12(4) 10.fm

Similar documents
14.531~539(08-037).fm

untitled

10(3)-12.fm

10(3)-09.fm

605.fm

10(3)-10.fm

82-01.fm

9(3)-4(p ).fm

Microsoft Word - KSR2013A320

16(1)-3(국문)(p.40-45).fm

17.393~400(11-033).fm

07.051~058(345).fm

27(5A)-07(5806).fm

304.fm

4.fm

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

untitled

12.077~081(A12_이종국).fm

10(3)-02.fm

143.fm

23(2) 71.fm

untitled

17(2)-00(268).fm

fm

fm

82.fm

8(3)-15(p ).fm

26(3D)-17.fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

50(1)-09.fm

DBPIA-NURIMEDIA

69-1(p.1-27).fm

04_이근원_21~27.hwp

14.fm

12(3) 10.fm

50(5)-07.fm

11(1)-15.fm

11(5)-12(09-10)p fm

< DC1A4C3A5B5BFC7E22E666D>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>


14(4)-14(심고문2).fm

93.fm

15.101~109(174-하천방재).fm

14(4) 09.fm

16(5)-04(61).fm

8(2)-4(p ).fm

歯174구경회.PDF

27(5A)-15(5868).fm

06.177~184(10-079).fm

10.063~070(B04_윤성식).fm

ePapyrus PDF Document

fm

19(1) 02.fm

12(2)-04.fm

<30332DB9E8B0E6BCAE2E666D>

8(3)-01.fm

03.fm

04-46(1)-06(조현태).fm

Microsoft Word - KSR2012A038.doc

untitled

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

3.fm

32(4B)-04(7455).fm

27(5A)-13(5735).fm

64.fm

16(2)-7(p ).fm

공학박사학위 논문 운영 중 터널확대 굴착시 지반거동 특성분석 및 프로텍터 설계 Ground Behavior Analysis and Protector Design during the Enlargement of a Tunnel in Operation 2011년 2월 인하대

16(5)-03(56).fm

14(2) 02.fm

012임수진

15(2)-07.fm

27(6A)-10(5570).fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

14.091~100(328-하천방재).fm

(163번 이희수).fm

<31372DB9DABAB4C8A32E687770>

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

10(1)-08.fm

<312D303128C1B6BAB4BFC1292E666D>

17(3)-00(282).fm

하반기_표지

Microsoft Word - KSR2013A303

50(6)-09.fm

31(3B)-07(7055).fm

23(4) 06.fm

(k07-057).fm

416.fm

75.fm

<353920C0B1B1E2BFEB2DB0E6B0F1C0DCB1B320BBF3BACEB1B8C1B6C0C720C8DA2E687770>

05.581~590(11-025).fm

201.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Jun.; 27(6),

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

13.fm

09.479~486(11-022).fm

10(3)-11.fm

DBPIA-NURIMEDIA

08.hwp

Microsoft Word - KSR2013A317

Transcription:

KIGAS Vol. 12, No. 4, December, 2008 (Journal of the Korean Institute of Gas) l x CNG» v m s w ½ Á y w» œw (2008 9 30, 2008 12 10, 2008 12 10 k) Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston Yang Sul Kim Su Chul An Department of Mechano-Informatics & Design Engineering Hongik University (Received 30. September. 2008, Revised 10. December. 2008, Accepted 10. December. 2008) 6»m ƒ v m w 3 ww k s x dwš,» w m mw v m w w» wš w. w þƒ l v m w e w sƒw» w þƒ y v m s s š x w. v m š j ùkûš, v m j w w. Abstract The purpose of this paper is to establish a standard finite element analysis model of a piston by carrying out three dimensional modeling of a series six-cylindered CNG engine's piston to forecast temperature distribution at stationary state and the following thermal stress and variation, and cross checking it with existing analysis. Also, in order to evaluate the affects of the cooling system to the piston s heat load, the paper analyzed piston's temperature and thermal stress distribution according to the cooling water temperature changes and the following variations. As a result, the maximum temperature was found at the center of the crown in the piston and the maximum thermal stress occurred from the lower part of the piston. Key words : finite element method, CNG engine, temperature distribution, thermal stress and deformation, heat transfer coefficient I. š» wd ƒš. p, x»»ƒ w»» w. x wƒ w w» w wù ƒ (CNG) wù.» w w š, p x ƒ (CNG) w»ƒ w d w. e :kimys@hongik.ac.kr Fig. 1. 3-Dimensional FE-model of a piston. 58

