기획특집 : 미세먼지현황과기술 지하철미세먼지포집을위한기술적진보 손윤석 1, 류재용 2 1 부경대학교환경공학과, 2 경남대학교환경에너지공학과 Technological Advances for Particulate Matter Collection in Subway System Youn-Suk Son 1, and Jae-Yong Ryu 2 1 Department of Environmental Engineering, Pukyong National University, Busan, Republic of Korea 2 Department of Environment and Energy Engineering, Kyungnam University, Changwon-si, Republic of Korea Abstract: 본연구에서는지하역사및터널에서발생되는미세먼지의현황및이를저감하기위한기술의동향을조사하였다. 지하역사및터널의미세먼지농도는주변대기중의농도보다높은것으로나타났다. 그구성성분에있어서다양한중금속및발암물질들을함유하고있고, Fe 의농도가가장높게나는것을알수있었다. 지하역사및터널의미세먼지농도는주변대기농도와같은외부요인뿐만아니라열차의운행수, 이용승객수, 환기량과같은내부요인도큰영향을미치는것을확인할수있었다. 현재지하역사및터널의미세먼지를저감하기위해서다양한기술 ( 환기팬, 스크린도어, 자성필터, 소형제트팬, 인공지능환기시스템등 ) 들이연구되고있으며, 그기술들은현장조건에맞추어사용되어야그실효성을극대화시킬수있을것이다. Keywords: Particulate Matter, Subway system,, PM 2.5, Magnetic filter 1. 서론 1) 문명의발전과도시인구밀도의증가로인하여대중교통의사용빈도가증가하고있다. 이중, 지하철은저렴한이용가격및정확한운행시간으로가장많이이용되는대중교통수단중하나이다. 실제로서울시의 2016년대중교통이용객수는하루평균약 1,349만명으로전년대비 0.7% (9만 4천명 ) 감소했다. 이중버스이용객의경우, 10만 8천명 (1.9%) 감소한것으로나타났는데, 이에반하여, 지하철이용객수는전년대비 1만 4천명 (0.2%) 증가했다 [1]. 종합적으로볼때, 실제로서울시의경우대중교통이용량중지하철이차지하는비율은 2016년기준전체의 59.3% 이다 [2]. 하지만대부분의역사가지하에위치하고있고, 특정시간 ( 예 : 출 퇴근시간 ) 에유동인구가급증 주저자 (E-mail: sonys@pknu.ac.kr) 하기때문에이로인한실내공기오염이심각한실정이다. 이에따라, 지하역사및터널의오염도및저감방안에대한연구가지속적으로수행되고있다 [3-16]. 현재우리나라는대다수의국민들이이용하는시설의실내공기질을 다중이용시설등의실내공기질관리법 에따라 5개오염물질에대한유지기준 (, CO 2, HCHO, 총부유세균, CO) 과 5개오염물질에대한권고기준 (NO 2, Rn, VOC, 석면, 오존 ) 으로관리하고있고지하역사또는그대표적인관리대상이다 [17]. 따라서지하철의공기질관리는매우중요하다. 또한, 지하철의경우, 다양한다중이용시설중에서도밀페된공간및내부입자상물질배출원을가지고있다는독특한특징을가지고있다 [26]. 지하철공간에서입자상물질의생성은열차와승객의이동등에의해서발생되고내부에축적되는것으로알려져있고, 세계대부 24 공업화학전망, 제 21 권제 2 호, 2018
지하철미세먼지포집을위한기술적진보 Table 1. The Structural Characteristics of Underground Sections in the Seoul Subway Line-1 Line-2 Line-3 Line-4 Line-5 Line-6 Line-8 Line-9 Number of natural vent 6 4 1 1 0 0 0 0 Percent of gravel (%) 34 58 60 58 all concrete all concrete all concrete all concrete Curvature radius (m) 875.6 529.1 542.9 516 663.9 1295.2 5660.2 919.5 Underground depth (m) 10.9 10.7 16.8 12.4 21.6 20.6 16.6 25.4 Supply & exhaust air volume (CMM) 0 4,210.4 12,129.1 7,529.2 16,504.4 15,521.1 11,706.3 19,060.8 Tunnel length (m) 662.8 653.7 872.1 880.1 901.1 789.0 461.9 494.8 Percent of ground section (%) 10 23 6 21 * 출처 : 한국대기환경학회지, 33(6), 593-604 (2017). all underground all underground all underground all underground 분의지하철실내공기가오염되었다고보고되고있다 [9,11,34-40]. 하지만지하철공간은환기시설의노후화와부적절성, 이용승객및열차운행빈도증가등으로인하여그오염도가점점심각해지고있는실정이다 [1,14]. 또한, 최근에건설되는지하철들은 Table 1 에서보는것처럼전구역을지하구간에설치하여기존의구간보다그오염이더심각할것으로판단된다 [1]. 게다가, 지하역사및터널의오염도는지상의자동차배출가스등외기의대기오염물질유입과같은외부요인뿐만아니라운행중에발생되는레일및바퀴의마모, 열차풍등으로인해서발생되는내부적인요인들이상재되어있어서, 그오염을가중시키는것으로보고되고있다 [1,8,14,18-19]. 또한, 터널내부에서마모로인하여발생되는오염물질은철성분을함유하고있는유해한물질 (Fe 3 O 4, α-fe 2 O 3, γ-fe 2 O 3, iron(fe) metal) 이기때문에인체에보다심각한문제를야기시킨다 [20-25]. 따라서, 본논문에서는서울시지하역사및터널을중심으로미세먼지농도및외기와의상관성등과같은현황및특성을파악하고, 이러한미세먼지를저감및제어하기위한기존의기술과신기술들을소개할것이다. 