한국산업위생학회지, 제24권제4호 (2014) ISSN 1226-4326(Print) ISSN 2289-0564(Online) http://dx.doi.org/10.15269/jksoeh.2014.24.4.462 Original Article 석재가공공정에서발생되는분진과석영의입자크기별농도특성 김성환ㆍ배혜정 1 ㆍ정종현 2 ㆍ피영규 2* 대구한의대학교보건대학원 1 대구한의대학교산업보건연구소 2 대구한의대학교보건학부 Particle Size-Related Dust and Quartz Concentration of Stone Grinding Operations Seong-hwan Kim Hye Jeong Bae 1 Jong-Hyon Jung 2 Young Gyu Phee 2* Graduate School of Public Health, Daegu Haany University 1 Institute for Industrial Health, Daegu Haany University 2 Faculty of Health Science, Daegu Haany University ABSTRACT Objectives: The purpose of this study was to evaluate quartz concentrations in airborne respirable dust and particle size-related quartz concentrations. Methods: Respirable dust samples were collected using a 10 mm Dorr-Oliver nylon cyclone equipped with a 37 mm, 5 μm pore size PVC filter. Dust samples were collected with a Marple s personal cascade impactor from stone grinding operations in five stone-related business located in the Gyeongsangbuk-do area. Results: The geometric mean of quartz concentration in the respirable dust was 0.170 mg / m3, and the rate of exceeding the Korean Occupational Exposure Limit(KOEL) was 93.3%. The quartz concentration by particle size shows that it was the highest(0.115 mg / m3 ) in stage 5(3.50-6.00 μm ), which corresponds with the size of respirable particle. The smaller the particle sizes were, the higher quartz the content became. The mass fractions of inhalable, thoracic, and respirable dust were 72.1%, 36.0%, and 14.4%. Conclusions: The rate of the quartz concentration in respirable dust from stone grinding operations exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values was 100%, which means proper work environmental management is required through regular working environmental measurements. Given that the stone grinding operations had a higher small size dust concentrations, there is a need to reduce respirable dust, such as through wet operation and local exhaust ventilation. Key words: particle distribution, quartz, stone grinding operation I. 서론석재란건물장식재, 석공예재등의용도에따라경도, 강도, 사용가능성, 광택성및장식적특성등의일정한성질을갖는암석으로건축재료는건축물의외면, 내면, 외부및내부바닥등에사용되며, 석공예재로는기념물, 가구, 조각상, 안장, 계단석과기 둥석등으로활용된다. 우리나라의석재석산은전국적으로비교적고르게분포하고있으며, 국내에서채석되었던석재석산을대표암 ( 巖 ) 종별로분류하면심성암류 87%, 퇴적암류 6%, 변성암류 4% 및화산암류가 3% 이고심성암류에서는화강암과섬록암, 퇴적암류에서는사암, 변성암류에서는대리암이주요채석대상암종이다. 그리고건축용으로쓰이는석재 *Corresponding author: Young Gyu Phee, Tel: 053-819-1590, Fax: 053-819-1412, E-mail: yphee@dhu.ac.kr Faculty of Health Science, Daegu Haany University. 1 Hannydae-ro, Gyeongsan-si, Gyeongbuk 712-715 Received: November 23, 2014, Revised: December 6, 2014, Accepted: December 20, 2014 This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 462
