(3) (이중재)최종.hwp

Similar documents
14.531~539(08-037).fm


012임수진

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

???? 1

03-서연옥.hwp

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

DBPIA-NURIMEDIA

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

Analyses the Contents of Points per a Game and the Difference among Weight Categories after the Revision of Greco-Roman Style Wrestling Rules Han-bong

, Next Step of Hangul font As an Example of San Serif Han San Seok Geum ho, Jang Sooyoung. IT.. Noto Sans(Adobe, Han-San). IT...., Muti Script, Multi

인문사회과학기술융합학회

The characteristic analysis of winners and losers in curling: Focused on shot type, shot accuracy, blank end and average score SungGeon Park 1 & Soowo

???? 1

<352E20BAAFBCF6BCB1C5C320B1E2B9FDC0BB20C0CCBFEBC7D120C7D1B1B920C7C1B7CEBEDFB1B8C0C720B5E6C1A1B0FA20BDC7C1A120BCB3B8ED D2DB1E8C7F5C1D62E687770>

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

09권오설_ok.hwp

12.077~081(A12_이종국).fm

조사연구 권 호 연구논문 한국노동패널조사자료의분석을위한패널가중치산출및사용방안사례연구 A Case Study on Construction and Use of Longitudinal Weights for Korea Labor Income Panel Survey 2)3) a

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

09구자용(489~500)

Lumbar spine

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

09È«¼®¿µ 5~152s

패션 전문가 293명 대상 앙케트+전문기자단 선정 Fashionbiz CEO Managing Director Creative Director Independent Designer

example code are examined in this stage The low pressure pressurizer reactor trip module of the Plant Protection System was programmed as subject for

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

Can032.hwp

한국성인에서초기황반변성질환과 연관된위험요인연구

<31372DB9DABAB4C8A32E687770>

04김호걸(39~50)ok

<C7A5C1F620BEE7BDC4>



DBPIA-NURIMEDIA

???춍??숏

서론 34 2

untitled

<352EC7E3C5C2BFB55FB1B3C5EBB5A5C0CCC5CD5FC0DABFACB0FAC7D0B4EBC7D02E687770>

03이경미(237~248)ok


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

歯1.PDF


DBPIA-NURIMEDIA


<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

03-ÀÌÁ¦Çö

Journal of Educational Innovation Research 2017, Vol. 27, No. 1, pp DOI: * The

methods.hwp

DBPIA-NURIMEDIA

Kor. J. Aesthet. Cosmetol., 라이프스타일은 개인 생활에 있어 심리적 문화적 사회적 모든 측면의 생활방식과 차이 전체를 말한다. 이러한 라이프스 타일은 사람의 내재된 가치관이나 욕구, 행동 변화를 파악하여 소비행동과 심리를 추측할 수 있고, 개인의

139~144 ¿À°ø¾àħ

<3136C1FD31C8A35FC3D6BCBAC8A3BFDC5F706466BAAFC8AFBFE4C3BB2E687770>

디지털포렌식학회 논문양식

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 28(3),


RRH Class-J 5G [2].,. LTE 3G [3]. RRH, W-CDMA(Wideband Code Division Multiple Access), 3G, LTE. RRH RF, RF. 1 RRH, CPRI(Common Public Radio Interface)

DBPIA-NURIMEDIA

사회통계포럼

Journal of Educational Innovation Research 2017, Vol. 27, No. 2, pp DOI: : Researc

Kinematic analysis of success strategy of YANG Hak Seon technique Joo-Ho Song 1, Jong-Hoon Park 2, & Jin-Sun Kim 3 * 1 Korea Institute of Sport Scienc