2. 지하철미세먼지농도현황앞에서언급한것처럼, 지하역사및터널내의미세먼지오염의심각성은 1990년대이후부터인식되어왔으며, 이로인해서 Table 2에서보는것처럼많은연구들이전세계적으로진행됐다 [14]. 이은희등 (2017) 에따르면, 서울시지하철전노선내 평균농도 (Table 3) 는다중이용시설등의실내공기질관리법의지하역사유지기준인 150 µg/m 3 을만족하는것으로나타났으나, 6호선의경우, 유지기준을약 30% 정도초과하는것으로조사되었으며, PM 2.5 는 24 h 대기환경기준인 50 µg/m 3 를 2호선과 8호선의거의대부분구역에서초과하였다 [1]. 앞에서언급한것처럼지하철운행에의해서발생된미세먼지는레일과차륜사이의마찰과긁힘으로인한마모및팬터그래프와급전시설의마찰로인한마모과같이기계적인현상에의해서일차적으로발생 (iron (Fe) metal) 하고, 발생한이후에는대기중의산소와반응하여다양한산화철 (Fe 3 O 4, α-fe 2 O 3, γ-fe 2 O 3 ) 등의형태로지하공간에서열차풍등에의해서부유하는것으로알려져있다 [26]. 그리고이러한철성분을포함하고있는에어로졸입자의양은상대적으로전체입자량의 KIC News, Volume 21, No. 2, 2018 25
Table 2. Comparison of Particulate Matter (PM) Concentrations in Subway Stations from Various Studies Study Location Particle size Sampling site Concentration (µg/m 3 ) Pfeifer et al. 1999 London, UK PM 2.5 Underground 246 (± 52) Seaton et al. 2005 London, UK PM 2.5 Inner subway 130-200 Inner subway Station platform 1000-1500 Station platform 270-480 Priest et al. 1998 London, UK PM 9 Inner subway 795 (500-1000) Sitzmann et al. 1999 London, UK PM 5 trains and on platforms 801 Aarnio et al. 2005 Helsinki, Finland PM 2.5 Kim et al. 2008 Kim et al. 2012 Park and Ha 2008 Seoul, Korea Seoul, Korea Seoul, Korea PM 2.5 Underground 47 (± 4) and 60 (± 18) Ground 19 (± 6) Inner subway 21 (± 4) 60 (23-103) Ground and Underground 48.9-126.8 115.2-135.7 81.6-176.3 122.6-310.1 28.68-356.6 237.8-480.1 116 (76-164) Platform PM 2.5 66 (39-129) PM 2.5 Underground stations and Ground stations Underground stations and Ground stations 123 ± 6.6~145.3 ± 12.8 105.4 ± 14.4~121.7 ± 16.1 Adams et al. 2001 London, UK PM 2.5 ground 29.3 (12.1-42.3) Underground 247.2 (105.3-371.2) Underground 157.3 (12.2-263.5) summer 153 (S. D. = 22.0) Fromme et al. 1998 Berlin, Germany winter 141 (S. D. = 17.0) 165-258 (34-388) Johansson and PM 2.5 Johansson 2003 Stockholm, Sweden Platform Karlsson et al. 2005 302-469 (59-722) 357 Braniš 2006 Prague, Czech Underground 103 10 Salma et al. 2007 Budapest, Hungary Underground 180 (85-234) PM Underground 155 (25-322) PM 2.5 Underground Grass et al. 2010 New York, USA PM 2.5 Underground 56 ± 95 Onat and Stakeeva 2012 Istanbul, Turkey PM 2.5 Underground 49.3-181.7 * 출처 : Asian J. Atmos. Environ., 7(1), 38-47 (2013). To be continued 26 공업화학전망, 제 21 권제 2 호, 2018
지하철미세먼지포집을위한기술적진보 Table 2. Continued Study Location Particle size Sampling site Concentration (µg/m 3 ) Ripanucci et al. 2006 Rome, Rome Underground 407 (71-877) Awad 2002 Cairo PM 35 Ground and Underground 794-1096 (938.3 ± 124) Cheng et al. 2008 Taipei Li et al. 2007 Bejing, China * 출처 : Asian J. Atmos. Environ., 7(1), 38-47 (2013). 