석재가공공정에서발생되는분진과석영의입자크기별농도특성 463 는화강암, 사암및대리석이대표적이며화강암석재는국내석재자원의 90% 이상을차지하고있다. 이러한화강암의주요구성광물은석영 30%, 장석 65%, 운모 3%, 기타 2% 로생산되는지역에따라주성분의비율의차이가있어석재의색이다르다 (Jung, 2004; Lee et al., 2006). 석재산업은화강암등의석재를절단, 성형및가공하여석제품을제조하는산업활동을의미하며, 표준산업분류는석제품제조업에해당한다 (KOSTAT, 2013). 이러한석재산업은자연에존재하는이용가치가있는암석에서석재를채취하는채석업과이를가공하여사람이필요로하는제품을만드는석재가공업과이들을설치및시공하는작업으로구분된다 (Lee, 1992). 채석업에서분진은천공기에의하거나골재가공시크러셔및선별기에의한발생이주원인이되고, 석재가공과정에서발생되는분진의양은암석의종류, 규모및성상에따라차이가있으며, 투입되는장비, 작업조건등에따라순간적으로다량의분진이발생되기도한다 (Lee & Kim, 1992; Min et al., 2004). 이렇듯석재가공과정에서공기중으로발생되는광물성분진에는산화규소결정체인석영이함유되어있다. 이러한석영은규폐증 (Silicosis), 폐섬유화 (Lung fibrosis), 폐암등의원인이되며, 규폐증은호흡성크기의석영에노출되었을때그양과깊은관계가있다 (Hogan, 1995). 특히, 화강암에서석영의노출은폐기능저하, 기도폐색 (Airway obstruction) 및만성폐쇄성폐질환등이유발되며 (Malmberg et al., 1993; Rushton, 2007), 폐암과도노출-반응관계가명확한것으로알려져있다 (Attfield & Costello, 2004). 이에국제암연구기구 (International Agency for Research on Cancer, IARC) 에서는석영을포함한산화규소결정체를인체발암물질 1군 (Group 1) 으로분류하고있다 (IARC, 1997). 선진외국의경우화강암에서공기중호흡성분진과석영의노출에대한연구 (Theriault et al., 1974, Malmberg et al., 1993; Kullman et al., 1995; Rushton, 2007) 가다수이루어져왔다. 국내에서도석탄광산, 주물사업장, 요업, 콘크리트사업장등을대상으로호흡성분진과석영의노출평가에대한연구가일부수행 (Choi et al., 1988; Kim et al., 1999; Shin et al., 2002; Park et al., 2003) 되었지만화강암을주원료로 하는석재사업장에대한연구는드문실정이다. 또한, 분진은입자의크기분포가다양하며분진입자의공기역학적직경에의해인체내침착되는정도및위치가다르다 (ISO, 1981, ACGIH, 2013). 이러한점을감안하여 Sirianni et al.(2008) 는채석장의화강암분진의입자크기분포를파악한바있고, Bello et al.(2002) 는건설작업자를대상으로입경분리포집기를활용하여입자크기별석영의농도와함유량을파악한바있으나우리나라에서는이러한연구가수행된바없다. 따라서본연구는석재가공업의가공공정을대상으로입자크기별분진및석영의농도특성을파악하여향후근로자건강보호를위한기초자료를제공하는데목적이있다. Ⅱ. 대상및방법 1. 연구대상석재가공업체 5개소에대하여사전에총분진을채취하여절단공정과가공공정에서광물성분진의노출량을사전에파악하였다. 그후광물성분진의농도및석영의함유량이높게나타난석재가공공정을대상으로 2012년 8월부터 11월까지현장을방문하여호흡성분진은 15개의시료를, 입자크기별시료는 5 개를채취하였다. 2. 연구방법 1) 입자크기별시료의채취 (1) 호흡성분진의채취호흡성분진은미국국립산업안전보건연구원 (National Institute for Occupational Safety & Health, NIOSH) 의 0600방법에따라직경 37 mm, 공극 5 μm의 PVC필터를 3 piece cassette에장착하고 10-mm Nylon Cyclone (Dorr-Oliver, Gillian, USA) 에연결하여유량 1.7 L/min 으로시료를채취하였다 (NIOSH, 1998). (2) 입자크기별시료의채취석재분진의입자크기별농도를파악하기위하여입경분리포집기 (Marple's personal cascade impactor, Anderson sampler, model 298, USA) 를사용하였다. 채취된분진의되튐으로인한손실을최소화하기위 http://www.kiha.kr/
464 김성환ㆍ배혜정ㆍ정종현ㆍ피영규 하여도포제 (Silicon grease 316, Dow Corning) 를 34 mm Mylar필터 (Anderson Stock#C-290-MY, Anderson Sampler Inc., USA) 에도포하여 24시간이상건조시켜사용하였으며, 충돌손실을방지하기위하여유량을 2 L/min으로채취하였다. 입경분리포집기는개인시료채취펌프 (Apex, Cacella CEL, Bedfort, UK) 에연결하여바닥면으로부터 1.2~1.5 m의위치에서 240~390분간시료를채취하였다. 시료채취에사용된펌프는건식유량보정계 (BIOS Defender Calibrator 510, USA) 를이용하여측정전 후의유량을확인하였다. 2) 시료의분석 (1) 채취시료의중량분석호흡성분진및입경분리포집기의각단별중량은시료채취전 후데시게이터에서 24시간이상건조시켜수분을제거한후정확도 0.01 mg의전자저울 (AG245, Mettler Toledo, Switzerland) 을이용하여시료별로 3회이상칭량한후평균값을사용하였고, 공시료필터로보정하여농도값을산출하였다. (2) 채취시료의석영분석호흡성분진중석영농도와입경분리포집기의각단별석영농도및함유량을파악하기위하여 FTIR(Fourier Transform Infra Red spectrophotometer, Cary 640, Agilent, USA) 을활용하였다. 각단에채취된분진을 2-propanol(Sigma-Aldrich, USA) 에균일하게희석한후직경 37 mm, 공극 5 μm의 PVC필터 (SKC, USA) 가장착된진공여과장치를활용하여여과시키고그필터를데시케이터에하루이상보관시켰다. 