Biomaterials Research (2007) 11(1) : 51-58 Biomaterials Research 7 The Korean Society for Biomaterials w» y s v /š w w w Synthesis of Electroactive Polypyrrole Derivatives/Polyelectrolytes Complex for the Purpose of Multifunctional Bio-devices Application y» 1 Á x 2 Á½ 4 Á 1,3, * Hong Ki Bae 1, Joo Hyeung Lee 2, Ji-Heung Kim 4, and Dong June Chung 1,3, * 1 Š Š f Š, 2 LGŒŠ e, 3 d Š l Œ t Š 4 Š Š ŒŠ Š 1 Department of Polymer Science and Engineering, SungKyunKwan University, Suwon 440-746, Korea 2 LG Chem. Research Center, Daejeon 305-380, Korea 3 Intellectual Biointerface Engineering Center, Seoul National University, Seoul 110-749, Korea 4 Department of Chemical Engineering, SungKyunKwan University, Suwon 440-746, Korea (Received December 13, 2006/Accepted February 9, 2007) To develope new type biosensors for protein detecting on the basis of non-metallic electrodes, we tried to synthesize COOH group containing pyrrole monomer(located on the 3 positioned carbon of pyrrole) and polymerize to high molecular weight film. Then we also synthesized α,ω-nh 2 terminated polyelectrolyte and coupled with COOH containing polypyrrole film using DCC(N,N'-dicyclohexyl carbodiimide). Synthesized polymer composite film having negative charged polymeric chain showed repeated responses which were derived from electric oxidation/reduction signals. The introduction of polyelectrolyte to the polypyrrole surface was confirmed by quatrz crystal equipped with galvanostat, and by the CV(cyclic voltammogram) measurement of polypyrrole-polyelectrode film under the various galvanostat conditions. We could observe the mass change of the polymeric complex by ion transportation through the swelled/deswelled polymeric chains of polyelectrolyte according to the electric oxidation/reduction signals. These responses could be detected by the mass changes on quartz crystals inducing ion trapping in swelled/deswelled polymeric chains of polyelectrolyte which was bounded to polypyrrole film through covalent bonding. Therefore this system can be applied to simulate the selective protein adsorption and desorption on the surface of biomaterials in living body with very usefulness and stable controllability. Key words: COOH containing pyrrole, α,ω-nh 2 terminated polyelectrolyte, Electroactive, Bio-devices f t f fš Š t Œ lš f f f u f Š f. f eš h f t f f ~ f f, f e Š fš r 1,2) f f, f (-COOH) polypyrrole coupling f fš f Š l h f f lhh hfh ff Š Š f. fd lf f fdš 3) fhš l lf lf f Œ~ fš Š 4,5). f Š polypyrrolef fd e g dœ f *sf hf: djchung@skku.edu ƒf hl i hf f, biosensor 6) f l fd e hr Œ f. f Š 7,9-11) Š Š f f vf hf ff f lšš. Polypyrrole complexf h ŒŠh Š f eš dopant polyelectrolytef poly(nipaam-co-x-co-y)(x: Butylmethacrylate, Diethylaminoethyl methacrylate, Y: Acrylic acid, Itaconic acid) Š Š, cyclic voltammogram(cv)f Š polypyrrole complexf h h Œ f rš eš, polypyrrolef i i Œ, cyclic voltammogram (CV) wh Œ, working electrodef Œ Œ/Œe he f ion mobility fš mass change Š. Š f d Š morphology SEM, AFMf Š rš. f d f f Š h f 51
