PowerPoint 프레젠테이션
|
|
- 정화 유
- 6 years ago
- Views:
Transcription
1
2 Agenda 회사소개 Customer challenges Pre-Configured Solution 사례 Special offer or promotion Predictive Analytics Industry Experience Big Data
3 회사소개 - 일반 DS-eTrade Microsoft 의 Cloud Platform & Data Platform 파트너 2000 년창업이래 Supply Chain Planning 컨설팅및고급분석컨설팅부터시스템구축까지가능한한국내최고전문기업 Industry 별전문 Data Scientist 와 Azure Cloud 전문가들이다양한산업부분에서분석플랫폼및컨설팅서비스를제공 잠재적가능성이무한한한국의 Cloud 시장에서고객과함께지속적으로성장하는기업 2015~16 년약 30 건의 Azure 기반 Big data Pilot 및시스템을구축 Solution & Service 제조 / 유통산업에서의고급분석영역에대한 Pre-Configured솔루션제공 - Demand Forecasting, Recommendation, Quality Analytics 게임 / 의료 / 교육등특화시장에서의 Advanced Analytics 모형제공 - 이탈방지모형, Recommendation, 비정상패턴탐지 ( 게임, 의료 ) Microsoft 인지서비스와연계한 AI 서비스제공 - 대화형추천서비스 ( 음성, 영상, Chat) + Contents 추천 Training Microsoft Advanced Analytics 전문교육파트너 (Microsoft R, Azure ML, HDInsight Spark) Cortana Intelligence Suite 과연계된고객별맞춤식 Machine learnin 구현을위한 Handon 교육
4 회사소개 - 사업영역 분석 전문가 Planning 영역의프로세스및모델전문가와통계적분석가 co-work 실제활용가능한 Prediction 영역 최근 Machine Learning 이론을경험한전문인력 1.Demand Forecasting Demand Sensing 자동패턴탐지 신제품예측 프로모션효과분석 Big Data 연계 - POS, 비정형데이터활용 2.Customer Analytics /Recommend System 고객분석, 고객행태예측 유형별상품추천알고리즘 구매패턴예측 Mktg. 전략시뮬레이션 On/Offline 분석 컨설팅 제공 고급분석을통한분석방법 Guide 기존모형의개선방안제시 적합한통계모형제시 데이터연계를통한실증적인효과제시 데이터통합방안제시 3.Advanced SFA (Smart Sales Guide) 영업방문고객추천 고객발주예측 상품추천알고리즘 방문코스최적화 4.Market Intelligence B2B 시장예측 수요시장 Insights 수요시장및수요패턴세분화 수주확률장단기예측 고객별영업전략 Guide 개발및 기술지원 데이터연계 / 모델링 /UI 전체영역의일원화된분석시스템구현 기본패키지 Add-on 을통한 Customizing 개발 R / ML 등을통한통계교육 통계관련지원서비스 5.Service Planning 서비스용자재수요예측 불규칙패턴의평활기법 LTB(Last Time Buy) 시점의 Long Term Forecasting 적정 Inventory 수준산정 6.Field Quality Analytics Field 불량사전예측 공정품질분석 품질이상원인분석 모니터링및조기경보
5 Customer challenges Digital Transformation 대응 자동화된예방정비활동 Cost Reduction IoT 기반의 Infra 활용 실시간데이터기반 제품생산및고객서비스그리고콘텐트와의연결 센싱데이터등다양한내 / 외부데이터를활용한고장예측모형수립 최신분석기술 ( 기계학습알고리즘 ) 을도입하여예측고도화구현 예측을통한사전예방정보자동제공 빠르게도입가능한 Built-in Agility Big Data Infra 도입비용의현실화 클라우드, Mobile 등의 IT 기반활용
6 Pre-Configured Solution 제공영역 기대효과 사전구성된 IoT 연계 Suite 제공 예측모형 : 고장예측및분석에최적화된기본분석구조채용 전세계적으로검증된최대 IoT 기반의클라우드환경제공 예측모형 : 주요대기업의고장예측및통계분석수행을통해검증된분석프레임워크적용 배포 : Big Data Infra 와의손쉬운연계및 Web Service API(RESTful) 배포 최적의예측분석 ( 최신분석기법 ; 딥러닝등 ) 알고리즘지원및최고성능의알고리즘이탑재된솔루션제공으로성능향상 사용자 UI : 불량원인분석에직접활용가능한분석기능 분석 UI : 단계별 ( 수집 분석 시각화 ) 실시간분석기능및 UI 구조적용 + 확장분석 UI 손쉬운유지보수가능기술적용으로 Cost 감소와기술적제한극복
7 Pre-Configured Solution 세부기능 다양한설비 PLC 및센서데이터연계 공정불량원인분석 고장원인인자도출 인자별 / 조합별원인분석 불량예측분석모델링 자료유형별예측기법 Pool 예측기법 Selector 대량데이터수집및적재분산처리 고장원인분석, 불량원인이예상되는인자들의 Data Pool 을구성 데이터마이닝과최근머신러닝기법활용 - 알고리즘을통한변수선택기능및차원축소 - 전체데이터자동학습을통한예측수행 : Deep Learning 다양한패턴탐지기법 - 웨이블렛, Grid 패턴, 클러스터링, 유사패턴 설비고장예측모델 설치유형, 고장유형별고장패턴분석 패턴별이상감지시뮬레이션 EDA 기반분석체계 Power BI/Excel BI 기반 사용자역할별 UI 구성 고객유형별 / 고장유형별 EDA 분석화면구성
8 Pre-Configured Solution 제공영역 Azure 서비스 (PaaS 기반 ) 센싱데이터연계 - 게이트웨이연계 / 수집 - 게이트웨이관리 IoT Hub Stream Analytics Event Hub Data Factory, Logic App Microsoft Data Platform 빅데이터관리 - 수집 / 저장 / 처리 - 병렬처리 분석지원플랫폼 - 분석 Infra - Machine Learning Document DB SQL Server DW HDInshgt (Storm, Spark) Azure Machine Learning CNTK, MxNet, H2O 변환 + 분석 데이터 시각화 + 결정 수집 + 관리 분석 / 모니터링 UI - 모니터링 ( 센싱, 예측 ) - 상세분석 Power BI Web Apps.