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

<C7D1B1B9B1B3C0B0B0B3B9DFBFF85FC7D1B1B9B1B3C0B05F3430B1C733C8A35FC5EBC7D5BABB28C3D6C1BE292DC7A5C1F6C6F7C7D42E687770>

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

목 차 회사현황 1. 회사개요 2. 회사연혁 3. 회사업무영역/업무현황 4. 등록면허보유현황 5. 상훈현황 6. 기술자보유현황 7. 시스템보유현황 주요기술자별 약력 1. 대표이사 2. 임원짂 조직 및 용도별 수행실적 1. 조직 2. 용도별 수행실적

<B9CCB5F0BEEEB0E6C1A6BFCDB9AEC8AD5F31322D32C8A35FBABBB9AE5FC3CAC6C731BCE25F6F6B5F E687770>

02¿ÀÇö¹Ì(5~493s

264 축되어 있으나, 과거의 경우 결측치가 있거나 폐기물 발생 량 집계방법이 용적기준에서 중량기준으로 변경되어 자료 를 활용하는데 제한이 있었다. 또한 1995년부터 쓰레기 종 량제가 도입되어 생활폐기물 발생량이 이를 기점으로 크 게 줄어들었다. 그러므로 1996년부

09-감마선(dh)

untitled

10(3)-10.fm

124 Journal of Agriculture & Life Science 46(1) with carcass weight (0.51), the estimates of which were some higher than than with the other carcass t

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 30(3),

,,,.,,,, (, 2013).,.,, (,, 2011). (, 2007;, 2008), (, 2005;,, 2007).,, (,, 2010;, 2010), (2012),,,.. (, 2011:,, 2012). (2007) 26%., (,,, 2011;, 2006;

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

1..

Research subject change trend analysis of Journal of Educational Information and Media Studies : Network text analysis of the last 20 years * The obje

DBPIA-NURIMEDIA

?

DBPIA-NURIMEDIA

< C6AFC1FD28C3E0B1B8292E687770>

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1


THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 26(10),

Æ÷Àå82š

04-다시_고속철도61~80p


B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

10(3)-09.fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

03-2ƯÁý -14š

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타

(

10 이지훈KICS hwp

hwp

<303320C0CCBCBAB7CE4B D30352D F28C3D6C1BEB1B3C1A4292E687770>

44-4대지.07이영희532~

Transcription:

Journal of Animal Science and Technology 55(1) 13~18, 2013 http://dx.doi.org/10.5187/jast.2013.55.1.13 한우의유전체육종가의정확도추정 이승수 1 이승환 1 최태정 1 최연호 1 조광현 1 최유림 1 조용민 1 김내수 2 이중재 2 * 1, 2 Estimation of the Accuracy of Genomic Breeding Value in Hanwoo (Korean Cattle) Seung Soo Lee 1, Seung Hwan Lee 1, Tae Jeong Choi 1, Yun Ho Choy 1, Kwang Hyun Cho 1, You Lim Choi 1, Yong Min Cho 1, Nae Soo Kim 2 and Jung Jae Lee 2 * 1 National Institute of Animal Science, RDA, 2 Department of Animal Science, Chungbuk national University Cheongju, Chungbuk, 361-763, Korea ABSTRACT This study was conducted to estimate the Genomic Estimated Breeding Value (GEBV) using Genomic Best Linear Unbiased Prediction (GBLUP) method in Hanwoo (Korean native cattle) population. The result is expected to adapt genomic selection onto the national Hanwoo evaluation system. Carcass weight (CW), eye muscle area (EMA), backfat thickness (BT), and marbling score (MS) were investigated in 552 Hanwoo progeny-tested steers at Livestock Improvement Main Center. Animals were genotyped with Illumina BovineHD BeadChip (777K SNPs). For statistical analysis, Genetic Relationship Matrix (GRM) was formulated on the basis of genotypes and the accuracy of GEBV was estimated with 10-fold Cross-validation method. The accuracies estimated with cross-validation method were between 0.915~0.957. In 534 progeny-tested steers, the maximum difference of GEBV accuracy compared to conventional EBV for CW, EMA, BT, and MS traits were 9.56%, 5.78%, 5.78%, and 4.18% respectively. In 3,674 pedigree traced bulls, maximum increased difference of GEBV for CW, EMA, BT, and MS traits were increased as 13.54%, 6.50%, 6.50%, and 4.31% respectively. This showed that the implementation of genomic pre-selection for candidate calves to test on meat production traits could improve the genetic gain by increasing accuracy and reducing generation interval in Hanwoo genetic evaluation system to select proven bulls. (Key words : GBLUP, GEBV, SNP, Cross-validation, Genomic selection) 서론 (Genomic Selection, GS),,, (Meuwissen 2003).,, (Quantitative Trait Loci, QTL), QTL. Meuwissen (2001),.,. SNP (Single Nucleotide Polymorphisms),, EU (Rolf, 2010; Su, 2012; VanRaden, 2009; Hayes, 2009a).,, GBULP Bayesian * Corresponding author : Jung Jae Lee, Department of Animal Science, Chungbuk national University Cheongju, Chungbuk, 361-763, Korea. Tel: 82-17-434-8052, Fax: 82-43-273-2240, E-mail: ljj791201@chungbuk.ac.kr - 13-

