Langmuir Micro Separated Flow Analysis using Langmuir Slip Boundary Condition

Similar documents
116 제 2 발표장 (2 일금 ) 특별세션 - 고성능컴퓨팅 박근태 1, 최해천 1*, 최석호 2, 사용철 2, 권오경 3 ANALYSIS AND CONTROL OF TIP-LEAKAGE FLOW IN AN AXIAL FLOW FAN USING LARGE EDDY SI

ePapyrus PDF Document

(1 일목 ) 제 3 발표장 47 수치기법 [I] 이은택 1, 안형택 2* SIMULATION ON FLOW PAST A CIRCULAR CYLINDER USING UNSTRUCTURED MESH BASED INCOMPRESSIBLE FLUID SOLVER(ULSAN3

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

12(4) 10.fm

1 n dn dt = f v = 4 π m 2kT 3/ 2 v 2 mv exp 2kT 2 f v dfv = 0 v = 0, v = /// fv = max = 0 dv 2kT v p = m 1/ 2 vfvdv 0 2 2kT = = vav = v f dv π m

untitled


14.531~539(08-037).fm

ePapyrus PDF Document

歯522박병호.PDF

<31325FB1E8B0E6BCBA2E687770>

(Vacuum) Vacuum)? `Vacua` (1 ) Gas molecular/cm 3


82 제 1 발표장 (2 일금 ) CFD 응용 [V] 이남훈 1*, 류태광 2 NUMERICAL VERIFICATION OF SHAKE TABLE TEST FOR THE LIQUID STORAGE TANK N. Lee and T. Yoo 1.,.,,,.,. Baek e

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할


DBPIA-NURIMEDIA

KAERIAR hwp

Precipitation prediction of numerical analysis for Mg-Al alloys

광덕산 레이더 자료를 이용한 강원중북부 내륙지방의 강수특성 연구

Introduction Capillarity( ) (flow ceased) Capillary effect ( ) surface and colloid science, coalescence process,

Analysis of objective and error source of ski technical championship Jin Su Seok 1, Seoung ki Kang 1 *, Jae Hyung Lee 1, & Won Il Son 2 1 yong in Univ

¼º¿øÁø Ãâ·Â-1

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 29(3),

산선생의 집입니다. 환영해요

< B3E2BFF8BAB828C8AFB0E629312E687770>

부문별 에너지원 수요의 변동특성 및 공통변동에 미치는 거시적 요인들의 영향력 분석

γ

2. 수치시뮤레이션 2.1 기본방정식과수치조건 기본방정식은 Navier-Stokes 방정식이며 FEM 수치기법으로이산화하여구조격자를만들어계산을수행하였다. k- 을사용한수송방정식은 t (ρε)+ (ρεu x i )= i x j [( μ+ μ t σ ε ) ε + C 1ε

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Mar.; 25(3),

03 장태헌.hwp

응용A 수정.hwp

슬라이드 제목 없음

전용]

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

<31372DB9DABAB4C8A32E687770>

박선영무선충전-내지

???? 1

Microsoft Word - KSR2013A320

DBPIA-NURIMEDIA

< C6AFC1FD28B1C7C7F5C1DF292E687770>

Main Title

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

14.091~100(328-하천방재).fm

±è¼ºÃ¶ Ãâ·Â-1

Microsoft PowerPoint - 7-Work and Energy.ppt

<C7A5C1F620BEE7BDC4>

878 Yu Kim, Dongjae Kim 지막 용량수준까지도 멈춤 규칙이 만족되지 않아 시행이 종료되지 않는 경우에는 MTD의 추정이 불가 능하다는 단점이 있다. 최근 이 SM방법의 단점을 보완하기 위해 O Quigley 등 (1990)이 제안한 CRM(Continu