11-137/10-97 PM 2.5 Platform / Inside train 7-100/8-68 TSP 456.2 ± 176.7 324.8 ± 125.5 Underground Inner subway PM 2.5 112.6 ± 42.7 PM 1 38.2 ± 13.9 TSP 166 ± 78.7 ground inner subway 108 ± 56.0 PM 2.5 36.9 ± 18.7 PM 1 14.7 ± 6.6 Table 3. Average Concentrations of, PM 2.5, and PM 1 in Seoul Subway Lines during Sampling Periods (unit: µg/m 3 ) Line No. Total No. of station PM 2.5 PM 1 Mean ± STD Mean ± STD Mean ± STD 1 12 136.0 ± 55.5 101.7 ± 39.7 67.3 ± 20.9 2 43 67.1 ± 20.9 58.4 ± 18.3 47.3 ± 13.6 3 44 83.4 ± 41.3 67.5 ± 31.3 50.1 ± 23.4 4 35 112.6 ± 41.5 83.7 ± 32.0 56.6 ± 21.2 5 46 111.1 ± 50.6 78.7 ± 35.0 49.5 ± 21.6 6 39 75.7 ± 30.0 63.6 ± 24.2 47.1 ± 16.7 8 17 86.4 ± 21.4 76.0 ± 18.7 59.5 ± 14.2 9 25 111.4 ± 37.7 97.4 ± 30.3 77.9 ± 21.8 Total 98.0 ± 37.4 78.4 ± 28.7 56.9 ± 19.2 * 출처 : 한국대기환경학회지, 33(6), 593-604 (2017). 75-85% 를차지하는것으로보고되고있다 [27]. 또한, Seaton et al. (2005) 에의하면런던지하철안의 PM 2.5 의 67% 정도가산화철로구성되어있다고발표했다 [28]. Karlsson et al. (2005) 의연구결과에따르면, 지하철에서배출되는입자상물질은 8배정도유전독성물질 (genotoxic) 이고 4배정도페세포산화스트레스원인물질이라고보고했다 [20]. 또한, 지하철에서발생되는미세먼지는다양한중금속성분을포함하고있는것으로보고되고있다 [37,57-58]. 오윤희등 (2013) 의연구결과에따 르면, 지하역사의 및 PM 2.5 에함유된중금속의노출로인하여장기간노출시발암가능성이높음을확인하였다 [57]. 또한, Mohsen et al. (2018) 은지하철미세먼지에는 Fe, Cr, Ca, Al, Na, Ba, Mn, Zn, Cu, Ni, Co, Pb 등이함유되어있는것으로발표했고, Fe와 Ni, Cr이가장많이존재하는것을확인하였으며, 이들은철로와바퀴사이의마모에의해서대부분형성된다고언급하였다 [58]. 또한, 외기와터널내 PM과의상관성을분석한결과, 터널내 PM 입자의크기가작을수록외기 KIC News, Volume 21, No. 2, 2018 27
농도와높은상관성을보였으며, 각노선별외기와의연관성을비교하였을때 3, 4, 5호선이가장높은상관성을보였다 [1]. Son et al. (2014) 은지하철공간의미세먼지농도에영향을미치는주요요인으로열차의환기시스템, 운행조건, 승객수, 터널의깊이, 지하구간의길이등이있는것으로평가했다 [13]. 3. 기존지하철미세먼지저감기술지하철공간에서의미세먼지문제를해결하기위하여, 환기, 여과, 터널청소차량 ( 살수차및포집차등 ) 과같은다양한방법들이사용되고있다 [13]. 하지만이들기술들은높은운영비및낮은제거효율등과같은많은제약을가지고있다. 현재대부분의서울시지하역사및터널은환기팬및스크린도어 (PSDs: platform screen doors) 를설치하여운영하고있다. 이중스크린도어는승객의안전및역사내의실내공기질을향상시키기위하여설치하였고, 승강장내의공기질을종전보다개선하였다. 이는열차가터널에서승강장으로진입할때발생되는열차풍에의하여재비산되는미세먼지가스크린도어에의해서차단되는것을의미한다 [8,22]. Kim et al. (2012) 은스크린도어운영으로승강장내의 농도가 16% 까지저감되는것을확인하였다 [8]. 이뿐만아니라, Jung et al. (2010) 의연구결과에따르면, 스크린도어설치후, 대합실과승강장에터널에서발생되어확산되는철-함유입자가확연히줄어드는것을관찰하였다 [22]. 이들연구결과는스크린도어설치가승강장및대합실의미세먼지농도저감에확실한효과가있음을증명하였다 [13]. 그러나, 이로인하여지하터널내의미세먼지농도는보다증가하고있는실정이다 [14,29]. 이는열차풍및자연환기로인하여터널에서승강장으로확산되던미세먼지가스크린도어의설치로인하여그진행방향이막힘으로써터널내에잔류함으로인한것으로판단된다. Son et al. (2014) 은스크린도어를설치한후열차내의 농도가 설치전보다 29.9% 까지증가되는것을확인하였고, 특히, 6호선의경우에는, 103% 까지 의농도가증가되는것을관찰하였다 [13]. 또한, 그들은 과 PM 2.5 사이의상관성분석을통하여스크린도어가터널과승강장사이의기류확산을엄격히제한하는것을확인하였다. 다른한편으로환기시스템은또다른문제를야기시킬수있다. 터널내오염된공기는자연적또는강제적으로대기중으로배출되게되는데, 이때, 환기구주변의보행자뿐만아니라환기구주변에사는거주자에게까지도영향을미친다 [12]. 또한, 일부호선의환기시설의경우, 아직까지도터널내의환기를자연환기를이용하는것으로알려져있다. 자연환기는팬과같은기계를사용하지않고열차풍등을이용하여터널내의공기가자연적으로빠져나가게하는것으로서, 팬을이용한강제환기에비해그효율이떨어지는것으로보고되고있다. 이와반대로, 강제환기의경우, 소음으로인한민원, 노후화, 부적절한설계, 높은운영비등으로인하여, 적절한사용및관리가이루어지지못하는상황이다 [13]. 이와같은문제를해결하기위하여노후환기시설을정비하고, 적절한방법으로환기시설을잘작동시켜야한다. 한예로서, Son et al. (2013) 은적절한환기시스템의가동만으로도터널내의 농도를 150 µg/m 3 ( 실내공기질기준 ) 이하로유지할수있음을증명하였다 [14]. 환기구의구조적인관점에서급기환기구의높이는깨끗한공기를유입하기위해서높여야한다 [13]. 또한, 현재대부분의급기환기구위치는도로및도로주변의인도에위치되어있어서지하역사및터널에공기유입시자동차배출가스등으로인하여이미오염된공기가공급된다. 이에따라서, 급기환기구는공원및녹지지역으로의이동설치가깨끗한급기를유입시켜지하철공간의실내공기오염도를낮출수있을것으로평가된다. 28 공업화학전망, 제 21 권제 2 호, 2018