52 Œ ÁfjŒÁ l Áh j Štf Š f Œf, polypyrrolef -COOH f Š f h ŒŠhf jšš, f fdš -NH 2 f hšl(ptba-baps) f ihf polypyrrole polyelectrolyte ff hh hf Š f e Šf fdš polypyrrole f z. polypyrrole film e Šf f f hšl(ptba-baps) f if h f fdš biosensing h h f fš h h ŒÁŒe ff ~ rf Š, f fš Œ f f Šh if Š hf h Šlf ~ r h l h (sensitivity)f hš lš f. f f fdš l l f rt Œ f hhf Š, rt Œ h f Štf ŒÁŒe Œ(l mass change) wh Š, hf f j ff f Š Œf biosensing h i Š Š noise signalf f ff f. f Š Œ Œ fš f f i t hf f f h d Š f. Carboxyl groupf xœ pyrrole monomer Š Š e Š f f. N-acetonyl phthalimide diethyl oxalacetate sodium salt Aldrich(St. Louis, Mo, USA) 1 f fš hh f dš. h Œ Šh jš ŠdŠ pyrrole(acros Organics., Morris Plains, NJ, USA)f l ~ f r ~ s g Š f, fh f wš dš. Coupling f N, N'-dicyclohexyl carbodiimide(dcc, Tokyo Kasei, Tokyo, Japan) ~f d f 1 f fš hh f dš. x e Pyrrolef h ŒŠh jš CV whf eš gx f Figure 1 f 3-electrode system Š Š. Working electrode (Au), (Pt), stainless steelf dš, f stainless steelf Š h polishing h tetrachloroethylene 1 rinsing hf x dš. Pyrrolef h jš cyclic voltammogram whf EQCN-600(ELCHEMA, Potsdam, NY, USA) Potentiostat(Pine instrument EG&G, Grove City, PA, USA) fdš. Figure 1. The diagram for the electro polymerization (a), 3-electrode system (b), and chemical scheme of electro polymerization (c). 3-Carbethoxy-4-methylpyrrole w 12) N-acetonylphthalimide(50.0 g) H 2 0(75 ml), HCl(150 ml) 3-neck flask reflux gx rš, 90-100 o Cf f 4 f z. f, j NaOH(10 w/w%) d f fdš d f ph 1.5 ihš. f xh phthalic acid(1st filtering material) filteringš h Š. f solutionf f step fdš (1st product). Diethyloxalacetate sodium salt(45.0 g) H 2 O(400 ml) f d f h h iš, hi d f one-neck flask 75 o C elš f d 1r product t z. 2 ~ f, NaOH(10 w/w%) d f fdš ph 5 ihš. 2r product eš 12 v x ~, xh f 2-3 t Š 2r product d f, f NaOH(10 w/ w%) d f fdš ph 5 ph 8 ihš f, d f 75 o C 30 Š. d f f HCl(1 v/v% solution)f fdš ph 8 ph 3f g Œ z. g Œ hf x d f g Biomaterials Research 2007
t f f fdf eš h h Œ f e t/ f hšl Štf Š 53 Š f, 2-3 Š xh f (2-carboxy-3-carbethoxy- 4-methylpyrrole)f f f. KOH(4.4 g) H 2 O(12.5 ml) f d 2nd stepf ui product(67.0 g) t Š, 24 reflux z. f d f lš H 2 SO 4 fdš ph 9 ihš, v Š x ~, Š xh f h Š. l d f HCl(1 v/v% solution) 10 ml t Š ph 3f g Œ Š v Š g Š f, 2-3 t xh lf z ui productf 3-carboxy-4- methylpyrrolef. f f f hf Figure 2 ~. Figure 2. Chemical scheme for the synthesis of pyrrole-cooh monomer. Vol. 11, No. 1