석영의분석은 NIOSH의 7602 방법을가급적준용하였다 (NIOSH, 2003). 미국표준과학연구소 (National Institute of Standard & Technology, NIST) 의표준물질 (Standard Reference Material, SRM) 1878a(Respirable quartz, NIST, USA) 과 KBr(160-8010, PIKE, USA) 를혼합하여펠렛 (Pellet) 화하였고 7개농도수준으로검량선을작성하였다. PVC필터는도가니에넣어뚜껑을덮은후회화로에서 650 로 2시간동안필터내유기물을회화시킨후, KBr 200 mg을막자사발을사용하여시료와혼합하였다. 혼합된시료를 13 mm die를사용하여펠렛을만들어 FTIR로 1500 cm -1 ~400 cm -1 까지주사하였고, 799 cm -1 에서석영의흡광도를측정하였다. (3) 흡입성, 흉곽성및호흡성분진중량비율입경분리포집기에의해채취된입자의흡입성 (Inhalable), 흉곽성 (Thoracic) 및호흡성 (Respirable) 분진의중량비율을파악하기위하여미국정부산업위생전문가협의회 (American Conference of Governmental Industrial Hygienist, ACGIH) 의 Particle size-selective sampling criteria for airborne particulate matter를사용하여각단의분진중량비율에각단별평균포집효율을곱한값들을합하여계산하였다. 입경분리포집기의각단계별흡입성, 흉곽성및호흡성분진의하한, 중위및상한크기별유효한계직경에따른포집효율은 Simpson's Rule로계산하였다 (Bello et al., 2002). 3) 자료의분석자료의분석은통계프로그램 SPSS(Version 20.0K, USA) 를사용하였다. 각단의분진의농도와석영의농도는 Sapiro-Wilk의정규성검정결과대수정규분포를보여기하평균과기하표준편차로나타내었고결과의이해를위하여산술평균과표준편차도제시하였다. Ⅲ. 연구결과 1. 공기중호흡성분진및석영의농도석재가공공정의공기중호흡성분진농도의기하평균은 1.372 mg / m3이었으며, 호흡성분진중석영의기하평균농도는 0.170 mg / m3으로나타났다 (Table 1). 우리나라석영의노출기준 (0.05 mg / m3 ) 초과율은 93.3% 이었고 ACGIH의노출기준 (0.025 mg / m3 ) 대비모든시료가초과되었다. 2. 석재가공시발생되는입자크기별분진및석영의특성 1) 입자크기별분진의농도입경분리포집기의각단별분진의유효한계입경 (Effective cut-point diameter) 은 1단부터 8단까지각각 21.30 μm, 14.80 μm, 9.80 μm, 6.00 μm, 3.50 μm, 1.55 μm, 0.93 μm및 0.52 μm이다. 석재가공공정에서발생하는입자크기별분진농도는그크기가 21.30 http://www.kiha.kr
석재가공공정에서발생되는분진과석영의입자크기별농도특성 465 Table 1. Respirable dust and quartz concentrations of stone grinding operations (Unit : mg / m3 ) Concentration N * GM (GSD ) Mean±S.D. Minimum Maximum ER Dust 15 1.372(1.744) 1.567±0.777 0.548 2.657 - Quartz 15 0.170(2.181) 0.225±0.175 0.049 0.554 93.3% * N : Number of samples GM : Geometric Mean GSD : Geometric Standard Deviation S.D. : Standard Deviation ER(Exceed rate) : (Number of samples over KOEL / Number of samples) 100 Table 2. Concentrations of stone dusts by particle size (Unit : mg / m3 ) Stage no ECD * ( μm ) GM (GSD) Mean±S.D. Minimum Maximum 1 21.30 4.831(2.455) 6.318±4.235 1.519 11.128 2 14.80 2.695(2.170) 3.319±2.039 1.100 5.208 3 9.80 2.815(1.891) 3.250±1.700 1.243 4.743 4 6.00 1.678(1.836) 1.907±0.933 0.704 2.792 5 3.50 1.700(1.761) 1.910±0.935 0.801 3.051 6 1.55 0.667(1.994) 0.783±0.417 0.239 1.218 7 0.93 0.195(5.646) 0.444±0.527 0.014 1.340 8 0.52 0.120(6.729) 0.401±0.507 0.022 0.973 * ECD : Effective cut off diameter GM : Geometric Mean GSD : Geometric Standard Deviation S.D. : Standard Deviation Table 3. Quartz concentrations in stones dust by particle size (Unit : mg / m3 ) Stage no ECD * ( μm ) GM (GSD) Mean±S.D. Minimum Maximum 1 21.30 0.049(2.212) 0.063±0.051 0.022 0.145 2 14.80 0.057(2.832) 0.076±0.055 0.012 0.181 3 9.80 0.078(2.671) 0.109±0.089 0.018 0.247 4 6.00 0.068(3.005) 0.104±0.091 0.019 0.202 5 3.50 0.115(2.599) 0.154±0.108 0.028 0.274 6 1.55 0.054(3.193) 0.086±0.081 0.013 0.203 7 0.93 0.048(1.743) 0.054±0.034 0.024 0.113 8 0.52 0.023(1.418) 0.025±0.009 0.016 0.039 50.00 μm인 1단에서기하평균 4.831 mg / m3로가장높았고, 2단 (14.80 21.30 μm ) 2.695 mg / m3, 3단 (9.80 14.80 μm ) 2.815 mg / m3로나타났다. 