지하철미세먼지포집을위한기술적진보 * 출처 : Environ. Sci. Technol., 48, 2870-2876 (2014). Figure 2. PM removal efficiencies with respect to different fan frequencies and number of filters (bar, mean; error bar, min - max). * 출처 : Environ. Sci. Technol., 48, 2870-2876 (2014). Figure 1. Magnetic filter system (S and N are polar of the magnet; (1) high-resolution picture of the magnetic filter system installed above an actual ventilation hole; (2) schematic of the magnetic filter system with two filter layers; (3) magnetic filter). 4. 지하철공간실내오염물질저감신기술 Jung et al. (2012) 의연구결과에따르면, 지하철바닥먼지 (< 25 µm) 내의 98~100% 가자성을띄고있는것으로평가하였고, 추후연구결과 (Jung et al. 2013) 에서는터널에서포집된먼지시료내의 77.3-86.9% 가철입자로구성되어있다고발표했다 [22,27]. 따라서, 지하철운행에의해서배출되는대부분의미세먼지는자성입자로구성되어있기때문에, 입자분리 (particle separation), 이온교환 (ion exchange), 효모필터 (yeast filtration) 와같은방법을이용하여포집하는기술들에대한연구들이수행중이다 [30]. 또한, 국내에서는 Figure 1와같이전자석및영구자석등을이용하여지하철미세먼지의제거가가능한것으로최근보고되고있다 [12,56]. Son et al. (2014) 의연구결과에따르면, 이중자석필터 ( 환기팬 60Hz 작동시 ) 를활용할시, 미세먼지제거효율은, PM 2.5, PM 1 에대해서최대 52%, 46%, 38% 로나타났고, 제거효율은자석필터의층수및환기팬의회전수에의해서결정되는것을확인하였다 (Figure 2). 또한, 자석필터의미세먼지포집안정 성은자석필터층수가단일층 (RSD: 10.9-24.5%) 에서이중층 (RSD: 3.2-5.8%) 으로증가할수록향상되는것을확인할수있었다 [12]. 지하철을운영하는데있어서열차의운행및환기시스템가동은많은에너지소모를요구한다 [43]. 베이징의경우, 하루동안지하역사에서소모하는에너지량은 9,500 kwh이고, 이중에서대략적으로 64% 를환기시스템 (HVAC system) 에서사용한다 [44]. 따라서, 지하철환기시스템의에너지소모를줄이기위하여인공지능과자동제어시스템을이용한다양한방법들이시도되고있다 [43-45]. 환기팬을이용한기술에있어서는기존의매뉴얼타입 (Manual type) 운영의한계에서벗어난타임스케줄 (time schedule) 및인공지능을이용한운영이다 [13]. 외기및열차의운행등의환경요인들을고려하여환기팬을조절함으로써지하철의공기질을향상시키고, 이와동시에운전비를절감시킬수있는것으로보고되고있다 [31]. 또한, 인공신경망기법등을사용하여역사등의실내공기질을먼저예측하고이를통하여환기시설을가동시키는방법에대해서도연구되고있다 [41]. 또한, 1호선터널의경우에는덕트가좁고팬이없기때문에, 아직까지자연환기에의존하고있어강제환기에비해오염물질이덜배출된다. 따라서, 최근에이와같은문제를해결하기위해서자연환기구에소형제트팬 (small jet fan) 을설치하여열차풍과함께작동시키는방법에대한연구도활발히진행되고있다 [32-33]. KIC News, Volume 21, No. 2, 2018 29
보다최근에는종전의고압살수차및집진차의단점을보완한하이브리드형집진장치의성능을높이기위한연구도수행중이다 [42]. 이는전동차가운행하면서부유먼지를제거하기위하여관성집진기인배플과전기집진기로구성되고, 그성능은유속이 3.4 m/s인모델의경우에는 0.5 µm 이상인입자의집진효율은 30%, 유속이 4.7 m/s인모델의경우에는 20% 이상이었다. 또한, 현재지하철에서는미세먼지뿐만아니라, 지하역사내에공급되는급기내의이산화질소 (NO 2 ) 및 VOCs를제거하는연구도활발히진행되고있다 [7,15]. 이를위한연구들중에서는다양한활성탄을이용한방법이가장활발히수행되고있는데, Son et al. (2016) 은혼성활성탄및자동제어시스템을이용하여지하역사내의 NO 2 농도를다중이용시설의실내공기질법기준인 50 ppb 이하로제어함과동시에에너지소모를저감하는기술을소개하였다 [7]. 5. 결론 보다절실히요구되고있는실정이다. 이를해결하기위하여, 여러연구진들이자동제어시스템및인공지능기술을이용하여현재미세먼지저감과에너지사용량절감이라는두마리토끼를잡기위해서노력중이다. 마지막으로지하철에서대기중으로배출되는미세먼지가보행자에게미치는영향을최소화하기위하여자성필터와같은새로운시도들이보이는것을확인할수있었다. 하지만현재까지의제어연구들은아직실험실규모나파일럿규모에머물러있기때문에, 그실효성을극대화하기위해서는더많은연구들이꾸준히진행되어야할것이다. 감사본연구는한국연구재단 2017년생애첫연구사업 (NRF-2017R1C1B5076626) 및부경대학교환경 해양대학 2017학년도신진교수연구력강화지원사업 의지원을받아수행되었고이에감사드립니다. 본연구에서는서울시지하철을중심으로역사및승강장의미세먼지농도및특성을살펴보았고, 그문제를해결하기위한다양한시도및연구들을소개하였다. 일반적으로지하철미세먼지의농도는외부보다높은것으로나타났고, 그이유는선로와바퀴사이의마모와같은내부적인요인이가장크게기여하는것으로평가되었다. 