(Lee, 2011; Cho and Lee, 2011), Lee(2012) 556 50K SNP chip GBLUP GEBV. () SNP (777K) (Genetic Relationship Matrix, GRM) GBLUP (Genomic Best Linear Unbiased Prediction) GEBV (Genomic Estimated Breeding Value), (Cross-validation). 1. Table 1. Number of heads by batch-number and age of month at slaughtering in progeny-tested steers Progeny-Tested Steers Batch-Number No. Age (Month) No. 45 119 22 64 46 138 23 305 48 148 24 183 49 147 재료및방법 2009 2012 45, 46, 48 49 552 Table 1. 4 3,674, (Carcass weight, CW), (Eye Muscle Area, EMA), (Backfat Thickness, BT) (Marbling Score, MS). Genome Nucleic Acid Purification Kit (MagExtractor TM, Toyobo CO., LTD. Osaka, Japan) DNA. SNP Illumina BovineHD BeadChip (777K SNPs)., (Hardy-Weinberg equilibrium, HWE), (Missing proportion, MSP) 20% Minor Allele frequency (MAF) 0.05 578,489 SNP. Total 552 552 2. (1) 육종가추정. Y = Xb + Zu + e Y, X (, ), Z, b, u, e, E (y) = Xb, Var(u) = G = A, Var(e) = R = I, Cov(μ, e) = 0 Var(y) = V = ZGZ' R. A,,. (2) 유전체육종가추정 578,489 SNP 4 SNP, (Likelihood Ratio Test) 5% 3.84 SNP. (over-estimation) SNP SNP BLUP (Ridge Regression Best Linear Unbiased Prediction, RR-BLUP) (Meuwissen et al., 2001; Whittaker ar al., 2000). (Infinitesimal Model) (Hayes et al., 2009a; Visscher et al., 2006), SNP (Genomic estimated breeding value, GEBV).. b(), i, SNP,,.. GEBV, (Gauss- - 14-