9 Pre-Configured Solution 아키텍처 센싱데이터 데이터연계 Machine Learning 활용 Azure Blob Storage Azure HDInsight (Hadoop) A 공정 : 000 개 B 공정 : 000 개 C 공정 : 00 개 : : Target CTQs G/W 모형생성 공정품질 Azure IoT Hub Azure Stream Analytics Azure SQL DB/DW 설비고장예측 Usable Time Pressure Temp Air Condition G/W 예측결과 실시간모니터링 Azure ML Web Service 불량 / 고장예측 Real Time 모니터링 UI 원인분석 예측대상 ( 실시간 )
10 Pre-Configured Solution 분석도구 Microsoft 코타나인텔리전스스위트 서비스 Azure 머신러닝 데이터레이크분석 특징 ML Studio 제공 다양한 ML 기법 R, Python embedded Web Service 연계 데이터 Lake 저장소연결 독립적 Spark, Storm 연계 HDInsght 연계 Standard R 의기능을포함한확장기능제공 Tool 기반제공 비용, 활용성, 속도 - SQL Server 통합내장 - 병렬처리 - R 기반 Debugging HDInsight HBASE Apache Spark Storm Microsoft R Azure ML 연계 Open Source ML 연계 - SparkML, Mahout CNTK 스트림분석 실시간분석 IoT Hub 연계 In-Memory 처리 실시간분석연계 (AML)
11 사례 Case studies Customer Situation solution 현대엘리베이터 A 사 ( 제조산업 ) 기업소개 : 국내 1 위승강기제조업체로 1 만개이상의엘리베이터를유지관리하고있음 활용 : Azure 기반의 IoT Suit 과빅데이터플랫폼을활용하여엘리베이터의수명및고장예측수행 효과 : 예방정비를통한서비스수준을획기적으로향상시키고, 업계에서경쟁력확보 기업소개 : A 사는국내건축내장재및가구재료를생산 / 판매하는기업 활용 : 공정품질향상을위하여 IoT Suite 과빅데이터플랫폼기반 Pilot 수행 효과 : 전반적인제조공정의품질을모니터링및가이드하여품질불량을사전에방지 현대엘리베이터 제조 (IoT 기반 ) B 사 ( 전력기기 / 빌딩 ) 기업소개 : B 사는전력송변전및배전기기및시스템을제공하는기업 활용 : 스마트빌딩관리를위하여신재생에너지생산및비축, 에너지수요패턴을 IoT 를통해실시간분석하고예측하고, 예측된결과는인공지능알고리즘을적용되어스마트빌딩관리를위한최적의에너지관리가이드를제공 효과 : 에너지절감및스마트빌딩관리서비스제공
12 Special offer or promotion 초기분석 Infra 투자필요없음 분석과제의빠른검증기간 고객의원하는형태를동시수용 다양한최신알고리즘과오픈소스수용 최근 Machine Learning 의 Trend 를활용한과제도출과수행 [[ Infra + Analytics ]] 신규과제도출 추진과제 (IoT, Machine learning) - Demand Forecasting 고도화 - SFA 기반제안영업활성화영역 - 고객추천및분석을통한 Cloud Marketing Platform - 공정품질및설비고장예측등 IoT 기반과제 Pre-Configured 솔루션제안과제선택후 PoC 수행 ( 효과산출 ) 데이터준비후 2 주 ~4 주 기존시스템대체 기존사용중인분석솔루션대체 - CRM, MES, SCM 등다양한영역 - 기존 SAS, SPSS 상용솔루션사용고객 제안 (Advanced Analytics) - Azure Machine Learning - Microsoft R Server - Cortana Analytics Suite - Spark ML, Deep Learning Toolkit Cloud 기반과제수행을통한빠른효과도출 기업분석업무변화와최근 Trend 접목가능성파악
13 End Of Document 디에스이트레이드
PowerPoint 프레젠테이션
Agenda 회사소개 Customer challenges Pre-Configured Solution 사례 Special offer or promotion Predictive Analytics Industry Experience Big Data 회사소개 - 일반 DS-eTrade Microsoft 의 Cloud Platform & Data Platform 파트너
More information따끈따끈한 한국 Azure 데이터센터 서비스를 활용한 탁월한 데이터 분석 방안 (To be named)
오늘그리고미래의전략적자산 데이터. 데이터에서인사이트까지 무엇이? 왜? 그리고? 그렇다면? Insight 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020 데이터의변화 CONNECTED DIGITAL ANALOG 1985 1990 1995 2000 2005 2010 2015 2020
More informationData Industry White Paper
2017 2017 Data Industry White Paper 2017 1 3 1 2 3 Interview 1 ICT 1 Recommendation System * 98 2017 Artificial 3 Neural NetworkArtificial IntelligenceAI 2 AlphaGo 1 33 Search Algorithm Deep Learning IBM
More informationAgenda
Agenda 코타나인텔리전스소개 Gallery, Solution Template 데모1. ML Tutorial : Classification 데모2. HDI 생성방법, Spark notebook demo, Power BI 시각화 데모3. 인지서비스 Live demo, Intelligent Kiosk 데모4. 챗봇 Skype Preview + LUIS Digital
More informationPowerPoint 프레젠테이션
ㆍ Natural Language Understanding 관련기술 ㆍ Semantic Parsing Conversational AI Natural Language Understanding / Machine Learning ㆍEntity Extraction and Resolution - Machine Learning 관련기술연구개발경험보유자ㆍStatistical
More information김기남_ATDC2016_160620_[키노트].key
metatron Enterprise Big Data SKT Metatron/Big Data Big Data Big Data... metatron Ready to Enterprise Big Data Big Data Big Data Big Data?? Data Raw. CRM SCM MES TCO Data & Store & Processing Computational
More information빅데이터_DAY key
Big Data Near You 2016. 06. 16 Prof. Sehyug Kwon Dept. of Statistics 4V s of Big Data Volume Variety Velocity Veracity Value 대용량 다양한 유형 실시간 정보 (불)확실성 가치 tera(1,0004) - peta -exazetta(10007) bytes in 2020
More informationPowerPoint Presentation
SAP HANA 와 Predictive Analytics 를홗용한 IoT & Big Data 의인사이트도출 이철 / SAP Korea 2016.04.05 2015 2014 SAP AG. SE or All rights an SAP reserved. affiliate company. All rights reserved. 1 AGENDA 1 2 3 4 5 분석에대한니즈의변화
More informationPowerPoint Presentation
IoT, 디바이스부터머신러닝까지 놓치지않을꺼에욧 Microsoft Data platform End-to-end 서비스 디바이스및센서데이터연결및처리데이터저장및성능분석프레젠테이션및활용 Internal only Microsoft IoT platform End-to-end 서비스 디바이스및센서 데이터연결및처리데이터저장및성능분석프레젠테이션및활용 각종소형디바이스및센서