또한, 지하철미세먼지를구성하는다양한중금속중에서는 Fe가가장많이함유되어있는것으로나타났고, 이들은발암성을띠고있기때문에적절하게관리되어야한다. 이와같은지하철미세먼지를해결하기위해서기존에는환기시설및스크린도어가사용되고있는데, 환기시설의경우, 노후화및운전비용의문제로인하여개선이시급한실정이다. 또한, 스크린도어는역사내의미세먼지농도저감에는실효성이있으나, 반대로터널내의미세먼지를보다많이정체시키기때문에터널구간에서의미세먼지저감을위한노력이 참고문헌 1. 이은선, 이태정, 박민빈, 박덕신, 김동술, 서울시지하철터널내입자상오염물질의농도특성및오염형태분류, 한국대기환경학회지, 33(6), 593-604 (2017). 2. 서울특별시, 교통카드데이터로본 16 서울대중교통이용현황 (2017). http://traffic.seoul.go.kr/archives/31509. 3. 박민수, 표현미, 손종렬, 변상훈, 서울시지하철의소음노출실태에관한연구, 한국실내환경학회지, 5(3), 251-257 (2008). 4. 박화미, 이철민, 노영만, 김윤신, 박동선, 서울시지하철객차내의실내공기질연구, 한국대기환경학회 2006 춘계학술대회논문집, 557-558 (2006). 5. 최형욱, 황인조, 김신도, 김동술, 분진의개수농도및질량농도에입각한서울시지하철역 30 공업화학전망, 제 21 권제 2 호, 2018
지하철미세먼지포집을위한기술적진보 사내오염원의기여도결정, 한국대기환경학회지, 20(1), 17-31 (2004). 6. J. R. Shon, J. C. Kim, M. Y. Kim, Y. S. Son, and Y. Sunwoo, Particulate behavior in subway airspace, Asian Journal of Atmospheric Environment, 2-1, 54-59 (2008). 7. Y. S. Son, J. H. Jeong, H. J. Lee, and J. C. Kim, A novel control system for nitrogen dioxide removal and energy saving from an underground subway stations, Journal of Cleaner Production, 133, 212-219 (2016). 8. K. H. Kim, D. X. Ho, J. S. Jeon, and J. C. Kim, A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station, Atmospheric Environment, 49, 219-223 (2012). 9. K. Y. Kim, Y. S. Kim, Y. M. Roh, C. M. Lee, and C. N. Kim, Spatial distribution of particulate matter ( and PM 2.5 ) in Seoul Metropolitan Subway stations, Journal of Hazardous Materials, 154, 440-443 (2008). 10. D. Park, M. Oh, Y. Yoon, E. Park, and K. Lee, Source identification of pollution in subway passenger cabins using positive matrix factorization, Atmospheric Environment, 49, 180-185 (2012). 11. D. U. Park and K. C. Ha, Characteristics of, PM 2.5, CO 2 and CO monitored in interiors and platforms of subway train in Seoul, Korea Environment International, 34, 629-634 (2008). 12. Y. S. Son, T. V. Dinh, S. G. Chung, J. Lee, and J. C. Kim, Removal of particulate matter emitted from a subway tunnel using magnetic filters, Environmental Science & Technology, 48, 2870-2876 (2014). 13. Y. S. Son, J. S. Jeon, H. J. Lee, I. C. Ryu, and J. C. Kim, Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains, Journal of Air Waste Management Association, 64, 1054-1061 (2014). 14. Y. S. Son, A. Salama, H. S. Jeong, J. H. Jeong, J. Lee, Y. Sunwoo, and J. C. Kim, The effect of platform screen doors on levels in a subway station and a trial to reduce in tunnels, Asian Journal of Atmospheric Environment, 7, 38-47 (2013). 15. Y. S. Son, Y. H. Kang, S. G. Chung, H. J. Park, and J. C. Kim, Efficiency evaluation of adsorbents for the removal of VOC and NO 2 in an underground subway station, Asian Journal of Atmospheric Environment, 5-2, 113-120 (2011). 16. J. Song, R. Pokhrel, H. Lee, and S.-D. Kim, Box model approach for indoor air quality (IAQ) management in a subway station environment, Asian Journal of Atmospheric Environment, 8, 184-191 (2014). 