À±È°Ãß°è½ÉÆ÷ÆÊÇ÷¿ 59ȸ-ÃÖÁ¾

DBPIA-NURIMEDIA

歯86박춘경.PDF

, V2N(Vehicle to Nomadic Device) [3]., [4],[5]., V2V(Vehicle to Vehicle) V2I (Vehicle to Infrastructure) IEEE 82.11p WAVE (Wireless Access in Vehicula

유한차분법을 이용한 다중 기초자산 주가연계증권 가격결정

스포츠과학 143호 내지.indd

09È«¼®¿µ 5~152s

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

레이아웃 1

歯174구경회.PDF

Microsoft PowerPoint - HydL_Ch4_Losses [호환 모드]

<5B D B3E220C1A634B1C720C1A632C8A320B3EDB9AEC1F628C3D6C1BE292E687770>

e hwp

PJTROHMPCJPS.hwp

08원재호( )

DBPIA-NURIMEDIA

歯140김광락.PDF

untitled

03_전체논문취합_전체(추계)_수정본.hwp

45-51 ¹Ú¼ø¸¸

歯49손욱.PDF

<C3D6C1BE2DBDC4C7B0C0AFC5EBC7D0C8B8C1F D32C8A3292E687770>

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Aug.; 30(8),

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

19(1) 02.fm

À±½Â¿í Ãâ·Â

- 2 -

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

99보고서.PDF

(Table of Contents) 2 (Specifications) 3 ~ 10 (Introduction) 11 (Storage Bins) 11 (Legs) 11 (Important Operating Requirements) 11 (Location Selection)

High Resolution Disparity Map Generation Using TOF Depth Camera In this paper, we propose a high-resolution disparity map generation method using a lo

(2) : :, α. α (3)., (3). α α (4) (4). (3). (1) (2) Antoine. (5) (6) 80, α =181.08kPa, =47.38kPa.. Figure 1.

Coriolis.hwp

에너지경제연구 Korean Energy Economic Review Volume 9, Number 2, September 2010 : pp. 19~41 석유제품브랜드의자산가치측정 : 휘발유를 중심으로 19

(2 일금 ) 제 1 발표장 Opensource CFD toolkit OpenFOAM, SNUFOAM. (1) (2).,,,,. (3) (1), (2) RANS (Reynolds-averaged Navier-Stokes) SST. - PIMPLE (merg

유해중금속안정동위원소의 분석정밀 / 정확도향상연구 (I) 환경기반연구부환경측정분석센터,,,,,,,, 2012

67~81.HWP

M&S. EDISON. e-science EDISON_CFD[2] EDISON. (geometry kernel software),,, EDISON_CFD.,.. 4. e-science EDISON M&S.., EDISON , b f. Find to min

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

창의-열유체-3

< C6AFC1FD28C3E0B1B8292E687770>

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

1 Nov-03 CST MICROWAVE STUDIO Microstrip Parameter sweeping Tutorial Computer Simulation Technology

인쇄본 - 10졸업논문_배세욱_강내탄도에 사용되는 Ergun식에 대한 수치적 보정연구_초록 수정.hwp

Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

02¿ÀÇö¹Ì(5~493s

<30352DB1E2C8B9C6AFC1FD2028C8ABB1E2C7F D36362E687770>

-

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

Transcription:

Langmuir Micro Separated Flow Analysis using Langmuir Slip Boundary Condition 200212

Langmuir Micro Separated Flow Analysis using Langmuir Slip Boundary Condition.

i ii NOMENCLATURE..iii LIST OF FIGURES...v LIST OF TABLES vi 1.1 2...4 2.1 4 2.2 5 2.3..9 3...10 3.1 10 3.2 T...17 4...30...31 ABSTRACT.34...35

Langmuir, T. MaxwellLangmuir. Langmuir Beskok, Maxwell, DSMC.,. T 10~60.,. Langmuir.

