29(4)-07(김봉채).fm

Similar documents
10(3)-09.fm

10(3)-10.fm

304.fm

< DC1A4C3A5B5BFC7E22E666D>

untitled

14.531~539(08-037).fm

10(3)-12.fm

16(1)-3(국문)(p.40-45).fm

12.077~081(A12_이종국).fm

<30332DB9E8B0E6BCAE2E666D>

605.fm

416.fm

11(5)-12(09-10)p fm

12(2)-04.fm

10(3)-02.fm

19(1) 02.fm

50(1)-09.fm

9(3)-4(p ).fm

82.fm

07.051~058(345).fm

82-01.fm

04-46(1)-06(조현태).fm

15.101~109(174-하천방재).fm

14(4) 09.fm

69-1(p.1-27).fm

DBPIA-NURIMEDIA

50(5)-07.fm

fm

14(2) 02.fm

41(6)-09(김창일).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

16(2)-7(p ).fm

202.fm

04김호걸(39~50)ok

12(3) 10.fm

27(5A)-07(5806).fm

26(3D)-17.fm

15(2)-07.fm

<312D303128C1B6BAB4BFC1292E666D>

fm

03이경미(237~248)ok

12(4) 10.fm

fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

untitled

11(4)-03(김태림).fm

<30312DC0CCC7E2B9FC2E666D>

10.063~070(B04_윤성식).fm

31(3B)-07(7055).fm

32(4B)-04(7455).fm

3.fm

06.177~184(10-079).fm

51(4)-13.fm

17.393~400(11-033).fm

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

433대지05박창용

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

DBPIA-NURIMEDIA

14.fm

11(1)-15.fm

Microsoft Word - KSR2013A320

43(5)-1.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(1)-08.fm

3-15(3)-05(이주희).fm

인문사회과학기술융합학회

23(2) 71.fm

49(6)-06.fm

Microsoft Word - KSR2012A103.doc

DBPIA-NURIMEDIA

04.045~055.fm

07.045~051(D04_신상욱).fm

8(3)-15(p ).fm

93.fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

51(2)-09.fm

57.fm

38(6)-01.fm

16(5)-06(58).fm

15.fm

415.fm

50(6)-04.fm

8(2)-4(p ).fm

50(4)-10.fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

04_이근원_21~27.hwp

< C0E5BFC1C0E72E666D>

10(3)-11.fm

m, w, w w. xœ y t y w en, ùw,, ƒ y (, 1994; w, 2000). ƒ x œ (NGA; National Geospatial-intelligence Agency) t t wù x (VITD; Vector product Interim Terr

16(5)-03(56).fm

08김현휘_ok.hwp

untitled

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

7(4)-07.fm

Microsoft Word - KSR2012A038.doc

( )-94.fm

06-15(3)-10(정성민).fm

<38BFF93238C0CF28B1DDBFE4C0CF2920BFB9BBF3B9E8B4E72E786C7378>

01.01~08(유왕진).fm

18211.fm

Transcription:

Vol. 29(4):311-316 Ocean and Polar Research December 2007 Note»» w q w d ½ * Á½ ûá y w w w y (425-600)» w 29y Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone Bong-Chae Kim *, Byoung-Nam Kim, and Hong Sang Cho Marine Environment Research Department, KORDI Ansan P.O. Box 29, Seoul 425-600, Korea Abstract : Ocean noise may be used for monitoring wind speed and rainfall rate on the sea surface, as well as for tracking whales migration routes. In particular, low-frequency ocean noise has recently been of concern with relation to the behavior of marine mammals. Low-frequency ocean noise has been increasing over the past few decades due to increase of ship traffic and offshore oil industry activities. Mechanical noise such as flow noise and cable strumming noise may be induced if low-frequency ocean noise is measured by cabled traditional hydrophone in high current areas. To successfully measure low-frequency ocean noise in a shallow water environment with strong current, we developed a self-recording hydrophone. This paper describes the main configurations of the self-recording hydrophone and presents some results on measured data. Key words : low-frequency ocean noise, self-recording hydrophone, current velocity, wind speed 1. w w w p ùkü x wù q y y w v w. š w ù w k dw ù š (Urick 1983). w w wt t w y d w x š w» w» y š (Lemon 1984; Nystuen 1986; Heimlich et al. 2005). w w 2 z Knudsen et al.(1948) Wenz(1962) w *Corresponding author. E-mail : bckim@kordi.re.kr š, z w y (Kerman 1988; Kerman 1993; Buckingham and Potter 1995). Andrew et al.(2002) McDonald et al. (2006) q w mw, w m œ ƒ w ƒw š šw. p x š w s yw w š w w (National Research Council 2003).» q w» y w w» d. w w» w f»», e s», f f f l. p w» w ƒyw š šw š. ù