그다음입자크기가 6.00 9.80 μm인 4단에서의기하평균은 1.678 mg / m3이었고 5단 (3.50 6.00 μm ) 1.70 mg / m3, 6단 (1.55 3.50 μm ) 0.667 mg / m3, 7단 (0.93 1.55 μm ) 0.195 mg / m3및 8단 (0.52 0.93 μm ) 0.120 mg / m3로입자크기가작아질수록농도가낮아지는경향을보였다 (Table 2). 2) 입자크기별석영의농도입자크기별로석영의농도를분석한결과입자크기가 21.30 50.00 μm인 1단에서기하평균농도는 0.049 mg / m3이었고, 2단 0.057 mg / m3, 3단 0.078 mg / m3, 4단은 0.068 mg / m3으로석재분진의입자크기가클수록석영의농도는오히려낮은경향을보였다 (Table 3). 또한, 호흡성입자크기인 5단 (3.50 6.00 μm ) 에서기하평균은 0.115 mg / m3로가장높은농도를보였고, http://www.kiha.kr/
466 김성환ㆍ배혜정ㆍ정종현ㆍ피영규 Table 4. Weight percent of quartz in stones dusts by particle size (Unit : %) Stage no ECD * ( μm ) GM (GSD) Mean±S.D. Minimum Maximum 1 21.30 1.543(1.507) 1.650±0.867 1.030 2.400 2 14.80 3.348(2.640) 5.224±6.605 1.710 17.010 3 9.80 4.362(1.253) 4.450±0.972 3.320 5.010 4 6.00 4.518(1.645) 4.936±2.113 2.060 7.780 5 3.50 5.956(1.455) 5.314±2.525 3.840 10.400 6 1.55 8.364(1.907) 9.584±4.607 2.940 13.960 7 0.93 5.706(1.918) 6.980±5.776 3.430 17.160 8 0.52 6.033(1.631) 6.648±3.378 3.200 12.100 Table 5. Inhalable, thoracic and respirable particulate mass fraction of stone dusts Stage no ECD * ( μm ) Mass fraction Mean particulate mass fraction(%) Inhalable Thoracic Respirable 1 21.30 0.307 0.174 0.003 0.000 2 14.80 0.171 0.115 0.017 0.000 3 9.80 0.185 0.137 0.062 0.001 4 6.00 0.115 0.094 0.077 0.007 5 3.50 0.119 0.104 0.103 0.043 6 1.55 0.049 0.046 0.046 0.040 7 0.93 0.028 0.027 0.027 0.027 8 0.52 0.026 0.025 0.025 0.025 Total 1.000 72.1 36.0 14.4 그다음 6단 0.054 mg / m3, 7단 0.048 mg / m3및 8단은 0.023 mg / m3으로역시유효한계입경이작을수록농도가낮아지는것으로나타났다. 3) 입자크기별석영의함유량석재분진에대하여입자크기별로석영함유량을분석한결과는 Table 4와같다. 각단에서석영함유량의기하평균범위는 1.54 8.36% 이었다. 전체적인입자크기별석영농도의범위는 1.03~17.2% 로나타났고전반적으로입자크기가작아질수록석재분진내석영함유량이높은경향을보였으며, 특히입자크기가 1.55 3.50 μm인 6단의경우가장높은석영함유량인 8.36% 로나타났다. 3. 석재분진의흡입성, 흉곽성및호흡성분진의중량비율석재가공공정에서입경분리포집기로채취한석재 분진의흡입성분진, 흉곽성분진및호흡성분진의중량비율은각각 72.1%, 36.0% 및 14.4% 이었다 (Table 5). Ⅳ. 고찰우리나라석재산업의초기수출형태는주로원석상태로소량수출되었으나 1980년대이후에는고가의석가공품이수출의주종을이루었다. 또한수출시장과함께국내시장도건축물의대형화및고급화추세에따라석재의수요가증가하여석재산업이유망업종으로부각되기시작하였다 (Lee, 1992; Jung, 2004). 중국에서도한국과같은재질의화강암이많이생산되고있으며, 건축재료로서대량생산되는판재, 블록, 현관문, 석관과묘비, 석재난간및계단등과공예재가국내로수출되고있다. 중국의일부화강석의광물성분은석영, 정장석, 사장석, 흑운모, 백운모, 각섬석등이고화학성분분석결과산화규소 http://www.kiha.kr