NOMENCLATURE Roman Symbols A Ec D e F r G r Kn L Ma Pr Re R S T T T 0 w mean area of a site Eckert number Potential parameter Convective flux vector Viscous flux vector Knudsen number Channel length Mach number Prandtl number Reynolds number Gas constant Control surface length Temperature Reference temperature Wall temperature c p Specific heat ratio h o k n r p q B Specific total enthalpy Boltzmann constant Unit vector normal to the control surface Static pressure Heat diffusion u, v Cartesian velocity components u g u w Slip velocity Wall velocity

u 0 u λ Reference velocity Tangential gas velocity x, y Dimensional coordinates Greek Symbols α The fraction of covered surface β Pressure relaxation factor γ Blending factor used in the approximation of convective flux λ Mean free path µ Molecular viscosity ρ Fluid density σ v Accommodation coefficient σ T Thermal-accommodation coefficient τ Viscous stress τ Viscous dissipation in energy equation

List of Figures Fig. 1 Fig. 2 Schematic of the backward-facing step geometry. Unstructured grid after the expansion of the backward-facing step geometry. Fig. 3 Pressure and streamwise velocity along the backward-facing step channel. Comparison of DSMC and Navier-Stokes utilizing the Langmuir slip condition are presented. Fig. 4 Velocity and temperature distribution before, and after the expansion. Various slip models are compared to the DSMC solutions. Fig. 5 Shear stress distributions at top and bottom walls using Beskok, Maxwell and Langmuir slip condition. Fig. 6 Fig. 7 Fig. 8 Schematic of the flow split in a T-shaped planner branch Unstructured grid at a part of main and side branch Mach number contours obtained by the Maxwell (under figure) and Langmuir (up figure) slip models. Fig. 9 Velocity, pressure, and Mach number distribution at a horizontal and cross section. (Re=10) Fig. 10 Velocity, pressure, and Mach number distribution at a horizontal and cross section. (Re=50) Fig. 11 Velocity and Mach number distributions utilizing the Langmuir slip model of increasing Reynolds number. Fig. 12 Distribution of pressure and streamwise velocity using each boundary condition(re=30).

Fig. 13 Pressure and velocity distributions along main branch using each boundary conditions (x = 0.5, 0.95). Fig. 14 Comparison of vorticity for incompressible and compressible rarefied gas flows along lower wall of side branch List of Figures Table 1 Notation and location for the streamwise cuts presented in the step geometry locations TW and BW correspond to the DSMC cell adjacent to the walls. Table 2 Description and location for the streamwise cuts presented in the T-shaped micro-manifold geometry locations.

MEMS(Micro-Electro-Mechanical-Systems), (biomedical system), Bio-chip [1]. MEMS. MEMS,, Navier-Stokes.,. Kn,,. Kn,,. (slip flow), (rarefaction), (compressibility), (intermolecular forces)[1-2]. MEMS [1-10] DSMC(Direct Simulation Monte Carlo) [3]Navier-Stokes [4]. Bird[3] DSMC MEMS,., Navier-Stokes

, DSMC. Kn. Kn 0.01, (no-slip boundary condition) Navier-Stokes,. 0.01 Kn 0.1, (slip boundary condition) Navier-Stokes, (slip flow regime). 0.1 Kn 10, Navier-Stokes (transition flow regime), Kn > 10, (free molecular flow). Boltzmann.,,, MEMS [5]. 1 (the first-order slip boundary condition)maxwell [6-8] (the high-order slip boundary condition)([4],[9])., Myong([2],[5],[10]) [11] Langmuir. Langmuir Navier-Stokes [12]., MEMS,

,,., [9],, DSMC.