312 Kim, B.-C. et al. f» ¼ f rw. (2004) d w tx w y d w š, NOAA ks w y (Pacific Marine Environmental Laboratory) w w w y l w» w x»(moored Autonomous Hydrophones) w. ù l ³ ƒ j» q š. f» w w w w q w d w p w ƒ v w. w Á w w (flow noise) f p (cable strumming noise) k» (Urick 1983). w w w q w d w w» w {»» w.»»» w w. š»» w q w d w š w. 2. w d q w d w w» w Ÿ»»(Kim 2006) šw q»» w.»» Fig. 1 ùkü. Fig. 1 ùkü»»», vl s», y»» e(cpu),,. p» q p š w q ƒ skw @us Rqiquˆu s ˆ x gsq q u uˆu r tq qxr qi pu s t p t q f (Bruel and Kjaer) 8103 w.»»» w y w» y y k z, vl s» q 16 Hz y w w s k. š ù y CPU 16 p, 4096 Hz v w» k.»» q p Fig. 2 ùkü.» t»» (½ 2006) w»» w. ü k q w. w»»»z ƒ w d w ü d w y w. Fig. 2 ùkü»» 141.0 db re 1V/µPa š, q 16~1000 Hz 3dB ü skw. 52 m ûw w 2006 10 24 w d w. d @us 6x iw pugs gy r tq qxr qi pu s t p t q @us! Sitqyg ui ˆuq g g sqyq r yqg u s u yq

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone 313 Fig. 3 ew. w Õ yö l 1 œ»» w ew w d w. š w» w w d z w» w l f» ƒƒ 40 m 20 m e g w d w. w w d w y t, ww w. t (Weather Wizard III 7425) w t d w š, ADCP(Acoustic Doppler Current Profiler; RD Instruments 300) w 5 d w, (C80 48 nm) w 5 ww w. 3 ü www ww 5 30 s³w 1Hz 10~1000 Hz q w w rp w. š Fig. 2 ù kü»» w. 3. š y w d w t Fig. 4 ùkü. z ew w y w. w d w w w 0~0.8 m/s ü w w. p w x 40 m 52 m ƒƒ w d w 20 m w d x w. w d w t 0~4 m/s ü w, w k @us # 5ˆq gsqp iqg u q qi y xqˆqx yw. w e»»( 52 m) d w w rp s³e Fig. 5 ùk ü. š 40 m 20 m e k f» d w w s³e ùkü. d w d (Andrew et al. 2002) w ùkû. š q 64~1000 Hz»» d w w rp f» d w w w. ù q 10~63 Hz»» d w w rp f» d w w 3~25 db û ùkû. p w w q 10~25 Hz x w.»» d w w rp s³e t r Fig. 6 ùkü.» @us " Vg ug u r i q ˆqx iu g p u p qqp u t uyq @us$gqg g p g pg ppqˆug u r iqg u q qi y xqˆqx