17. 환경부, 실내공기질관리법 (2017). 18. T. J. Lee, J. S. Jeon, S. D. Kim, and D. S. Kim, A comparative study on source contributions in a Seoul metropolitan subway station before/after installing platform screen doors, Journal of Korean Society for Atmospheric Environment, 26(5), 543-553 (2010). 19. T. J. Lee, H. Lim, S. D. Kim, D. S. Park, and D. S. Kim, Concentration and properties of particulate matters ( and PM 2.5 ) in the Seoul metropolitan, Journal of Korean Society for Atmospheric Environment, 31(2), 164-172 (2015). 20. H. L. Karlsson, L. Nilsson, and L. Möller, Subway Particles Are More Genotoxic than Street Particles and Induce Oxidative Stress in Cultured Human Lung Cells, Chemical Research in Toxicology, 18, 19-23 (2005). 21. I. Salma, T. Weidinger, and W. Maenhaut, Time-resolved mass concentration, composition and sources of aerosol particles in a KIC News, Volume 21, No. 2, 2018 31
metropolitan underground railway station, Atmospheric Environment, 41, 8391-8405 (2007). 22. H. J. Jung, B. A. Malek, Y. S. Koo, J. H. Jung, Y. S. Son, J. C. Kim, H. K. Kim, and C. U. Ro, Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea, Journal of Hazardous Materials, 213-214, 331-340 (2012). 23. V. Mugica-Álvarez, J. Figueroa-Laraa, M. Romero-Romo, J. Sepuĺveda-Sańchez, and T. Loṕez-Moreno, Concentrations and properties of airborne particles in the Mexico City subway system, Atmospheric Environment, 49, 284-293 (2012). 24. P. Gustavsson, C. Bigert, and M. Pollań, Incidence of Lung Cancer Among Subway Drivers in Stockholm, American Journal of Industrial Medicine, 51, 545-547 (2008). 25. M. Loxham, M. J. Cooper, M. E. Gerlofs-Nijland, F. R. Cassee, D. E. Davies, M. R. Palmer, and D. A. H. Teagle, Physicochemical characterization of airborne particulate matter at a mainline underground railway station, Environmental Science & Technology, 47, 3614-3622 (2013). 26. H. J. Eom, H. J. Jung, S. Sobanska, S. G. Chung, Y. S. Son, J. C. Kim, Y. Sunwoo, and C. U. Ro, Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe Xray microanalysis and raman microspectrometry, Analytical Chemistry, 85, 10424-10431 (2013). 27. H. J. Jung, B. Kim, J. Y. Ryu, S. Maskey, J. C. Kim, J. Sohn, and C. U. Ro, Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative singleparticle analysis, Atmospheric Environment, 44, 2287-2293 (2010). 28. A. Seaton, J. Cherrie, M. Dennekamp, K. Donaldson, J. F. Hurley, and C. L. Tran, The London underground: dust and hazards to health, Occupational and Environmental Medicine, 62, 355-362 (2005). 29. K. J. Ryu, M. Juraeva, S. H. Jeongand, and D. J. Song, Ventilation Efficiency in the Subway Environment for the Indoor Air Quality, International Journal of Computer and Systems Engineering, 6(3), 549-554 (2012). 