2. 2.1 2.,,. nds G nds = S F 0 (1) S F, G.. r F = f i + g j 1 r ; G = ( fv i + gv j). (1a) Re f ρu 2 ρu + p = ρuv ρuh o ; ρv ρuv g = + ; (1b) 2 ρv p ρvh o f v 0 τ xx = τ xy τ x qx ; g v 0 τ xy = τ yy τ y qy., ρ, p, u v x y h. o

Re. τ, q.,.. p = ρrt. (1c). x * = x / L ; y * = y / L ; u * = u / u ; v * = v / u ; ref ref p * 2 = p /( ρ ) ; T * = T / T ; ref ρ * = ρ / ρ ; ref ref u ref h = h ; Re = ( ρ ref u ref L) / µ ref * o 2 o / uref (1a)(1b) *. 2.2,.,, MEMS [1]. MEMS Maxwell-Smoluchowski

[13]., [14] 1879Maxwell, [1]. u g u w 2 σ v = σ v u λ y w (2), λ σ (accommodation coefficient),, v ug, uw., Von Smoluchowskitemperature-jump,. u * g u * w 2 σ v u = Kn σ v y 2 3 ( γ 1) Kn Re T + Ec 2π γ x * * w * * w (3) T 2 σ Kn T * * * T g Tw = * σ T ( γ + 1) Pr y 2γ w (4), *, γ σ, T (thermal-accommodation coefficient), Ec Eckert. Ec u c T T T 2 = 0 = ( γ 1) 0 2 Ma (5) p, u0 ( gas 0 (reference velocity), T = T T ), T0 (reference temperature).,

Maxwell. u σ * * * 2 v u g uw = Kn * σ v y w (6),,,.,., (6) Beskok[4] 2. u g 1 = ) 2 [ u + (1 σ u σ u ] λ v λ +, uλ (tangential gas velocity)., v Maxwell., Navier-Stokes Kn 1, Beskok Kn 2. Myong Langmuir. (adsorption). Langmuir 2 (the fraction of covered surface) α., w (7)

α., (8) [10]. βp α = (8) 1 + βp (9). βp α = (9) 1 + βp, β, (10). Aλ / Kn D e β = exp (10) kbtw kbtw, k B Boltzmann, A D, λ, e. β, D e. N 2 (9)., (9)(10) α. T = αtw + ( 1 α) T (11) 0 u = αuw + ( 1 α) u (12) 0, u0, T0.. Maxwell, Beskok DSMC.

2.3.. - SIMPLE[15-17]. -. - (edge) [18-19]. - 2 1 (piecewise linear reconstruction)[18]. - DemirdzicMuzaferija[15]..

3. 3.1 MEMS,. Langmuir DSMC, Maxwell Beskok2 [9].. T- [20].. Fig. 1,. h, S, / h = 0. 467 S, x = 5. 6., N 2., x / h = 0.86, 15869. Re = 80, Pr = 0. 7, 300K, 2.32 Langmuir, DSMC, Maxwell, Beskok. Fig. 3 5

Fig. 1 Schematic of the backward-facing step geometry. Fig. 2 Unstructured grid after the expansion of the backward-facing step geometry.

DSMC. Table 1.,,. 1.2 < x / h < 1. 6,,, x / h 2.0...,.,. x / h 3.0., 0. Fig. 4 ( x / h = 1. 7 ) ( x / h = 2. 1),. u, v, y, / h = 0. 25. Maxwell,. u, v,, u.,

P 7 6.5 6 5.5 5 Bottom Wall (DSMC) Bottom Wall (Langmuir) Bottom Center (DSMC) Bottom Center (Langmuir) Center (DSMC) Center (Langmuir) Center of Entrance (DSMC) Center of Entrance (Langmuir) Top Wall (DSMC) Top Wall (Langmuir) 4.5 4 3.5 3 1 2 3 4 5 x/h 1.1 1 0.9 0.8 0.7 Filled symbols - DSMC Lines - Langmuir Center of Entrance Center 0.6 U/c 0.5 0.4 Bottom Center 0.3 0.2 Top Wall 0.1 0-0.1 Bottom Wall 1 2 3 4 5 x/h Fig. 3 Pressure and streamwise velocity along the backward-facing step channel. Comparison of DSMC and Navier-Stokes utilizing the Langmuir slip condition are presented.