Seidel iteration), 1,000 1.0E-8. (3) 유전체혈연행렬추정 Allele Frequency Method (GOF) (Combined Pedigree and Genomic Relationship Method : H). GOF 0(VanRaden, 2008) n, SNP m, M. M n m., M (11) 0, (12) 1 (22) 2. MM' n n P ( Minor Allele Frequency) 2p j. (Misztal, 2009)., 1 2 SNP, G. (4) 유전체육종가정확도추정 RR-BLUP (Reference Set) SNP (Validation Set) (Cross-validation). SNP 552 502 (90%) RR-BLUP SNP SNP. 50(10%) GEBV 10. GEBV. (Exact Predicted Error Variance, PEV exact). PC SAS Package (Version 9.1). Intel Visual Fortran Compiler (Window Ver. 11.1). 결과및고찰 552,, Table 2.,, 352.99±37.83 kg, 82.35±8.30 cm 2, 7.99±3.08 mm 3.05±1.47. Hwang (2008) 23 40 2,791 321.01±41.89 kg, 75.72±8.19 cm 2, 8.27±3.69 mm 2.91±1.63, Kim (2010) 36 40 734 356.5±38.2 kg, 77.7±8.2 cm 2, 10.3±4.0 mm 3.3±1.7. SNP SNP 552 4 578,489 SNP Table 2. Descriptive statistics of traits for 552 progeny-tested streers Traits Mean S.D. Min. Max. CW (kg) 352.99 37.83 183 465 EMA (cm 2 ) 82.35 8.30 60 111 BF (mm) 7.99 3.08 23 2 MS 3.05 1.47 1 9 CW: Carcass weight; EMA: Eye Muscle Area; BT: Backfat Thickness; MS: Marbling score - 15-

. SNP 578,489 SNP 50,632, 50,435, 67,213 46,592. SNP, (random subsampling replication) 10 (10-fold cross validation). 552 502 (90%) SNP SNP 50 (10%) GEBV GEBV Table 3., 0.915~0.957. SNP RR-BLUP. reference validation data set, data set (Clack et al., 2012). (Hayes et al., 2009b) (Habier et al., 2007; Habier et al., 2010). reference ( : 0.4304, : 0.3926). 534 BLUP GBLUP Table 4. (GOF) (H) ( ),,, 0.50, 0.41, 0.40 0.50.. Table 5 SNP 534 () 3,674 GBLUP BLUP. GBLUP BLUP 534 0.51% ~1.28%, 3,674 0.57%~1.29%. 534,, 9.56%, 5.78%, 5.78% 4.18%, 3,674 Table 3. Mean accuracy of GEBV in the validation sets using 10-fold cross-validation method Traits 10-Fold Cross validation No. of SNP marker Mean accuracy S.D. CW 51,680 0.915 0.0060 EMA 47,394 0.950 0.0011 BF 65,264 0.925 0.0113 MS 45,134 0.957 0.0035 CW: Carcass weight; EMA: Eye Muscle Area; BT: Backfat Thickness; MS: Marbling score Table 4. Average accuracies of breeding value for traits using BLUP and GBLUP Population Analysis CW EMA BF MS Steers (534) Total (3,674) A (BLUP) 0.6047 0.6748 0.6748 0.7364 GOF (GBLUP) 0.6176 0.6812 0.6812 0.7416 A (BLUP) 0.2550 0.2838 0.2838 0.3089 H-matrix (GBLUP) 0.2679 0.2919 0.2919 0.3146-16-

Table 5. Comparison with mean difference and maximum difference of accuracies between BLUP and GBLUP from combined relationship matrix for traits Accuracy Mean Difference (%) Maximum Difference (%) Traits CW EMA BF MS Steers 1) 1.28 0.64 0.64 0.51 Total 2) 1.29 0.81 0.81 0.57 Steers 9.56 5.78 5.78 4.18 Total 13.54 6.50 6.50 4.31 1) Steers are 534 heads; 2) Total is 3,674 heads. 13.54%, 6.50%, 6.50% 4.31%. Forni (2011) SNP, 6%~27%, 1% ~4%. Lee (2012)., Forni (2011) BLUP,. 0.957. GBLUP 534,, 9.56%, 5.78%, 5.78% 4.18%, 3,674 13.54%, 6.50%, 6.50% 4.31%.. genomic breeding value, BLUP.,,.. ( 주제어 : GBLUP, GEBV, SNP,, ) 요 약 사 사 552,, SNP (777K)(Genetic Relationship Matrix, GRM) GBLUP (Genomic Best Linear Unbiased Prediction) GEBV (Genomic Estimated Breeding Value) (Cross-validation). 0.915~ 21 (: PJ008188). 인용문헌 Cho, C. I. and Lee, D. H. 2011. Study on Genetic Evaluation using Genomic Information in Animal Breeding Simulation Study for Estimation of Marker Effects. J. Anim. Sci. Tech. (Kor.) 53(1):1-6. - 17-

