다. 진핵세포들 : 1 개세포 = 많은칸들 ( 핵, 미토콘드리아, 염록체, 골지체, 소포체와같은세포소기관들 ) ( 박스안의박스들 ). 광학현미경에서가장큰소기관들은확인할수있다.