l x CNG» v m s w ü x ww ƒ (CNG) y w w, v w t v m w y w [5,7]. Fig. 1 v m 3 ww k s x dwš,» w m mw v m w w» wš w [6,9]. w g ADINA(Automatic Dynamic Incremental Nonlinear Analysis, R&D, Inc., 1999) w s w w. II. v m w 2.1. v m v m y, š v m fp w p ww» w v m d x w w. ù» w x l l[1] v m y wš y Ì w z š x [2] w z w w. w w x w w v m ƒ Fig. 2. Table 1. Material properties of aluminum alloy. Elastic modulus, E [GPa] 6.66 10 10 Poisson s ratio, ν 0.33 Density, ρ [kg/m 3 ] 2.75 10 3 Coef. of thermal exp, β [1/K] 2.1 10 5 Table 2. Maximum and minimum temperatures in the piston ( o C). Tc Min. temperature Max. temperature Difference 60 148.2 444.1 295.9 70 151.2 446.2 295.0 80 157.1 450.2 293.1 90 162.9 454.3 291.4 100 168.8 458.3 289.5 Fig. 2. Thermal circuit method of resulted boundary conditions of the piston. Fig. 3. Temperature distribution of the piston. 59 w ƒ wz 12«4y 2008 12

½ Á 2.2. v m w w w 3 v m w s w ww. w x CNG» v m ( w ) e(300 o C) Table 1 [4,10]. v m s w k þƒ v m þƒ l v m w e w sƒw» w þƒ y v m s w w š w. w þƒ ƒ» 80 o C» 10 o C, 20 o C j û ù ƒ w w. þƒ w s Fig. 3 ùkü. Table 2 þƒ ƒ v m š ƒ, š w ùkû. w, Fig. 3 š j sw š, fp w w. III. v m w v m w. w w w 3 2.2 w w w ww. Fig. 4 v m Stress Strain ùkü. j w 66.69 MPa w š, p p (Thrust side) 0.009493 mmƒ w. IV. 4.1. v m s v m ü s w xk s v m (Bowl) ùkù x» ew. Fig. 5 š x[3] d w ƒ e w w mw w. e ƒ ù, w š w x w w š w Fig. 4. Thermal stress and strain distribution of a piston. Fig. 5. Comparison with temperature results of the piston for analysis and experiment. KIGAS Vol. 12, No. 4, December, 2008 60

터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석 Fig. 6. Position temperature distribution of the piston. 적 만족한 결과를 도출하였다. 피스톤의 각 부위별 온도 분포는 Fig. 6과 같다. 피스톤의 열응력분포 열전달 해석을 통해 구한 각 절점에서의 온도를 입 한국가스학회지 제12권 제4호 2008년 12월 4.2. 61

½ Á Table 3. Summary of results thermal stress of the piston. Tc ( o C) Max. stress (MPa) Max. displacement (mm) 060 66.69 0.009190 070 66.05 0.009234 080 65.07 0.009319 090 63.43 0.009408 100 62.84 0.009493 s w. s Fig. 4 j w š w. w, v m þƒ l v m w e w sƒw» w þƒ y v m s w w. Table 3 þƒ ƒ v m û ùkû. þƒ ƒ v m û þƒ ƒ v m š (Temperature gradient)ƒ» q. VI. CNG v m w s w ww. v m ƒ e w v m s w š, w s w v m w w. (1) v m j v m fp ƒ w w ùkþš, š j ùkû. (2) v m s wù v m j w w š, v m vy w., v m» j w w š ƒ v m ƒ š q. (3) x v m j ó w j v m w w w j, x ƒ š q. 2008w y w w w. š x [1] Li, K.S. Study on Heat Transfer and Thermal Behavior Characteristics of a Naturally Aspirated Diesel Engine, w w, (1997) [2] Li, C.H. Piston Thermal Deformation and Friction Considerations, SAE 820086, (1982) [3], l v m w w, w œwz, 2(9), 92-98, (2001) [4],, x, x, ü» v m w w w w, w» wz, 12(3), 528-533, (1988) [5] Overbye, E.A. Unsteady Heat Transfer in Engines, SAE Translation, 69(461), 461-494, (1961) [6] Bertodo, R. and T.J. Carter, Stress Analysis of Diesel- Engine Cylinder Heads, Journal of Strain Analysis, 6(1), (1971) [7] Pattas, K. Thermische Belastung des Zylinderkopfes von Hochleistungs Dieselmotoren, MTZ, 35(10), 314-318, (1974) [8] Garro, A. and V. Vullo, Some Consideration on the Evaluation of Thermal Stress in Combustion Engine, SAE 780664, (1978) [9] Hohenberg, G.F. Advanced Approaches for Heat Transfer Calculations, SAE 790858, (1979) [10] Assanis, D.N. and E. Badillo, Transient Heat Conduction in Low-Heat Rejection Engine Combustion Chambers, SAE 870156, 156-163, (1987) KIGAS Vol. 12, No. 4, December, 2008 62