Table 1 Notation and location for the streamwise cuts presented in the step geometry locations TW and BW correspond to the DSMC cell adjacent to the walls. Abbreviation Description Location BW Bottom wall y/h = 0.01675 BC Bottom center y/h = 0.25 C Center y/h = 0.48325 CE Center of entrance y/h = 0.75 TW Top wall y/h = 0.9875 Maxwell, Langmuir, Beskok, DSMC,. Maxwell,. u, v,., 4,. Fig. 5, Beskok, Maxwell Langmuir.. x / h < 2. 8, h x /, 2.8 2.9

350 0-1 300-2 250-3 -4 U[m/s] 200 150 V[m/s] -5-6 -7 100 50 DSMC Maxwell Beskok Langmuir -8-9 -10 0 0.5 0.6 0.7 0.8 0.9 1 y/h -11 0.5 0.6 0.7 0.8 0.9 1 y/h 302 300 298 296 350 280 DSMC Maxwell Beskok Langmuir T[K] 294 292 290 U [m/s] 210 140 288 286 70 284 0 282 0.5 0.6 0.7 0.8 0.9 1 y/h 0 0.25 0.5 0.75 1 y/h 15 310 0 300-15 V [m/s] -30 T[K] 290-45 280-60 0 0.25 0.5 0.75 1 y/h 270 0 0.25 0.5 0.75 1 y/h Fig. 4 Velocity and temperature distribution before, and after the expansion. Various slip models are compared to the DSMC solutions.

0.2 0.15 Top Wall Beskok Maxwell Langmuir 0.1 τ 0.05 0 Bottom Wall -0.05 2 3 4 5 x/h Fig. 5 Shear stress distributions at top and bottom walls using Beskok, Maxwell and Langmuir slip condition.. Beskok,. Langmuir,. T Langmuir. DSMC,.,, Langmuir.

3.2 T 3.1 T. T Maxwell. T Fig. 6, Fig. 7. D 1µm, 10~60.,,. N 2, 14514. Kn 0.04,. Fig. 8Re 30, Mach contour., Mach,., Mach.. Maxwell,. Fig. 9Re=10, x y,, Mach., Maxwell

Fig. 6 Schematic of the flow split in a T-shaped planner branch Fig. 7 Unstructured grid at a part of main and side branch

mach 0.695988 0.649614 0.603239 0.556865 0.510491 0.464117 0.417743 0.371369 0.324994 0.27862 0.232246 0.185872 0.139498 0.0931236 0.0467494 mach 0.686516 0.640752 0.594988 0.549225 0.503461 0.457697 0.411933 0.366169 0.320406 0.274642 0.228878 0.183114 0.137351 0.0915869 0.0458231 Fig. 8 Mach number contours obtained by the Maxwell (under figure) and Langmuir (up figure) slip models.

Y 2.9 2.8 2.7 2.6 2.5 2.4 No-Slip Langmuir Maxwell V 100 90 80 70 60 50 2.3 2.2 2.1 40 30 20 10 20 30 40 U 0.25 0.5 0.75 x 28.5 2.9 2.8 28.25 2.7 2.6 P * 28 Y 2.5 2.4 2.3 27.75 2.2 2.1 0.2 0.4 0.6 0.8 1 x 27 27.5 P * 28 28.5 0.25 2.9 2.8 0.2 2.7 2.6 Ma 0.15 Y 2.5 2.4 0.1 2.3 2.2 0.05 0.2 0.4 0.6 0.8 x 2.1 0.05 0.1 0.15 Ma Fig. 9 Velocity, pressure, and Mach number distribution at a horizontal and cross section. (Re=10)

. Re=10,..., v u,, p * 2 = p /( ρ ). ref u in,..,,.. Maxwell Langmuir. x, y.. Fig. 10 50, x y,, Mach., Mach, Fig. 9. Fig. 11 Langmuir, Mach., Mach, Mach 10 20