석재가공공정에서발생되는분진과석영의입자크기별농도특성 467 가 65~70% 이상이며석영함유량은 20% 이상으로알려져있다 (Kim, 2008). 분진이원인이되어발생하는직업병이진폐증인것은자명한사실이다 (Benjamin & Malmes, 2002). 우리나라에서발생한진폐증자는 2010년 931명에서 2011년 1,018명으로 87명증가되었다 (MoEL, 2012). 이렇듯진폐증을예방하고쾌적한작업환경을조성하기위하여산업안전보건법에따라정기적으로작업환경측정을실시하여야하며 (MoEL, 2014), 2008년부터산화규소중결정체석영은 0.1 mg / m3에서 0.05 mg / m3으로강화하고호흡성분진으로사람에게충분한발암성증거가있는물질인발암성 1A로분류하고있다 (MoEL, 2013). 따라서본연구는석영의함유량이높고광물성분진이과다하게노출되는석재가공공정을대상으로입자크기별분진및석영의농도와함유량을확인하고자하였다. ACGIH, 국제표준기구 (International Standardization Organization, ISO) 및유럽표준위원회 (Comit'e Europeen de Normalisation, CEN) 는공기중분진입자에대한크기별시료채취기준을제정하여흡입성, 흉곽성및호흡성입자의공기역학적입경별포집효율을제시하고있다 (ISO, 1981; ACGIH, 2013). 작업환경이나일반환경에서분진을크기별로분리하여포집하는주목적은분진의입경특성이호흡기내부위별침착에크게영향을준다는사실을인식하여분진의흡입위해도에대한가장적절한지표를제공하는데있다 (Lippmann, 1988). 이러한이유로그동안목분진 (Kim & Kim, 1994), 납입자 (Park & Paik, 1995), 주물분진 (Phee et al., 1997) 과일부제조업 (Kim et al., 2000) 및터널공사 (Ryoo et al., 2003) 등을대상으로입자크기별특성등에대한연구가다양하게수행되었다. 그러나모든선행연구는입자크기분포및분진농도등에초점을두고있으며크기별석영농도는파악하지못하였다. 광물성분진의경우그농도가상당히높지않으면입자크기별석영농도를산출하기에는어려움이있다. 이점을감안하여사전에일부석재가공업을대상으로총분진을채취하였고그농도를확인한결과절단공정은평균 5.64 mg/ m3, 가공공정은 16.15 mg/ m3으로나타나농도가높은석재가공공정을선정하여입자크기별석영농도분포를확인하였다. 또한, 호흡성분진과석영에노출되는근로자들은 규폐증등에이환될수있기때문에광물성분진이발생하는다양한제조업을중심으로노출평가에대한연구가진행되어왔다. 본연구는석재사업장에서발생하는호흡성분진의농도를파악한결과기하평균은 0.904 mg / m3 (0.595 1.372 mg / m3 ) 이었고, 석영의농도는 0.091 mg / m3 (0.048 0.170 mg / m3 ) 으로확인되었다. 이는 Kim et al.(1999) 이선행보고한석재사업장호흡성분진농도의기하평균 (0.24 mg / m3 ) 과석영농도 (0.0172 0.0241 mg / m3 ) 보다상당히높은수준이었다. 또한, Kim et al.(2002) 의연구결과석재사업장의호흡성분진농도의기하평균은 1.25 mg / m3, 석영농도의기하평균은 0.010 0.0297 mg / m3으로역시본연구결과에비해낮은수준으로보고하였다. 이러한이유는 Kim et al.(1999) 과 Kim et al.(2002) 이수행한석재사업장은주로콘크리트와벽돌을제조하는사업장으로원재료에포함된석영의함량이다소낮고, 석영의분석을직접필터법으로수행하는등연구방법상의차이에도기인된것으로생각된다. 또한, 외국의경우화강암채석가공산업과석재분쇄와관련된산업에서발생하는호흡성분진중석영의노출평가를수행한연구를살펴보면핀란드화강암채석사업장에서 0.12 1.47 mg / m3 (Koskela et al., 1987), 스웨덴화강암분쇄사업장 0.16 mg / m3 (Malmberg et al., 1993), 미국석재가공사업장 0.055 0.088 mg / m3 (Donaldson et al., 1982), 0.034 0.043 mg / m3 (Eisen et al., 1984), 암석분쇄사업장 0.04 0.06 mg / m3 (Kullman et al., 1995), 영국스코틀랜드사암채석및분쇄사업장 0.04 0.09 mg / m3 (Davies et al., 1994) 으로본연구결과와큰차이는없었다. 석영에대한직업적노출기준의경우 ACGIH는 1999년부터 0.1 mg / m3에서 0.025 mg / m3으로강화하였고, 미국산업안전보건청 (Occupational Safety & Health Administration, OSHA) 의허용노출기준 (Permissible Exposure Limit, PEL) 은 10 mg / m3 /%SiO 2+2로적용하고있으며, NIOSH의권장기준 (Recommended Exposure Limits, REL) 은우리나라와동일하게 0.05 mg / m3으로규정하고있다 (US DoL, 1996). 또한, 일본 0.03 mg / m3, 영국 0.1 mg / m3, 독일 0.15 mg / m3, 캐나다는 0.025 mg / m3으로설정되어있는등국가마다조금씩차이가있다 (Roh et al., 2004). 현재석재사업장에서발생하는분진에대한작업환경측정은산업안전보건법시행규칙제 http://www.kiha.kr/
468 김성환ㆍ배혜정ㆍ정종현ㆍ피영규 93조 ( 작업환경측정대상작업장등 ) 에따라실시되고있으나산업안전보건기준에관한규칙제 606조 ( 적용제외 ) 의규정에따라습식작업으로판단하여대부분지정측정기관에서측정을수행하고있지않은실정이다 (MoEL, 2014). 그러나본연구에서석재가공공정의호흡성분진중석영농도분석결과기하평균 (0.17 mg / m3 ) 이우리나라노출기준 0.05 mg / m3을초과하고 ACGIH의노출기준 (0.025 mg / m3 ) 대비모든시료가초과되는것으로평가되어석재사업장은습식작업이라할지라도정기적으로작업환경측정을수행하여노출수준을파악할필요가있다. 한편, 입경분리포집기의각단별분진의기하평균농도는 1단 4.831 mg / m3, 2단 2.695 mg / m3, 3단 2.815 mg / m3, 4단 1.678 mg / m3, 5단 1.700 mg / m3, 6단 0.667 mg / m3, 7단 0.195 mg / m3및 8단 0.120 mg / m3로입자크기가작아질수록농도가낮아지는경향을보였다. 