54 Œ ÁfjŒÁ l Áh j Figure 3. The chemical reascions for ptba-baps to polypyrrole complex. w p xœ ~ pyrrole monomer f j f l f Varian 1 H-NMR(Unity Inova 500 MHz, Germany)f fdš dimethyl sulfoxide-d 6 ((CD 3 ) 2 SO) dš z whš, Š l f KBr Pellet f Unicam Mattson 5000 FT-IR spectrometer (Model : GL-5020, Wisconsin, USA) fdš ŒfŠ. Differential Scanning Calorimetry(DSC, TA instrument, USA) fdš Š tf fhf whš Š. Substituted pyrrole w polypyrrole film ptba-baps xœ ~ pyrrole monomer(sub-pyrrole) f hšlf fdš h ŒŠhf jš ~ f, DCC fdš Š Š ptba-baps 8,9) polypyrrole film f ~ hf Figure 3 ~. Sub-pyrrole monomer (0.2 g) f hšl(0.1m KCl) dš ~, fh h Š 20 h ŒŠhf jš z. DCC 0.4 gf methanol 100 ml 10 o C 5 z. f, fd -NH 2 fhšlf ptba-baps(0.1 g)f methanol d 100 ml h f x f cell t Š galvanostatf 20 Š fh h j ptba-bapsf f h mass Œ Š ŒfŠ. ptba-bapsf w igš ester ŠŠ e Š 0.1N NaOH solution 5 f ~ f, Š h Š f CV Š Š ŒfŠ. ptba-bapsƒ polypyrrole cyclic voltammogram d Polypyrrole/ f hšl complexf cyclic voltammogram f potentiostat i ŠŠ. fh h f f (-0.8V~+0.5V; polypyrrole/ f hšl complexf Œ/Œe he Š )Š f polypyrrole fhš l f complex Š mass Œ EQCNf fdš ŒfŠ. f sweep rate 20 mv/sec hš Š f, working electrode 10 MHzf quartz cell (Pt) stainless steel(ss)f fdš, counter electrode f, reference electrode Ag/ AgCl/KCl(sat) dš. CV whf eš d f hšlf 0.1 Mf NaClO 4 fdš. š 2-Carboxy-3-carbethoxy-4-methylpyrrole w y 2-Carboxy-3-carbethoxy-4-methylpyrrolef Š FT- Biomaterials Research 2007
t f f fdf eš h h Œ f e t/ f hšl Štf Š 55 IR NMR whf Š ŒfŠ. spectra -OH, -COOH, N-H Š ƒ peak f ig ŒfŠ f. Š 2-carboxy-3-carbethoxy-4-methylpyrrolef hf DSC Š ŒfŠ (data not shown), (195.7~196.8) e Š f f. Polypyrrolef f hf jšf 2, 3 y f 2, 5 y ff f h ŒŠh jš fdš eš pyrrole monomer 2- positionf fd 3-positionf hf ~ f jš f dš. 3-Carboxy-4-methylpyrrole w y h ŒŠh jš fdš eš ui product Š f FT-IR/NMR/DSC wh uihf h ŒŠh jš f ŒfŠ. FT-IR wh Figure 4 ~, NMR wh Figure 5 ~. h f product s -COOH, -NH, -CH 3 fš ƒ peak f r f (1720 cm -1, 3200 cm -1, 2900 cm -1 ) ƒ 2-carboxy- 3-carbethoxy-4-methylpyrrolef d 12.25 ppm ~ -OH peak 4.29 ppm ~ carbethoxyf methyl fš peak 3-carboxy-4-methylpyrrole -OH peak 11.1 ppmf shift, carbethoxyf methyl fš peak ff ŒfŠ f. Š productf hf DSC Š ŒfŠ melting point 243, pyrrole-2-carboxylic acidf mp 209 f Š, -COOH f f -CH 3 f ex f f fš fhf f. Figure 6 f peakf r t mf peakf fh Š h l peakf monomer f degradation peak. f f first heating temperature range Œ z whš ~f ŒfŠ f. f 3-position carboxylic groupf xœ pyrrole monomer(sub-pyrrole)f Š f Œf. Sub-pyrrole w» yw w Sub-pyrrolef h ŒŠh jš Œf xœ pyrrole monomer(0.2 g) 0.1M KCl d dš ~, fh h Š 20 h ŒŠh jšf Š, xœ l f pyrrole monomerf jšš d fš h e f f Figure 4. IR spectra of 2-carboxy-3-carbethoxy-4-methylpyrrole (a) and 3-carboxy-4-methylpyrrole (b). Figure 5. 1 H-NMR spectra o 2-carboxy-3-carbethoxy-4-methylpyrrole (a) and 3-carboxy-4-methylpyrrole (b). Vol. 11, No. 1