More information2017 년 AI 에대한전망 5 predictions for artificial intelligence in 2017, Stuart Frankel, CEO, Narrative Science Interactions Computer Computer Human Compute
AI 를위한 Microsoft 의전략적솔루션 인지서비스및 Bot 프레임워크 한석진부장마이크로소프트 2017 년 AI 에대한전망 5 predictions for artificial intelligence in 2017, Stuart Frankel, CEO, Narrative Science Interactions Computer Computer Human Computer
More information정보기술응용학회 발표
, hsh@bhknuackr, trademark21@koreacom 1370, +82-53-950-5440 - 476 - :,, VOC,, CBML - Abstract -,, VOC VOC VOC - 477 - - 478 - Cost- Center [2] VOC VOC, ( ) VOC - 479 - IT [7] Knowledge / Information Management
More informationPowerPoint Presentation
1 2 Enterprise AI 인공지능 (AI) 을업무에도입하는최적의제안 Taewan Kim Solution Engineer Data & Analytics @2045 Imagine the endless possibilities to learn from 2.5 quintillion bytes of data generated every day AI REVOLUTION
More informationPowerPoint 프레젠테이션
Microsoft Power BI on Big Data Platform 아젠다 Ⅰ Ⅱ Ⅲ Microsoft Power BI on Big Data Platform 소개 Microsoft Power BI on Big Data Platform 구축사례 메이븐클라우드서비스소개 Microsoft Power BI on Big Data Platform 소개 Microsoft
More informationBusiness Agility () Dynamic ebusiness, RTE (Real-Time Enterprise) IT Web Services c c WE-SDS (Web Services Enabled SDS) SDS SDS Service-riented Architecture Web Services ( ) ( ) ( ) / c IT / Service- Service-
More information歯CRM개괄_허순영.PDF
CRM 2000. 8. KAIST CRM CRM CRM CRM :,, KAIST : 50%-60%, 20% 60%-80%. AMR Research 10.. CRM. 5. Harvard Business review 60%, 13%. Michaelson & Associates KAIST CRM? ( ),,, -,,, CRM needs,,, dynamically
More informationI What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3.
Deep-Dive into Syrup Store Syrup Store I What is Syrup Store? Open API Syrup Order II Syrup Store Component III Open API I What is Syrup Store? 1. Syrup Store 2. Syrup Store Component 3. 가맹점이 특정 고객을 Targeting하여
More informationAGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례
모바일 클라우드 서비스 융합사례와 시장 전망 및 신 사업전략 2011. 10 AGENDA 01 02 03 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례 AGENDA 01. 모바일 산업의 환경 변화 가치 사슬의 분화/결합 모바일 업계에서도 PC 산업과 유사한 모듈화/분업화 진행 PC 산업 IBM à WinTel 시대 à
More informationMicrosoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM
中 규모 기업의 실용주의CRM 전략 (CRM for SMB) 공영DBM 솔루션컨설팅 사업부 본부장 최동욱 2007. 10. 25 Agenda I. 중소기업의 고객관리, CRM의 중요성 1. 국내외 CRM 동향 2. 고객관리, CRM의 중요성 3. CRM 도입의 기대효과 II. CRM정의 및 우리회사 적합성 1. 중소기업에 유용한 CRM의 정의 2. LTV(Life
More informationSECTION TITLE A PURE PRIMER (AI), // 1
SECTION TITLE A PURE PRIMER (AI), // 1 ,...,.,,. AI Enlitic.. Aipoly Microsoft Seeing AI.,, " ",. 4. 4..,.,?.. AI Drive.ai Lyft. // 1 .,.. 1. 2. 3.,. 50~100,., (AI) 4.,,.,.. // 2 ,,. 1 (HAL VARIAN) //,
More informationCONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내 빅데이터 산 학 연 관
방송 통신 전파 KOREA COMMUNICATIONS AGENCY MAGAZINE 2013 VOL.174 09+10 CONTENTS Volume.174 2013 09+10 06 테마 즐겨찾기 빅데이터의 현주소 진일보하는 공개 기술, 빅데이터 새 시대를 열다 12 테마 활동 빅데이터 플랫폼 기술의 현황 빅데이터, 하둡 품고 병렬처리 가속화 16 테마 더하기 국내
More information08SW
www.mke.go.kr + www.keit.re.kr Part.08 654 662 709 731 753 778 01 654 Korea EvaluationInstitute of industrial Technology IT R&D www.mke.go.kr www.keit.re.kr 02 Ministry of Knowledge Economy 655 Domain-Specific
More information슬라이드 1
[ CRM Fair 2004 ] CRM 1. CRM Trend 2. Customer Single View 3. Marketing Automation 4. ROI Management 5. Conclusion 1. CRM Trend 1. CRM Trend Operational CRM Analytical CRM Sales Mgt. &Prcs. Legacy System
More informationecorp-프로젝트제안서작성실무(양식3)
(BSC: Balanced ScoreCard) ( ) (Value Chain) (Firm Infrastructure) (Support Activities) (Human Resource Management) (Technology Development) (Primary Activities) (Procurement) (Inbound (Outbound (Marketing
More information歯목차45호.PDF
CRM CRM (CRM : Customer Relationship Management ). CRM,,.,,.. IMF.,.,. (CRM: Customer Relationship Management, CRM )., CRM,.,., 57 45 (2001 )., CRM...,, CRM, CRM.. CRM 1., CRM,. CRM,.,.,. (Volume),,,,,,,,,,
More information클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL)
클라우드컴퓨팅확산에따른국내경제시사점 클라우드컴퓨팅확산에따른국내경제시사점 * 1) IT,,,, Salesforce.com SaaS (, ), PaaS ( ), IaaS (, IT ), IT, SW ICT, ICT IT ICT,, ICT, *, (TEL) 02-570-4352 (e-mail) jjoon75@kisdi.re.kr 1 The Monthly Focus.