이를흡입성, 흉곽성및호흡성분진의중량비율로환산해보면흡입성분진 72.1%, 흉곽성분진 36.0%, 호흡성분진 14.4% 로나타났다. Kim(1992) 은일부분진발생사업장을대상으로호흡성분진의비율을파악한결과용접의경우 32.67 65.05%, 연마는 41.14 52.37% 로보고하였고, Phee et al.,(1997) 은주물사업장의호흡성분진이차지하는비율을 46.06 66.11% 로보고하여본연구결과에비해높은수준을보였다. 이는용접흄과주물사의경우석재가공공정에서발생되는입자크기의분포가다르고작업방법및대상사업장의차이에도기인된것으로보인다. 또한, Kim & Kim(1994) 이가구공장에서발생되는목분진의흡입성분진의중량비율을확인한결과 54.4 60.5% 로나타나본연구결과에비해다소낮은수준으로보고하였는데이는석재가공공정의각단별분진의농도가 14.80 50.00 μm의크기에높은점을감안할때목분진에비해석재분진에큰입경이많이분포하고있다는것을의미한다. Ryoo et al.,(2003) 의경우터널건설공사에서발생하는흡입성, 흉곽성및호흡성분진평균중량비율이각각 84.0%, 67.2%, 43.1% 로본연구결과에비해전반적으로높은수준으로보고하였다. 이러한차이는터널건설현장의경우밀폐공간으로작은입자들이공기중에장기간체류하게되며석재사업장의경우실외의작업이많이이루어져작은입자들이대기중으 로흩날리기때문에발생된것으로추측된다. 입자크기별석영함유량을분석한결과전반적으로입자크기가작아질수록분진의석영함유량이증가하는경향을확인할수있었고, 특히입자크기 1.55 3.50 μm의평균석영함유량이 8.36% 로가장높았으며절단경이 0.93 μm의경우석영함유량이최대 17.16% 로나타났다. 따라서석재가공공정의경우호흡성입자크기의발생을저감시키기위하여적극적인관리가요구된다. 본연구의제한점으로연구대상이경북석재사업장의일부공정에한정되어우리나라전체를대표하기에다소무리가있으며, 시료의수가제한됨에따라향후석재사업장의다양한공정으로확대하여추가조사를수행할필요가있다. Ⅴ. 결론 본연구는 2012년 8월부터 11월까지석재가공공정에서발생되는분진의노출평가를위하여 5개소를대상으로호흡성분진과입경크기별분진및석영농도를파악하였다. 그결과공기중호흡성분진의기하평균농도는 1.37 mg / m3이었고, 석영농도는 0.17 mg / m3으로나타났다. 입자크기별분진및석영농도는입자크기가작을수록낮아지는경향을보였지만, 석영함유량은입자크기가작을수록증가하는경향을보여입경이크기가작은입자의농도저감을위하여반드시습식작업이필요하고국소배기장치의제어속도를관리하는등적극적인방안마련이필요하다. 또한, 석재가공공정에서발생되는호흡성분진내석영농도의노출기준초과율은 66.7% 로정기적인작업환경측정을통한적절한관리대책마련이시급한것으로나타났다. References American Conference of Governmental Industrial hygienist(acgih). Threshold limit values for chemical substances and physical agents and biological exposure Indices. Cincinnati, ACGIH, 2013 Attfield MD, Costello J. Quantitative exposure-response for silica dust and lung cancer in Vermont granite http://www.kiha.kr
석재가공공정에서발생되는분진과석영의입자크기별농도특성 469 workers. Am J Ind Med 2004;45(2):129-38 Bello D, Virji MA, Kalil AJ, Workie SR. Quantification of respirable, thoracic, and inhalable quartz exposure by FT-IR in personal impactor samples from construction sites. Appl Occup Environ Hyg 2002;17(8):580-590 Benjamin GS, Malmes J. The Lungs. In : Plog BA, Itasca, Illinois, Ed, Fundamentals of Industrial Hygiene, 5th Ed,; National Safety Council; 2002. p. 47 Choi HC, Chun YH, Kim HJ, Lee JJ. Quantitative analysis of quartz, mica, and feldspar in Respirable coal mine dust in taebaek area by fourier transform infrared spectrophotometry. J Prev Med Public Health 1988;21(2):271-283 Davies LST, Robertson A, Agius RM, Cowie HA, Cherrie JW et al. The use of compliance monitoring for assessing quarry worker's exposures to respirable dust and quartz. Annals of Occup hyg 1994;38(1):559-570 Donaldson HM, Wallingford K, Jones JH. Environmental surveys in the Barre, Vermont and Elberton, Georgia granite industries. Cincinnati, OH, National Institute for Occupational Safety and Health(Natinal Technical information service Publication No. PB83-179911); 1982 Eisen EA, Smith TJ, Wegman DH, Louis TA, Froines J. Estimation of long term dust exposures in the Vermont granite sheds. Am Ind Hyg Assoc J 