Forni, S., Aguilar, I. and Misztal, I. 2011. Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution. 43:1. Habier, D, Tetens, J., Seefried, F. R., Lichtner, P. and Thaller, G. 2010. The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution. 42:5. Habier, D., Fernando, R. L. and Dekkers, J. C. M. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 177:2389-2397 Hayes, B. J., Bowman, P. J., Chamberlain, A. C., Verbyla, K. and Goddard, M. E. 2009a. Accuracy of genomic breeding values in multi-breed dairy cattle popilations. Genetics Selection Evolution. 41:51. Hayes, B. J., Visscher P. M. and Goddard, M. E. 2009b. Increased accuracy of artificial selection by using the realized relationship matrix. Genet Res. 91:47-60. Hwang, J. M., Kim, S. D., Choy, Y. H., Yoon, H. B. and Park, C. J. 2008. Genetic Parameter Estimation of Carcass Traits of Hanwoo Steers. J. Anim. Sci. Tech. (Kor.) 50(5):613-620. Kim, H. S., Hwang, J. M., Choi, T. J., Park, B. H., Cho, K. H., Park, C. J, and Kim S. D. 2010. Research on the Reformation of the Selection Index for Hanwoo Proven Bull. J. Anim. Sci. Tech. (Kor.) 52(2):83-90. Lee, J. H. 2011. Study on Methodology for Estimating Breeding Values using Genomic Information. Ph. D. thesis, Hankyoung National University. Lee, J. J. 2012. Genetic Evaluation for Carcass Traits of Hanwoo using Pedigree and SNP Marker-Derived Relationship Matrix. Ph. D. thesis, Chungbuk National University. Lee, S. H., Lim D. J., Jang, G. W., Cho, Y. M., Choi, B. H., Kim S. D., Oh S. J., Lee J. H., Yoon D. H., Park E. W., Lee, H. K., Hong, S. K. and Yang B. S. 2012. Genome Wide Association Study to Identity QTL for Growth Traits in Hanwoo. J. Anim. Sci. Tech. (Kor.) 54(5):1-10. Meuwissen, T. 2003. Genomic Selection : the future of marker assisted selection and animal breeding. FAO. Meuwissen, T. H. E., Hayes, B. J. and Goddard, M. E. 2001. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics. 157: 1819-1829. Misztal, I., Legarra, A. and Aguilar, I. 2009. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 92:4648-4655. Rolf, M. M., Taylor, J. F., Schnabel, R. D., Mckay, S. D., Mcclure, M. C., Northcutt, S. L., Kerley, M. S. and Weaber, R. L. 2010. Impact of reduced marker set estimation of genomic relationship matrices on genomic selection for feed efficiency in Angus cattle. BMC. Genetics 11:24. SAS Institute Inc. 2004. SAS OnlineDoc 9.1.3. Cary, NC: SAS Institute Inc. Su, G., Brondum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P. and Lund, M. S. 2012. Comparison of genomic predcitions using medium-density (~54,000) and high-density (~777,000) single uncleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. J. Dairy Sci. 95:4657-4665. VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. dairy sci. 91:4414-4423. VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F. and Schenkel, F. S. 2009. Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 92:16-24. Visscher, P. M., Medland, S. E., Ferreira, M. A., Morley, K. I., Zhu, G., Cornes, B. K., Montgomery, G. W. and Martin, N. G. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLOS Genetic 2(3):e41. Whittaker, J. C., Thompson, R. and Denham, M. C. 2000. Marker-assisted selection using ridge regression. Genetical Research. 75:249-252. (Received Jan. 28, 2013; Revised Feb. 25, 2013; Accepted Feb. 26, 2013) - 18-