30. J. Hristov and L. Fachikov, An overview of separation by magnetically stabilized beds: State-of-the-art and potential applications, China Particuol., 5, 11-18 (2007). 31. 서울특별시, 지하역사및터널의인공지능형공기질제어및관리시스템개발, 최종보고서 (2012). 32. J. H. Lee, S. C. Hong, Y. M. Kim, J. C. Kim, Y. S. Son, and I. W. Kim, The effect of induced jet fan for fine particle concentration ( ) at subway tunnel with a natural ventilation system in Seoul. Paper presented at the annual meeting for International Congress on Environmental Health, Salvador, Brazil, February 6-9 (2011). 33. Y. Son, J. Jeong, J. Kim, J. Lee, H. Park, I. Kim, and J. Kim, Reduction of particulate matter using jet fans in subway tunnel. Paper presented at the annual meeting for Air & Waste Management Association, Orlando, FL, June 21-24 (2011). 34. H. Kamani, M. Hoseini, M. Seyedsalehi, Y. Mahdavi, J. Jaafari, and G. H. Safari, Concentration and characterization of airborne particles in Tehran s subway system, Environmental Science and Pollution Research, 21(12), 7319-7328 (2014). 35. K. Furuya, Y. Kudo, K. Okinaga, M. 32 공업화학전망, 제 21 권제 2 호, 2018
지하철미세먼지포집을위한기술적진보 Yamuki, S. Takahashi, Y. Araki, and Y. Hisamatsu, Seasonal variation and their characterization of suspended particulate matter in the air of subway stations, Journal of Trace and Microprobe Techniques, 19, 469-485 (2001). 36. A. H. A. Awad, Environmental study in subway metro stations in Cairo, Egypt, Journal of Occupational Health, 44, 112-118 (2002). 37. P. Aarnio, T. Yli-Tuomi, A. Kousa, T. Mäkelä, A. Hirsikko, K. Hämeri, M. Räisänen, R. Hillamo, T. Koskentalo, and M. Jantunen, The concentrations and composition of and exposure to fine particles (PM 2.5 ) in the Helsinki subway system, Atmospheric Environment, 39, 5059-5066 (2005). 38. C. Johansson and P.-Å. Johansson, Particulate matter in the underground of Stockholm, Atmospheric Environment, 37, 3-9 (2003). 39. M. Braniš, The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system, Atmospheric Environment, 40, 348-356 (2006). 40. J.-C. Raut, P. Chazette, and A. Fortain, Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris, Atmospheric Environment, 43, 860-868 (2009). 41. 권순박, 강중구, 류승원, 남궁형규, 박세찬, 김민해, 김진호, 스마트철도역사의인공지능기반실내공기질관리기술, 한국철도학회학술발표대회논문집, 578-580 (2017). 42. 우상희, 김종범, 장홍량, 권순박, 육세진, 배귀남, 도시철도터널미세먼지제거용하이브리드형집진장치의성능평가, 한국철도학회논문집, 20(4), 433-439 (2017). 43. A. Giretti, M. Lemma, R. Larghetti, and R. Ansuini, Environmental modeling for the optimal energy control of subway stations, Gerontechnology, 11(2), 168-168 (2012). http:// dx.doi.org/10.4017/gt.2012.11.02.343.00. 44. W. Y. Zhang and J. Wei, The experimental research on Beijing subway air-conditioning system energy-saving, Applied Mechanics and Materials, 170-173, 2494-2498 (2012). 