1984;45(2):89-94 Hogan TJ. Particulates. In : Fundamentals of Industrial Hygiene, 4th ed, by B.A. Plog, Itasca, Illinois, National Safety Council, 1995 International Agency for Research on Cancer. IARC monographs on the evaluation of the carcinogenic risks to humans: silica, some silicates, coal dust and para-aramid fibrils. Vol 68. Lyon, France: World Health Organization, IARC.; 1997. p. 49, 51 International Standard Organization(ISO), Size definition for particle sampling recommendation of AD Hoc Working Group Appointed by Committee TC 146 of the International Standards Organization. Am Ind Hyg Assoc J 1981 42;A64-A68 Jung SO. A study of physical characteristic on building stone resources. Department of Resource Engineering Graduate School, Chosun University press. 2004. p.1-10 Kim HJ, Phee YG, Roh YM, Kim HW. Study on the field application of FTIR-direct on filter method for the analysis of quartz in respirable samples. J Korean Soc Occup Environ Hyg 2002;12(2):73-78 Kim HW, Phee YG, Roh YM, Won JI. Analysis of quartz contents by XRD and FTIR in respirable dust from various manufacturing industries Part 2-Ceramics, stone, concrete, glass and briquets, etc. J Korean Soc Occup Environ Hyg 1999;9(1):99-111 Kim SY, Kim HW. Particle size distributions of wood dust by cascade impactor. Korean J Occup Health 1994;33(3):132-140 Kim YH. A chinese stone study for plastic material. Fine Art Sculpture Major Department of Art, Graduate School, Kunsan National University Press. 2008. p.1-9 Kim YS. Size distributions and respirable mass fraction of exposure dust in work environment. J Korean Environ Sci 1992;1(2):25-31 Kim YW, Phee YG, Kin HW, Kin HA. Dust concentration by 37 mm closed-face cassette, impactor and cyclone in manufacturing industries. J Korean Occup Health 2000;39(2):76-86 Koskela RS, Mutanen P, Sorsa JA, Klockars M. Mortality and disability among granite workers. cand J Work Environ Health 1987;13:18 25 Kullman GJ, Griefe AL, Costello J, Hearl FJ. Occupational exposures to fibers and quartz at 19 crushed stone mining and milling operation. Am J of Ind Med 1995;27:641-660 Lee SK, Kim YB. A basic study for prevention of accident and pollution in stone industry. J of the Korean Institute of Mineral and Energy Resources Eng 1992;29:5-64 Lee SW. A study on domestic stone industries. Korea Energy Economics Institute 1992;1:1-137 Lee CO, Hong SS, Lee BT, Kim BT, Kim GS et al. Spatial distribution of the dimension stone quarries in korea. J Petrol Soc Korea 2006;15(1):154-166 Lippmann M. The effect of particle size on the regional deposition of inhaled particles in the human respiratory tract. Am J Ind Hyg Assoc J 1988;30: 257-275 Malmberg P, Hedenström H, Sundblad BM. Changes in lung function of granite crushers exposed to moderately high silica concentrations: a 12 year follow up. Br J Ind Med 1993 Aug;50(8):726-31 Min KW, Chin HI, Shin HJ, Park JD. Characterization of particulate matters from stone industry and mitigation schemes of their emission. J of Advanced Mineral Aggregate composites 2004;9:3-9 Ministry of Employment and Labor(MoEL). Exposure Limits for Chemical Substances and Physical Agents(MoEL Public Notice No. 2013-38).; 2013 http://www.kiha.kr/