2.9 300 2.8 2.7 250 Y 2.6 2.5 2.4 No-Slip Langmuir Maxwell V 200 150 2.3 2.2 100 2.1 40 60 80 100 120 140 U 0.2 0.4 0.6 0.8 x 2.9 0.925 2.8 0.9 2.7 0.875 2.6 P * 0.85 Y 2.5 0.825 2.4 0.8 2.3 0.775 2.2 0.75 0.2 0.4 0.6 0.8 x 2.1 0.6 0.7 0.8 P * 0.9 1 2.9 0.8 2.8 0.7 2.7 0.6 2.6 Ma 0.5 Y 2.5 2.4 0.4 0.3 2.3 2.2 0.2 0.2 0.4 0.6 0.8 x 2.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Ma Fig. 10 Velocity, pressure, and Mach number distribution at a horizontal and cross section. (Re=50)

2.9 300 2.8 2.7 250 2.6 200 Y 2.5 2.4 V 150 2.3 2.2 2.1 Re=10 Re=20 Re=30 Re=40 Re=50 Re=60 50 100 150 U 100 50 0.2 0.4 0.6 0.8 x 0.9 Re = 10 Re = 20 Re = 30 0.8 Re = 40 Re = 50 Re = 60 0.7 0.6 2.9 2.8 2.7 2.6 Re = 10 Re = 20 Re = 30 Re = 40 Re = 50 Re = 60 Ma 0.5 0.4 Y 2.5 2.4 0.3 2.3 0.2 2.2 0.1 0.2 0.4 0.6 0.8 x 2.1 0.1 0.2 0.3 0.4 0.5 Ma Fig. 11 Velocity and Mach number distributions utilizing the Langmuir slip model of increasing Reynolds number. Table 2 Description and location for the streamwise cuts presented in the T- shaped micro-manifold geometry locations. Description Location Top wall y = 2.95 Center y = 2.5 Bottom wall y = 2.05

3 2.8 2.6 Top wall Langmuir condition Maxwell condition No-Slip condition P * 2.4 Center 2.2 2 Bottom wall 1.8 0 1 2 3 4 x 140 100 Center Langmuir condition Maxwell condition No-Slip condition U Top Wall 60 20 Bottom Wall 0 1 2 3 4 x Fig. 12 Distribution of pressure and streamwise velocity using each boundary condition(re=30).

,. 20,. Fig. 123, 3. Table 2, 30. (top wall), x1.8. (bottom wall). (center),.,. (bottom wall) x1. 3.1,. 0,,., 3, MEMS,.,.,.

3.4 Langmuir condition Maxwell condition 3.2 No-Slip condition 3 2.8 x=0.5 P * 2.6 2.4 2.2 2 1.8 x=0.95 1 2 3 4 5 Distance along main branch 250 200 main center (x=0.5) V 150 100 main side (x=0.95) 50 1 2 3 4 5 Distance along main branch Fig. 13 Pressure and velocity distributions along main branch using each boundary conditions (x = 0.5, 0.95).

0.07 0.06 0.05 0.04 Re = 10 Re = 50 Re = 100 Re = 200 Vorticity 0.03 0.02 0.01 0-0.01-0.02-0.03 1 2 3 x 0.12 0.1 0.08 Re = 10 Re = 30 Re = 50 Re = 60 0.06 Vorticity 0.04 0.02 0-0.02-0.04 1 2 3 4 x Fig. 14 Comparison of vorticity for incompressible and compressible rarefied gas flows along lower wall of side branch

,,.,.. Fig. 13 30, = 0. 5 x, x = 0. 95. (center) (side).,.,...,,.,..,. Fig. 14 (vorticity)., Langmuir.

,..,. T..,,. 3.1 Langmuir.