56 Œ ÁfjŒÁ l Áh j Figure 6. DSC thermogram of 3-carboxy-4-methylpyrrole. 1st heating temp.range : 50-260 o C, Heating rate : 10 o C/min(1st) and 10 o C/ min (2nd), Cooling : 5 o C/min(1st). Figure 8. The introduction of ptba-baps to sub-polypyrrole film. Introduction time : 20 min, Working electrode : Quartz cell, Solution : Methanol (100 ml)+ptba-baps (0.1 g), Temp : 22 o C. h f mass Œ r hf xœ polypyrrole film -NH 2 fd ptba-baps f ff ŒfŠ. f polypyrrole complexf CV fs ptba-baps f polypyrrole film he Œ/Œe h ptba-baps f, ptbabaps w igš tert-butyl -COOH Š ~ f, redox reactionf Š. CV Š Figure 9 Œ Œe mass change Figure 10 ~. Figure 9 f Šf eš Figure 7. Electrochemical polymerization of sub-pyrrole using 0.1 M KCl aqueous solution. Pyrrole concentration : 0.5 w/v%, Working electrode : Quartz cell, Temp : 22 o C. polypyrrolef filmf Œ f ŒfŠ f. jš h polypyrrole fš mass change Figure 7 ~ f, fš jši Š xœ pyrrole monomer fdš d Š, f 4000ng h Š (data not shown), f xœ pyrrole monomer Š 3, 4-position exš xœ jš h fth g e Š jš h fhš sub-pyrrole f 2,5 y ff ŠŠ f. Polypyrrole film ptba-bapsf f jš polypyrrole igš -COOH DCC Œ Œ ~ f, ptba-bapsf amine f z fš, Figure 8 l s 20 4000 ng Figure 9. Cyclic voltammogram of PPy/ptBA-bAPS in solution of methanol/kcl. Sweep rate : 20 mv/sec, Solution of E.C.P : Methanol+KCl, ME of C.V : Methanol+KCl, Working electrode : Quartz cell. Biomaterials Research 2007
t f f fdf eš h h Œ f e t/ f hšl Štf Š 57 Figure 10. Reversible mass change of sub-polypyrrole complex after the introduction of ptba-baps Working electrode : Quartz cell, Solution : Methanol (30 ml) + KCl (5 ml), Temp : 23 o C. site igš ptba-bapsf w -COOH Œ ~ d l Š d Œ Œe Œ f ŒŠ ~, f hff fh f f 9) f f. Figure 10f, f he h h Œ Œef h Œ ptba-bapsf w f Š f ~ Š f h polypyrrole f Œ Œef ~ CV } -0.4-0.2 V Š ~ l. f ptba-baps f Šh ~ polypyrrole Š f ŒÁ Œe hef hšl f f f vff Š f. Š ptba-bapsf w f 9) ŠŠ w -COOH hœ ~ d Œ Œe fš CV } Š ~, f ptbabapsf w igš fhšf f hšl f f f vff tl fš. 9) l, h f Š f f hšlf polypyrrolef h h Œ f xf ŒfŠ f hšlf f igš Š hšl f Š fhš f f fš polypyrrolef h hœ f el f f. f f polypyrrole film e Šf f f hšl(ptba-baps) f ŒŠ Šf fš h f fš h h ŒÁŒe ff ~ rf Š, hhf l l f rt Œ f Š, rt Œ h f Štf ŒÁŒe Œ(l mass change) Š, f f fdš f j ff f Š Œf biosensing h i Š Š noise signalf f ff f., pyrrolef, h, polyelectrolytef hš(+ Œf -) f ihš f Œ Œe f f l, h h Œ f if polypyrrole complex h iš ff f. h ff 3, 4ex xœ (-CH 3 -COOH) polypyrrolef f hšlf