45. Z. J. Shi, B. Xu, B. G. Zheng, and X. H. Zhu, The energy-saving control of combined multi-unit for building automatic system in the subway, Applied Mechanics and Materials, 513-517, 3597-3600 (2014). 46. G. D. Pfeifer, R. M. Harrison, and D. R. Lynam, Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996, Science of Total Environment, 235(1-3), 253-260 (1999). 47. D. Priest, G. Burns, and B. Gorbunov, Dust levels on the London Underground: a health hazard to commuters? (1998). http://62.164.135.147/feat/feat0017.htm. 48. B. Sitzmann, M. Kendall, J. Watt, and I. Williams, Characterisation of airborne particles in London by computer-controlled scanning electron microscopy, Science of Total Environment, 241, 63-73 (1999). 49. H. S. Adams, M. J. Nieuwenhuijsen, R. N. Colvile, M. A. S. McMullen, and P. Khandelwal, Fine particle (PM 2.5 ) personal exposure levels in transport microenvironments, London, UK, Science of Total Environment, 279, 29-44 (2001). 50. H. Fromme, A. Oddoy, M. Piloty, M. Krause, and T. Lahrz, Polycyclic aromatic hydrocarbons (PHA) and diesel engine emission (elemental carbon) inside a car and a subway train, Science of Total Environment, 217, 165-173 (1998). 51. D. S. Grass, J. M. Ross, F. Family, J. Barbour, H. J. Simpson, D. Coulibaly, J. KIC News, Volume 21, No. 2, 2018 33
Hernandez, Y. Chen, V. Slavkovich, Y. Li, J. Graziano, R. M. Santella, P. Brandt-Rauf, and S. N. Chillrud, Airborne particulate metals in the New York City subway: A pilot study to assess the potential for health impact, Environmental Research, 110, 1-11 (2010). 52. B. Onat and B. Stakeeva, Assessment of fine particulate matters in the subway system of Istanbul, Indoor and Built Environment, Published online (2012). 53. G. Ripanucci, M. Grana, L. Vicentini, A. Magrini, and A. Bergamaschi, Dust in the underground railway tunnels of an Italian town, Journal of Occupational and Environmental Hygiene, 3, 16-25 (2006). 54. Y. H. Cheng, Y. L. Lin, and C. C. Liu, Level of and PM 2.5 in Taipei rapid transit system, Atmospheric Environment, 42, 7242-7249 (2008). 55. T. T. Li, Y. H. Bai, Z. R. Liu, and J. L. Li, In-train air quality assessment of the railway transit system in Beijing: A note, Transportation Research Part D, 12, 64-67 (2007). 56. 박해우, 황산, 정상귀, 김상범, 조영민, 철성분미세먼지포집을위한자성필터연구, 한국대기환경학회지, 31(2), 118-130 (2015). 57. 오윤희, 남인식, 김신도, 김동술, 박덕신, 강지환, 손종렬, 일부지하철역사내실내공기중미세먼지에서의중금속노출에의한건강위해성평가, 한국생활환경학회지, 20(1), 29-36 (2013). 58. M. Mohsen, M. B. Ahmed, and J. L. Zhou, Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney, Australia, Transportation Research Part D: Transport and Environment, 62, 112-124 (2018). 손윤석 2007~2012 건국대학교환경공학과박사 2012~2014 하버드대학교환경보건학과 박사후연구원 2014~2017 한국원자력연구원선임연구원 2017~ 현재 부경대학교환경공학과조교수 류재용 1997~2002 조지아공대환경공학과박사 2006~2010 한국환경산업기술원전문위원 2011~2014 한국원자력연구원책임연구원 2014~ 현재 경남대학교환경에너지공학과 교수 34 공업화학전망, 제 21 권제 2 호, 2018