More information정보화 산업의 발전단계 : 정보혁명의 진화 정보화 산업의 발전단계 1세기에 두 번 정도의 큰 기술혁명이 이루어져 경제성장의 원동력으로 작용 uit 시대는 정보혁명 중 인터넷 이후의 새로운 기술혁명인 컨버전스 기술이 핵심이 되는 시대 uit 시대는 정보화의 극대화와 타
모바일 혁명이 바꾸는 기업의 미래 모바일 빅뱅의 시대 기업경영환경의 변화 2011. 04. 26 더존 IT 그룹 더존씨앤티 지용구 사장 더존씨앤티 (트위터ID : Jiyonggu / E-mail : todcode@duzon.com) 11 정보화 산업의 발전단계 : 정보혁명의 진화 정보화 산업의 발전단계 1세기에 두 번 정도의 큰 기술혁명이 이루어져 경제성장의
More informationÆí¶÷4-¼Ö·ç¼Çc03ÖÁ¾š
솔루션 2006 454 2006 455 2006 456 2006 457 2006 458 2006 459 2006 460 솔루션 2006 462 2006 463 2006 464 2006 465 2006 466 솔루션 2006 468 2006 469 2006 470 2006 471 2006 472 2006 473 2006 474 2006 475 2006 476
More informationPowerPoint 프레젠테이션
I. 문서표준 1. 문서일반 (HY중고딕 11pt) 1-1. 파일명명체계 1-2. 문서등록정보 2. 표지표준 3. 개정이력표준 4. 목차표준 4-1. 목차슬라이드구성 4-2. 간지슬라이드구성 5. 일반표준 5-1. 번호매기기구성 5-2. 텍스트박스구성 5-3. 테이블구성 5-4. 칼라테이블구성 6. 적용예제 Machine Learning Credit Scoring
More informationPowerPoint 프레젠테이션
Post - Internet Marketing Contents. Internet Marketing. Post - Internet Marketing Trend. Post - Internet Marketing. Paradigm. . Internet Marketing Internet Interactive Individual Interesting International
More informationCover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치
Oracle Big Data 오라클 빅 데이터 이야기 Cover Story 01 20 Oracle Big Data Vision 01_Big Data의 배경 02_Big Data의 정의 03_Big Data의 활용 방안 04_Big Data의 가치 최근 빅 데이터에 대한 관심이 커지고 있는데, 그 배경이 무엇일까요? 정말 다양한 소스로부터 엄청난 데이터들이 쏟아져
More informationAgenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud
오픈소스 기반 레드햇 클라우드 기술 Red Hat, Inc. Senior Solution Architect 최원영 부장 wchoi@redhat.com Agenda 오픈소스 트렌드 전망 Red Hat Enterprise Virtualization Red Hat Enterprise Linux OpenStack Platform Open Hybrid Cloud Red
More informationModel Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based
e- Business Web Site 2002. 04.26 Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based Approach High E-Business Functionality Web Web --based based KMS/BIS
More information<4D6963726F736F667420576F7264202D205B4354BDC9C3FEB8AEC6F7C6AE5D3131C8A35FC5ACB6F3BFECB5E520C4C4C7BBC6C320B1E2BCFA20B5BFC7E2>
목차(Table of Content) 1. 클라우드 컴퓨팅 서비스 개요... 2 1.1 클라우드 컴퓨팅의 정의... 2 1.2 미래 핵심 IT 서비스로 주목받는 클라우드 컴퓨팅... 3 (1) 기업 내 협업 환경 구축 및 비용 절감 기대... 3 (2) N-스크린 구현에 따른 클라우드 컴퓨팅 기술 기대 증폭... 4 1.3 퍼스널 클라우드와 미디어 콘텐츠 서비스의
More information슬라이드 1
Data-driven Industry Reinvention All Things Data Con 2016, Opening speech SKT 종합기술원 최진성원장 Big Data Landscape Expansion Big Data Tech/Biz 진화방향 SK Telecom Big Data Activities Lesson Learned and Other Topics
More information3Æí2Àå¨éÀç
333 442 443 1e 1.1 eecrmeprocurement e eelectronic e e IT 321 444 online offline e front back IT 445 2000 com 1 1.2 322 e e 10 potential customers 446 1.3 e 323 447 Michael Porter 323 2 value chain enterprise
More informationPortal_9iAS.ppt [읽기 전용]
Application Server iplatform Oracle9 A P P L I C A T I O N S E R V E R i Oracle9i Application Server e-business Portal Client Database Server e-business Portals B2C, B2B, B2E, WebsiteX B2Me GUI ID B2C
More informationBigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researc
Bigdata가 제공하는 구체적인 혜택과 변화 양상 기업의 데이터 기반의 의사결정 시스템 구축 의지 확대 양상 빅데이터를 활용한 경영 및 마케팅 지속적인 증가세 뚜렷 빅데이터를 도입한 기업은 사전 기대를 뛰어넘는 효과를 경험 본 조사 내용은 美 BARC- Researcht 社 가 2015년 대륙별 표본을 추출한 글로벌 546개사를 대상으로 리서치를 수행하여
More informationconsulting
CONSULTING 전략 컨설팅 클라우드 마이그레이션 애플리케이션 마이그레이션 데이터 마이그레이션 HELPING YOU ADOPT CLOUD. 클라우드로 가기로 결정했다면 누구와 함께 갈지를 선택해야 합니다. 처음부터 끝까지 믿을만한 파트너를 찾는다면 베스핀글로벌이 정답입니다. 전략 컨설팅 다양한 클라우드 공급자가 존재하고, 클라우드 공급자마다 다른 장단점을
More informationaws
Amazon Web Services AWS MIGRATION MANAGED SERVICE FOR AWS 베스핀글로벌 S AWS OFFERING 베스핀글로벌과 Amazon Web Services (AWS) 가 여러분의 비즈니스에 클라우드 날개를 달아드립니다. AWS에 높은 이해도를 갖춘 베스핀글로벌의 클라우드 전문가가 다양한 산업 영역에서의 구축 경험과 노하우를
More information15_3oracle
Principal Consultant Corporate Management Team ( Oracle HRMS ) Agenda 1. Oracle Overview 2. HR Transformation 3. Oracle HRMS Initiatives 4. Oracle HRMS Model 5. Oracle HRMS System 6. Business Benefit 7.