314 Kim, B.-C. et al. ƒƒ q w w s³e t r 2 w ùküš. š 40 m 20 m e k f» d w w rp s³e t r ùkü. q 60~ 1000 Hz»» d w w rp t r f» d w w t r w. ù q 10~60 Hz»» d w w rp t r f» d w w t r û ùkû. š»» w rp t r q 10~20 Hz 50~1000 Hz w q 20~50 Hz d. ù f» w rp t r q 40~1000 Hz w q 10~40 Hz ùkû. Fig. 4 Fig. 5 ùkü w d w, p w x q 10~63 Hz»» d w w f» d w w w û ùkû. w w» w p q w t w.» p q»»» d w ƒ w 20 Hz ƒ 100 Hz ƒƒ w. w q 20 Hz 100 Hz ƒƒ w Fig. 7 ùkü. š w w xz w (r) t w. w, q 100 Hz w ùkû. ù q 20 Hz»» d w, f» d w ùkû.»» w d w, f» w w f p y w d w ƒ. t w q 20 Hz 100 Hz ƒƒ w Fig. 8 ùkü. š w t w xz w (r) t w. Fig. 8 w, t 4m/s w w t w w @us % Iiqg u q xqˆqx g qxqi qp r qƒ q iuq ˆq i q ˆqx iu d ƒ w, q 20 Hz 100 Hz ƒ ƒ w t ùkû. w q 500 Hz~50 khz w j š š (Urick 1983), Fig. 8 w ew ƒ. Fig. 4 Fig. 5 ùkü q 10~ 63 Hz f» d w w»» d w w w ùkû, f» w w w w» q. w w w q w d

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone 315 d w.»» w d w yw w, yw q w d e œw. p»» q 10~63 Hz w yw d w w f» w w f p w w yw d w.»» w w w q w y d w. mw š w w Ì ¾. š x @us & Iiqg u q xqˆqx g qxqi qp r qƒ q iuq ˆq u p qqp w f» w f p w p w ƒ v w. š»»ƒ w ƒ. 4. q w d w w» w»» w. ûw w»» w q w d w. š z w» w f» w q w ½. 2006. {» l. w wwz, 25, 178-183. vy, x x. 2004. tx w y d. 5z w» ù. w, 537-542. Andrew, R.K., B.M. Howe, J.A. Mercer, and M.A. Dzieciuch. 2002. Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast. Acoust. Res. Lett. Online, 3, 65-70. Buckingham, M.J. and J.R. Potter. 1995. Sea Surface Sound '94 - Proceedings of the III International Meeting on Natural Physical Processes Related to Sea Surface Sound. World Scientific, Singapore. Heimlich, S.L., D.K. Mellinger, S.L. Nieukirk, and C.G. Fox. 2005. Types, distribution, and seasonal occurrence of sounds attributed to Bryde's whales(balaenoptera edeni) recorded in the eastern tropical Pacific, 1999-2001. J. Acoust. Soc. Am., 118, 1830-1837. Kerman, B.R. 1988. Sea Surface Sound - Natural Mechanism of Surface Generated Noise in the Ocean. Kluwer, Dordrecht. Kerman, B.R. 1993. Natural Physical Sources of Underwater Sound - Sea Surface Sound(2). Kluwer, Dordrecht. Kim, B.-C.G 2006. Development of a broadband selfrecording hydrophone. Ocean & Polar Res., 28, 145-151. Knudsen, V.O., R.S. Alford, and J.W. Emling. 1948. Underwater ambient noise. J. Mar. Res., 7, 410-429. Lemon, D.D., D.M. Farmer, and D.R. Watts. 1984. Acoustic measurements of wind speed and precipitation over a

316 Kim, B.-C. et al. continental shelf. J. Geophys. Res., 89, 3462-3472. MacDonald, M.A., J.A. Hildebrand, and S.M. Wiggins. 2006. Increases in deepg ocean ambient noise in the Northeast west of San Nicolas Island, California. J. Acoust. Soc. Am., 120, 711-718. Moored Autonomous Hydrophones. <http://www.pmel.noaa. gov/vents/acoustics/haru_system.html>. National Research Council. 2003. Ocean Noise and Marine Mammals. National Academy Press, Washington, DC. Nystuen, J.A. 1986. Rainfall measurements using underwater ambient noise. J. Acoust.G Soc. Am., 79, 972-982. Urick, R.J. 1983. Principles of Underwater Sound. Peninsula Publishing, Los Altos. Wenz, G.M. 1962. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am., 34, 1936-1956. Received Nov. 7, 2007 Accepted Dec. 11, 2007