4. Langmuir. T, Langmuir. MEMS. Langmuir Maxwell1, Beskok2, DSMC,,. T,.,.,,,., MaxwellLangmuir., 1. MEMS Langmuir.

[1] Gad-el-Hak, M., 1999, The Fluid Mechanics of Microdevices The Freeman Scholar Lecture, Journal of Fluids Engineering, Vol.121,pp.5~33. [2], 2000, MEMS, 28 4, pp. 35~47. [3] G. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford Science Publications, Midsomer Norton, Avon, UK, 1994. [4] Beskok, A., Karniadakis, G. E., and Trimmer, W., 1996, Rarefaction and Compressibility Effects in Gas Microflows, Journal of Fluids Engineering, Vol. 118, pp. 448~456. [5] Myong, R. S., 1999, Thermodynamically consistent hydrodynamic computational models for high-knudsen-number gas flows, Phys. Fluids, Vol. 11, No. 9, pp.2788~2802. [6] Piekos, E. S. and Breuer, K. S., 1996, Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method, Journal of Fluids Engineering, Vol. 118, pp. 464~469. [7] Arkilic, E. B., 1997, Measurement of the Mass Flow and Tangential Momentum Accommodation Coefficient in Silicon Micromachined Channels, Ph.D. Dissertation, MIT, Cambridge.

[8] Arkilic, E. B., Schmidt, M. A., and Breuer, K. S., 1997, Gaseous Slip Flow in Long Microchannels, J. of Microelectromechanical Systems, Vol.6, No.2, pp.167~178. [9] Ali Beskok, 2001, Validation of a new velocity-slip model for separated gas microflows, Numerical Heat Transfer, Part B, pp. 451~471. [10] Myong, R. S., 2001, Velocity-Slip Effect in Low-Speed Microscale Gas Flows, AIAA 2001-3076, 35 th AIAA Thermophysics Conference, Aneheim, CA. [11] Adamson, A. W. and Gast, A. P., 1997, Physical Chemistry of Surfaces, 6 th ed., John Wiley & Sons, Inc. [12] Choi, H., Lee, D., and Maeng, J., 2002, Numerical Analysis of Microchannel Flows Using Langmuir Slip Model, KSME Journal B, Vol. 26, No. 4, pp. 587~593. [13] E. H. Kennard, Kinetic Theory of Gasses, McGraw-Hill, New York, 1938. [14] Gombosi, T., I., 1994, Gaskinetic Theory, Cambridge University Press, New York. [15] Demirdzic, I. and Muzaferija, S., 1995, Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology, Comput. Methods Appl. Mech. Engrg., Vol. 125, pp. 235~255.

[16] Demirdzic, I., Lilek, Z. and Peric, M., 1993, A Collocated Finite Volume Method for Predicting Flows at All Speeds, Int. J. Numer. Meth. Fluids, Vol. 16, pp.1029~1050. [17] Rincon, J. and Elder, R., 1997, A High-Resolution Pressure-based Method for Compressible Flows, Comput. Fluids, Vol. 26, No. 3, pp.217~231. [18] Anderson, W. K., and Bonhaus, D. L., 1994, An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids, Computers Fluids, Vol. 23, No. 1, pp. 1~21. [19] Jessee, J. P. and Fiveland, W. A., 1996, A Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-orthogonal Grids, Int. J. Numer. Meth. Fluids, Vol. 23, pp.271~293. [20] J. S. Wu, K. C. Tseng, 2001, Analysis of micro-scale gas flows with pressure boundaries using direct simulation Monte Carlo method, Computers Fluids, Vol. 30, pp.711~735.

Abstract The current study analyzes Langmuir slip boundary condition theoretically and it is tested in the practical numerical analysis for separation-associated flow. Slip phenomenon at the channel wall is properly implemented by various numerical slip boundary conditions including Langmuir slip model. Compressible backward-facing step flow is compared to other analysis results with the purpose of Langmuir slip model validation. The numerical solutions of pressure and velocity distributions where separation occurs, are in good agreement with other numerical results. Numerical analysis is conducted for Reynolds numbers from 10 to 60 for a prediction of separation at T-shaped micro manifold. Reattachment length of flows shows nonlinear distribution at the wall of side branch. The Langmuir slip model predicts fairly the physics in terms of slip effect and separation.

.,.., 2.,. 2,.,.,,.,,,,,. 1,,,,. 1.,...