470 김성환ㆍ배혜정ㆍ정종현ㆍ피영규 Ministry of Employment and Labor(MoEL). Occupational Safety and Health Act. Ministry of Employment and Labor.; 2014 Ministry of Employment and Labor(MoEL). 2011 Industrial Accident. Ministry of Employment and Labor.; 2012 National Institute of Occupational Safety & Health (NIOSH). NIOSH manual of analytical methods, Particulates not otherwise regulated, RESPIRABLE: METHOD 0600, Issue 3, dated 15 January 1998;(3) National Institute of Occupational Safety & Health (NIOSH). NIOSH manual of analytical methods, silica, crystalline by IR: Method 7602, Issue 3, dated 15 March 2003;(3) Park DW, Paik NW. A study on the characteristic of airborne lead particle size by industry. Korean Ind Hyg Assoc J 1995;5(2):160-171 Park YS, Roh YM, Kim HW, Han JG, Ahn YS, Kang SK, Kim JM. A study of respirable dust concentrations and quartz contents in foundry. J Korean Soc Occup Environ Hyg 2003;13(1):90-97 Phee YG, Roh YM, Lee KM, Kim HY, Kim YW, Won JI, Kim HW. Analysis of quartz content and particle size distribution of airborne dust from selected foundry operations. J Korean Soc Occup Environ Hyg 1997;7(2):196-208 Roh YM, Kim YS, Kim HW. The establishment of occupational exposure level for free silica. J Korean Soc Occup Environ Hyg 2004;14(2):165-174 Rushton L. Chronic obstructive pulmonary disease and occupational exposure to silica. Rev Environ Health. 2007;22(4):255-72 Ryoo JJ, Jang JG, Lee BK, Jung SJ, Kim SJ et al. The size characteristic of particles generated during road tunnel construction work. J Korean Soc Occup Environ Hyg 2003;13(2):107-112 Shin YC, Choi BS, Lee BK, Yi GY, Lee JT et al. Evaluation of workers exposure to total dust, respirable dust, and crystalline free silica by job in Korean coal mines. J Korean Soc Occup Environ Hyg 2002;12(3):144-154 Sirianni G, Hosgood HD, Slade MD, Borak J. Particle size distribution and particle size-related crystalline silica content in granite quarry dust. J Occup Environ Hyg 2008;5(5):279-285 Statistics Korea(KOSTAT). Korean Standard Industrial Classification, 2013 http://kostat.go.kr/kssc/stclass/ StClassAction.do?method=ksscTree&classKind=1& kssc=popup Theriault GP, Burgess WA, DiBerardinis LJ, Peters JM. Dust exposure in the vermont granite sheds. Arch Environ Health 1974;28(1):12-17 U.S. Department of Labor(US DoL). Silica dust exposure can silicosis fact(osha sheet No.96-54).; 1996 http://www.kiha.kr