More informationPowerPoint 프레젠테이션
Microsoft 클라우드기반의 머신러닝서비스 이건복 ( 이사 ) Microsoft Korea Web/mobile devices Systems of engagement Client-server Systems of record " 우리는데이터가미래의전기 ( 電氣 ) 라고생각합니다. 전기가 2 차산업혁명을촉발했듯이, 방대하게축적되고있는데이터가미래의세상을완전히바꿀것입니다."
More informationCloud Friendly System Architecture
-Service Clients Administrator 1. -Service 구성도 : ( 좌측참고 ) LB(LoadBlancer) 2. -Service 개요 ucloud Virtual Router F/W Monitoring 개념 특징 적용가능분야 Server, WAS, DB 로구성되어 web service 를클라우드환경에서제공하기위한 service architecture
More informationWORLD IT SHOW 2015 TREND Connect Everything WIS 2015 KEY ISSUE
Connect Everything www.worlditshow.co.kr facebook.com/worlditshow1 twitter.com/worlditshow blog.naver.com/worlditshow WORLD IT SHOW 2015 TREND 01 02 03 04 05 Connect Everything WIS 2015 KEY ISSUE 06 07
More informationDB진흥원 BIG DATA 전문가로 가는 길 발표자료.pptx
빅데이터의기술영역과 요구역량 줌인터넷 ( 주 ) 김우승 소개 http://zum.com 줌인터넷(주) 연구소 이력 줌인터넷 SK planet SK Telecom 삼성전자 http://kimws.wordpress.com @kimws 목차 빅데이터살펴보기 빅데이터에서다루는문제들 NoSQL 빅데이터라이프사이클 빅데이터플랫폼 빅데이터를위한역량 빅데이터를위한역할별요구지식
More informationPowerPoint 프레젠테이션
Mining on Hadoop!! ankus 제품 소개서 어니컴 빅데이터 사업팀 팀장 이성준 (leesj@onycom.com) 2015.12 어니컴 목 차 01. ankus 개요 02. 주요 도입 사례 03. 기업소개 2 1.1 ankus 개요 1. ankus 개요 ankus는 대용량의 빅데이터로부터 데이터 마이닝/기계학습 등의 분석을 손 쉽게 수행할 수 있는
More informationdata driven_3.indd
Sponsored by 무단 전재 재배포 금지 본 PDF 문서는 IDG Korea의 프리미엄 회원에게 제공하는 문서로, 저작권법의 보호를 받습니다. IDG Korea의 허락 없이 PDF 문서를 온라인 사이트 등에 무단 게재, 전재하거나 유포할 수 없습니다. Market Trend I D G T e c h F o c u s 1 2 3 Tech Guide I D
More informationuntitled
Logistics Strategic Planning pnjlee@cjcci.or.kr Difference between 3PL and SCM Factors Third-Party Logistics Supply Chain Management Goal Demand Management End User Satisfaction Just-in-case Lower
More informationPowerPoint 프레젠테이션
In-memory 클러스터컴퓨팅프레임워크 Hadoop MapReduce 대비 Machine Learning 등반복작업에특화 2009년, UC Berkeley AMPLab에서 Mesos 어플리케이션으로시작 2010년 Spark 논문발표, 2012년 RDD 논문발표 2013년에 Apache 프로젝트로전환후, 2014년 Apache op-level Project
More information2016_Company Brief
1MILLIMETER Creative Agency / Tiny Make Big. Copyrights all-rights reserved. 2016/1-mm.net 1MILLIMETER // Copyright all-rights reserved. 2016/1-mm.net Distance Between You & Us & Tiny Make Big 1MILLIMETER
More information[Brochure] KOR_TunA
LG CNS LG CNS APM (TunA) LG CNS APM (TunA) 어플리케이션의 성능 개선을 위한 직관적이고 심플한 APM 솔루션 APM 이란? Application Performance Management 란? 사용자 관점 그리고 비즈니스 관점에서 실제 서비스되고 있는 어플리케이션의 성능 관리 체계입니다. 이를 위해서는 신속한 장애 지점 파악 /
More informationSAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing Operation Manageme
Advanced Analytics 기반의 고객가치 극대화 SAS Customer Intelligence SAS 고객 인텔리전스 SAS Customer Intelligence SAS Customer Intelligence Suite은 기업이 당면한 다양한 마케팅 과제들을 해결하기 위한 최적의 통합 마케팅 제품군으로 전사적 마케팅 자원관리를 위한 Marketing
More informationOpen Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤
Open Cloud Engine Open Source Big Data Platform Flamingo Project Open Cloud Engine Flamingo Project Leader 김병곤 (byounggon.kim@opence.org) 빅데이터분석및서비스플랫폼 모바일 Browser 인포메이션카탈로그 Search 인포메이션유형 보안등급 생성주기 형식
More informationService-Oriented Architecture Copyright Tmax Soft 2005
Service-Oriented Architecture Copyright Tmax Soft 2005 Service-Oriented Architecture Copyright Tmax Soft 2005 Monolithic Architecture Reusable Services New Service Service Consumer Wrapped Service Composite
More informationuntitled
3 IBM WebSphere User Conference ESB (e-mail : ljm@kr.ibm.com) Infrastructure Solution, IGS 2005. 9.13 ESB 를통한어플리케이션통합구축 2 IT 40%. IT,,.,, (Real Time Enterprise), End to End Access Processes bounded by
More information슬라이드 1
스마트공장설계, 운영을위한 공장 CPS 기술 성균관대학교공과대학 노상도 (sdnoh@skku.edu) 스마트공장 (Smart Factory) 전통제조업에 ICT 결합 공장설비와제품, 공정이지능화되어서로연결 생산정보와지식이실시간으로공유, 활용되어생산최적화 상 하위공장들이연결, 협업적운영으로개인 맞춤형제품생산이 가능한네트워크생산 (Roland Berger, INDUSTRY
More information분산처리 프레임워크를 활용한대용량 영상 고속분석 시스템
분산처리프레임워크를활용한 대용량영상고속분석시스템 2015.07.16 SK C&C 융합기술본부오상문 (sangmoon.oh@sk.com) 목차 I. 영상분석서비스 II. Apache Storm III.JNI (Java Native Interface) IV. Image Processing Libraries 2 1.1. 배경및필요성 I. 영상분석서비스 현재대부분의영상관리시스템에서영상분석은
More information/ TV 80 () DAB 2001 2002 2003 2004 2005 2010 Analog/Digital CATV Services EPG TV ( 60 ) TV ( Basic, Tier, Premiums 60 ) VOD Services Movies In Demand ( 20 ) Education N- VOD (24 ) Digital Music
More information슬라이드 1
Data Warehouse 통합솔루션 회사연혁 Teradata Corporation (NYSE: TDC) 은 30 년이상업계를선도하며, 전세계적으로 Big Data 및데이터웨어하우스관련 Analytic 솔루션과컨설팅서비스를제공하는최고의기술을보유한 Global 기업 Teradata 본사 한국 Teradata 미국오하이오주 Dayton에세계최초의금전등록기제조사
More information170918_hjk_datayanolja_v1.0.1.