fdš jšš. f f fdš α,ω ff f ŒŠh Šf fš f, Œ Œe h f l Œ Š ff f. Carboxylic groupf pyrrolef 3ex xœ monomer Š Š f hšlf fdš Š Š polyelectrolyte fdš xœ pyrrole monomer jš ~ d f Š h f, f f pyrrole monomerf 3, 4 ex igš jš h g dff f dš f. Š DCC fdš polypyrrole igš carboxyl group -NH 2 f f hšl f fš, f hf galvanostat i Š h f mass change vhš Œf Š. CV wh Š f hšlf Œ Œe f ~ r f f mass change ŒfŠ f. f f, biosensorf hf h f levelf Œ fš f f ~ ff f. Š ph, Šh ~f Œ fš u f f f f f hydrogel f f fd Š, f fdš biosensing Š Š j f. f f Š Šg le d l Œ t Š f Š f. š x 1.N. C. Foulds and C. R. Lowe, Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers, Anal. Chem., 60, 2473-2478 (1988). 2. F. Garnier, H. K. Youssoufi, P. Srivastava, and A. Yassar, Enzyme recognition by polypyrrole functionalized with bioactive peptides, J. Am. Chem. Soc., 116, 8813-8814 (1994). 3. W. Lu, H. Zhao, and G. G. Wallace, Detection of cytochrome c using a conducting polymer mediator containing electrode, Electroanalysis, 8, 248-252 (1996). 4. O. A. Sadik, M. J. John, G. G. Wallace, D. Banett, C. Clarke, and D. G. Larry, Pulsed amperometric detection of thaumatin using antibody-containing poly(pyrrole) electrodes, Analyst, 119, 1997-2000 (1994). Vol. 11, No. 1
58 Œ ÁfjŒÁ l Áh j 5. S. B. Adeloju, S. J. Shaw, and G. G. Wallace, Polypyrrole-based potentiometric biosensor for urea : Part 2. Analytical optimisation, Anal. Chem. Acta., 281, 621-627 (1993). 6. C. Kranz, H. Wohlschläger, H.-L. Schmidt, and W. Schuhmann, Controlled electrochemical preparation of amperometric biosensors based on conducting polymer multilayers, Electroanalysis, 10, 546-552 (1998). 7. J. H. Lee, J. Y. Bae, and D. J. Chung, Studies on the application of multifunction polymeric materials for bio-deivce, Polymer (Korea), 23, 129-136 (1999). 8. A. Shefer, A. J. Grodzinsky, K. L. Prime, and J.-P. Busnel, Freeradical telomerization of tert-butylacrylate in the presence of bis(4-aminophenyl) disulfide as a useful route to aminoterminated telomers of poly(acrylic acid), Macromolecules, 26, 2240-2245 (1993). 9. S. H. Jeong, J. Y. Bae, J. H. Kim, and D. J. Chung, Synthesis of electroactive polythiophene derivatives and its application for biointerface (I), Polymer(Korea), 26, 28-36 (2002). 10. Y. H. Lee, W. S. Shim, and D. S. Lee, Charactristic change of polypyrrole composites with variation of the polyelectrolyte, Polymer(Korea), 23, 587-596 (1999). 11. W. S. Shim and D. S. Lee, Electroactive and temperaturesensitive hydrogel composites, J. Appl. Polym. Sci., 74, 311-321 (1999). 12. R. E. Lancaster Jr. and C. A. VanderWerf, An improved synthesis of 3-methylpyrrole, J. Org. Chem., 23, 1208-1209 (1958). Biomaterials Research 2007