모 금융회사 오픈소스 및 머신러닝 도입 이야기 김 형 준 2 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화 3 Machine Learning 삽질기 ( 분석 & 개발 ) 3 0 발표자소개 1 인터넷폐쇄망에서분석시스템구축 (feat. 엔지니어가없을때 ) 2 분석보고서자동화하기 3 Machine Learning
More information농업 : 스마트 농업의 확산 월간 SW 중심사회 2014.11 수요 산업 동향 가. 농업 현황 및 동향 배경 국내 농업, 농업 인구 고령화, 인력 및 농경지 감소, 생산액 비중 감소 등 문제점에 봉착 - 농업인구 고령화 : 2013년 총 농림어업 취업자 152만 명 중
03 수요 산업 동향 농업 : 스마트 농업의 확산 농업 : 스마트 농업의 확산 월간 SW 중심사회 2014.11 수요 산업 동향 가. 농업 현황 및 동향 배경 국내 농업, 농업 인구 고령화, 인력 및 농경지 감소, 생산액 비중 감소 등 문제점에 봉착 - 농업인구 고령화 : 2013년 총 농림어업 취업자 152만 명 중 약 61%에 달하는 92.6만 명이 60
More information슬라이드 1
삼성그룹을위한 Microsoft BI Day: 지속적인비즈니스성과향상을위한제 3 세대비즈니스인텔리전스설명회 i2 Intelligence Shin, Ho-Sub Industry Executive i2 Technologies, Inc. 전사적 System Integration Role Based Web UI Demand/Supply Collaboration i2
More informationgcp
Google Cloud Platform GCP MIGRATION MANAGED SERVICE FOR GCP 베스핀글로벌 S GCP OFFERING 베스핀글로벌과 Google Cloud Platform이 여러분의 비즈니스에 클라우드 날개를 달아드립니다. GCP에 전문성을 갖춘 베스핀글로벌의 클라우드 전문가들이 다양한 산업 영역에서의 구축 경험과 노하우를 바탕으로
More informationKDTÁ¾ÇÕ-2-07/03
CIMON-PLC CIMON-SCADA CIMON-TOUCH CIMON-Xpanel www.kdtsys.com CIMON-SCADA Total Solution for Industrial Automation Industrial Automatic Software sphere 16 Total Solution For Industrial Automation SCADA
More information자동화된 소프트웨어 정의 데이터센터
사례로보는 Big Data 프로젝트의 Success Factor 한지수이사 한국이엠씨컴퓨터시스템즈 1 목차 Big Data는무엇인가? BI/DW와 Big Data의차이점? Big Data프로젝트의목표 Big Data 프로젝트수행의 3가지어려움 Big Data 프로젝트사례와시사점 Key Success Factor Big Data 수행을위한조직 Big Data
More informationMicrosoft PowerPoint - 발표_090513_IBM세미나_IPTV_디디오넷_완료.ppt
신후랑 팀장, 디디오넷 (010-8752-4952, hrshin@dideonet.com) 05/20/2009 BIZ in a box - Solution for Enterprise IPTV 2 UNIX vs. x86 Non-x86 UNIX 2008 2007 0% Y/Y Total x86 2008 2007-25.3% Y/Y 0 200 400 600 800 3 Why
More informationPowerPoint 프레젠테이션
S/4HANA Fiori 기반의 Business Intelligence 및구축사례 Zen consulting Zen consulting 젠컨설팅은 SAP Gold Partner 이자 SAP Education Delivery Partner, 공식유지보수를할수있는 PCoE Partner 로서 SAP 전영역에걸쳐최상의서비스를제공합니다. Partnership with
More informationLayout 1
ICT로 실현되는 야구의 새로운 즐거움 심수민, kt 경제경영연구소 KEY MESSAGE 한국 프로야구가 1,000만 관중 시대를 눈앞에 둔 가운데 ICT가 다양해진 팬들의 니즈를 만 족시키며 새로운 즐거움을 제공할 주요 수단으로 주목받고 있다. 야구 선진국들은 ICT와 스 마트 기기를 활용한 야구 콘텐츠와 서비스를 개발하고, 야구장의 ICT화를 통해 팬들에게
More informationabout_by5
WWW.BY5IVE.COM BYFIVE CO. DESIGN PARTNERS MAKE A DIFFERENCE BRAND EXPERIENCE CONSULTING & DESIGN PACKAGE / OFF-LINE EDITING CONSULTING & DESIGN USER EXPERIENCE (UI/GUI) / ON-LINE EDITING CONSULTING & DESIGN
More informationDW 개요.PDF
Data Warehouse Hammersoftkorea BI Group / DW / 1960 1970 1980 1990 2000 Automating Informating Source : Kelly, The Data Warehousing : The Route to Mass Customization, 1996. -,, Data .,.., /. ...,.,,,.
More informationOffice 365, FastTrack 4 FastTrack. Tony Striefel FastTrack FastTrack
FastTrack 1 Office 365, FastTrack 4 FastTrack. Tony Striefel FastTrack FastTrack 5 11 2 FASTTRACK 소개 디지털 혁신은 여기서 시작합니다. Microsoft FastTrack은 Microsoft 클라우드를 사용하여 고객이 신속하게 비즈니스 가치를 실현하도록 돕는 고객 성공 서비스입니다.
More information서현수
Introduction to TIZEN SDK UI Builder S-Core 서현수 2015.10.28 CONTENTS TIZEN APP 이란? TIZEN SDK UI Builder 소개 TIZEN APP 개발방법 UI Builder 기능 UI Builder 사용방법 실전, TIZEN APP 개발시작하기 마침 TIZEN APP? TIZEN APP 이란? Mobile,
More information비식별화 기술 활용 안내서-최종수정.indd
빅데이터 활용을 위한 빅데이터 담당자들이 실무에 활용 할 수 있도록 비식별화 기술과 활용방법, 실무 사례 및 예제, 분야별 참고 법령 및 활용 Q&A 등 안내 개인정보 비식별화 기술 활용 안내서 Ver 1.0 작성 및 문의 미래창조과학부 : 양현철 사무관 / 김자영 주무관 한국정보화진흥원 : 김진철 수석 / 김배현 수석 / 신신애 부장 문의 : cckim@nia.or.kr
More informationuntitled
SAS Korea / Professional Service Division 2 3 Corporate Performance Management Definition ý... is a system that provides organizations with a method of measuring and aligning the organization strategy
More informationPowerPoint Presentation
디지털자율신경계 SAP Leonardo Oh, Young Hwan / SAP Korea 4th.July.2017 진화는가장강하거나지능이높은종이 우편마차는살아남는것이여러아니었다대. 연결해도 변화에가장잘적응하는종만살아남았었다. 결코기차가될수없다 Charles Darwin 산업혁명시절혁신의본질에대해언급. 마차를개량해속도가빨라졌다고해도그것은근본적인혁신이아니다. 요셉슘페터
More information슬라이드 1
4. Mobile Service Technology Mobile Computing Lecture 2012. 10. 5 안병익 (biahn99@gmail.com) 강의블로그 : Mobilecom.tistory.com 2 Mobile Service in Korea 3 Mobile Service Mobility 4 Mobile Service in Korea 5 Mobile
More informationIBM blue-and-white template
쌍용자동차 CATIA V5 적용사례 쌍용자동차기술관리팀안재민 AGENDA 1. SYMC PRODUCT LINE UP 2. SYMC PDM Overview 3. CV5 & PDM Implementation Overview 4. PDM을이용한 CV5 Relational Design 5. 향후과제 6. Q & A 2 Presentation Title 1 2 1.
More information02이승민선생_오라클.PDF
Oracle Internet Procurement Agenda 1 2 3 4 5 Introduction Oracle Solution Overview Oracle Internet Procurement Value Proposition Reference Conclusion e-procurement, E- Commerce Internet Automated Transactions
More information미디어 및 엔터테인먼트 업계를 위한 Adobe Experience Manager Mobile
Adobe Experience Manager Mobile 앱 제작을 넘어 고객, 파트너 및 직원과의 유대 관계 형성 매년 모바일 디바이스에서 읽고 듣고 교류하는 사람들이 증가하고 있습니다. 미디어 및 엔터테인먼트 조직은 모바일 디바이스를 통해 고객, 직원, 파트너 및 광고주와 직접 교류할 수 있는 새로운 기회를 얻을 수 있는데, 이 기회를 민첩하게 활용하는
More information[한반도]한국의 ICT 현주소(송부)
ICT 2016. 5. 3 SKT KT LGU+ ( ) ( ) ( ) 18,000 15939 16141 16602 17164 17137 18,000 21990 23856 23811 23422 22281 12,000 10905 11450 11000 10795 13,500 13,425 9,000 9185 9,000 8,850 6,000 4,500 4,275 3,000-0
More information_LG히다찌 브로슈어
SOLUTION GUIDE BOOK G ITACHI OLUTION UIDE OOK ABOUT US UCP www.lghitachi.co.kr T 070 8290 3700 F 02 3272 9746 02 CONTENTS 04 05 10 13 18 29 BUSINESS AREA FINANCE SOLUTION FINTECH SOLUTION CONVERGED SOLUTION
More informationSK IoT IoT SK IoT onem2m OIC IoT onem2m LG IoT SK IoT KAIST NCSoft Yo Studio tidev kr 5 SK IoT DMB SK IoT A M LG SDS 6 OS API 7 ios API API BaaS Backend as a Service IoT IoT ThingPlug SK IoT SK M2M M2M
More information목차 1. 구축사례개요 2. 수행내용및절차 3. 수행내용상세 4. 활용 OSS 5. 활용시고려사항 6. OSS 공개계획 # 별첨 1
오픈소스빅데이터기술적용사례 2017.07.12 어니컴주식회사이성준이사 목차 1. 구축사례개요 2. 수행내용및절차 3. 수행내용상세 4. 활용 OSS 5. 활용시고려사항 6. OSS 공개계획 # 별첨 1 1. 구축사례개요 본내용은공고된제안요청서기반재구성한내용임 사업명 빅데이터활용식품사고ㆍ위해예측기반구축 수요기관 식품의약품안전처정보통계담당관실 사업기간 2016.08
More informationPowerPoint 프레젠테이션
사람인 LAB 매칭기술팀김정길 INDEX ) 취업포털관점의 4 차산업혁명기술동향분석 2) 비전공자의소프트웨어일자리진출현황분석 기술과동반한산업혁명의흐름 4 차산업혁명 정보기술기반의초연결혁명 (2 세기후반 ) 3 차산업혁명 인공지능 (AI),MachineLearning( 머신러닝 ), DeepLearning( 딥러닝 ), 사물인터넷 (IoT), Big-data(
More information..,. Job Flow,. PC,.., (Drag & Drop),.,. PC,, Windows PC Mac,.,.,. NAS(Network Attached Storage),,,., Amazon Web Services*.,, (redundancy), SSL.,. * A
..,. Job Flow,. PC,.., (Drag & Drop),.,. PC,, Windows PC Mac,.,.,. NAS(Network Attached Storage),,,., Amazon Web Services*.,, (redundancy), SSL.,. * Amazon Web Services, Inc.. ID Microsoft Office 365*
More informationCloudera Toolkit (Dark) 2018
하둡에날개를달아주는 SAS 엔터프라이즈머신러닝플랫폼 SAS Korea / 김근태이사 CLOUDERA & SAS : OVERVIEW 2 FORCES SHAPING ANALYTICS Analytics embraces open Everyone wants to be a data scientist Changing data landscape Machine learning
More information논단 : 제조업 고부가가치화를 통한 산업 경쟁력 강화방안 입지동향 정책동향 <그림 1> ICT융합 시장 전망 1.2 2.0 3.8 681 1,237 365 2010년 2015년 2020년 <세계 ICT융합 시장(조 달러)> 2010년 2015년 2020년 <국내 ICT
산업입지 Vol.61 ICT융합을 통한 제조업의 고부가가치화 방안 정보통신산업진흥원 수석연구원 김 민 수 1. 머리말 2. 국내외 ICT융합동향 3. ICT융합을 통한 국내 제조업의 고부가가치화 사례 4. 맺음말 1. 머리말 융합(convergence)이 세계적으로 화두가 된 것은 2002년 미국 국가과학재단(NsF)의 인간수행능력 향상을 위한 융합 기술 전략
More informationKRG. IT Research & Consulting... Providing INSIGHT Into IT Market.. Developing Business STRATEGY.. Supporting Marketing ACTIVITY 주요 수행 프로젝트 IT기업 성장성 평
2009 IT Service 시장 전망 2009.1.22 Knowledge Research Group www.krgweb.com KRG. IT Research & Consulting... Providing INSIGHT Into IT Market.. Developing Business STRATEGY.. Supporting Marketing ACTIVITY
More informationIT 1 12, 1% 11,8 11,6 11,4 11,318 11,635 11,763 11,69 9% 8% 7% 11,2 11, 1,639 47% 1,724 1,925 48% 48% 52% 5% 52% 53% 6% 5% 1,8 32% 32% 4% 1,6 3% 3% 29
Attractive Sectors ICT 1. ICT() ICT ICT ICT. B2B ICT,,,, TV. ICT 213 98.,,., 213 ICT 468, 8.5% 3. 47.7% 5.1% 26.9% 8.5% 11.8% ( ) 12 1 8 6 4 2 ICT 1995 96 97 98 99 2 1 2 3 4 5 6 7 8 9 1 11 12 13 *: ICT
More informationKAKAO AI REPORT Vol.01
KAKAO AI REPORT Vol.01 2017.03 import kakao.ai.dataset.daisy import kakao.ai.image import kakao.ai.classifier import mxnet as mx def Conv(data, num_filter, kernel=(1, 1), stride=(1, 1), pad=(0, 0), name=none,
More information1224_2008forecast.hwp
2008년 국내외 SW 시장 전망 2007. 12. 24 오는 2008 년 전 세계 주요국의 경제성장이 둔화될 것으로 전망되고 있는 가운데, 전 세계 IT 수요 역시 소폭 감소할 것으로 전망되고 있다. IDC는 세계 경기의 불확실 성과 경기 하강의 위험으로 미국을 비롯한 여타 지역의 IT 투자 증가세가 꺾일 것으 로 전망하면서, 전 세계 IT 시장 성장률은
More information세션 Tutorial 1 강연 시간 5/11(수) 09:30-11:30 주 제 5G System: Vision & Enabling Technologies 성 명 강충구 소속기관명 고려대학교 부서/학과명 전기전자공학부 직 위 교수 5G 이동통신의 응용 분야에 따른 기술
세션 초청강연 강연 시간 5/11(수) 11:50-12:30 세션 초청강연 주 제 제4차 산업혁명과 소프트파워 성 명 윤종록 소속기관명 정보통신산업진흥원 부서/학과명 직 위 원장 1~3차 산업혁명에서는 노동력이 중요했으나, 4차 산업혁명의 키워드는 창의력! 4차 산업혁명은 창의력과 소프트파워가 결합된 새로운 시대로 최근 의 산업계 변화는 창의력을 바탕으로 한
More information2011 국토해양부 소셜미디어
2011 Company Info. & Portfolio 1 이너스는 디지털과 아나로그의 효율적 믹스를 추구합니다. 이너스는 듣기 여행 을 즐겨 합니다. 소비자에게 말하려 하기 전에 듣기 를 먼저 하면 소비자가 듣고 싶은 이야기를 할 수 있습니다. 듣기를 게을리 하지 않고 기획한 프로젝트는 성공적인 성과를 거둡니다. Target에게 관심을 끌고 화제 꺼리가 될
More informationistay
` istay Enhanced the guest experience A Smart Hotel Solution What is istay Guest (Proof of Presence). istay Guest (Proof of Presence). QR.. No App, No Login istay. POP(Proof Of Presence) istay /.. 5% /
More informationAgenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor 2
(Procurement Engineering) - Engineering Introduction & Case study 2006. June 8 th Yoon-chang So / IBM GBS Agenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor
More information산업백서2010표지
SOFTWARE INDUSTRY WHITE PAPER 2010 NATIONAL IT INDUSTRY PROMOTION AGENCY 2 3 Contents SOFTWARE INDUSTRY WHITE PAPER 2010 NATIONAL IT INDUSTRY PROMOTION AGENCY 4 5 Contents SOFTWARE INDUSTRY WHITE PAPER
More information출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517
기술사업성평가서 경쟁정보분석서비스 제공 기술 2014 8 출원국 권 리 구 분 상 태 권리번호 KR 특허 등록 10-2012-0092520 10-2012-0092518 10-2007-0071793 10-2012-0092517 Ⅰ 기술 구현 메커니즘 - 1 - 경쟁정보분석서비스 항목 - 2 - 핵심 기술 특징 및 주요 도면
More informationPowerPoint 프레젠테이션
Why Microsoft Data Warehouse & BI? 아젠다 Ⅰ Ⅱ Ⅲ Ⅳ Microsoft Data Warehouse 소개 Microsoft Power BI 소개 Microsoft Data Warehouse & BI 구축사례메이븐클라우드서비스소개 Microsoft Data Warehouse 소개 Microsoft Data Warehouse 소개 Microsoft
More information[메이븐] 8P 브로셔_1910(2)
on Big Data Platform 활용방법 - - Copyright 2019 by MAVEN Cloud Service Co., Ltd. All rights reserved. on Big Data Platform on Big Data Platform 활용방법 활용방법 메이븐클라우드서비스는 Big data End to End Platform 기반의 를활용하고자하는고객사의도입목적에따른적용을위해아래와같은활용을제안합니다.
More information강창훈
51 4. 2 4?? 1 3B 1 1 3 1 1?? C 3? /3 A 23 C 3? /3 A 23 C 3? /3 A 23 1 2 3 3 1 1 3 1 C 3? A3 /3 A 23.1? A3 /3 A 23. / / 23? / / 1.1 Microsoft Bot Framework? 마이크로소프트사의소프트웨어기반봇개발프레임워크. Bot Framework 는강력하고인텔리전트한봇을구축하고연결하며테스트,
More information