Journal of the Korean Society of Safety, Vol. 32, No. 1, pp. 21-26, February 2017 Copyright@2017 by The Korean Society of Safety (pissn 1738-3803, eissn 2383-9953) All right reserved. https://doi.org/10.14346/jkosos.2017.32.1.21 사물인터넷기반초미세먼지 (PM2.5) 측정장치개발 노병국 최기흥 * 한성대학교 IT응용시스템공학과 * 한성대학교기계시스템공학과 (2017. 1. 11. 접수 / 2017. 2. 3. 수정 / 2017. 2. 13. 채택 ) Development of IoT-based PM2.5 Measuring Device Byoung Gook Loh Gi Heung Choi * Department of IT Applied Engineering, Hansung University * Department of Mechanical Systems Engineering, Hansung University (Received January 11, 2017 / Revised February 3, 2017 / Accepted February 13, 2017) Abstract : An IoT-based particulate matter (PM2.5) sensing device (PSD) is developed. The PSD consists of a PM2.5 sensor, signal processing circuit, and wi-fi enabled-microprocessor along with temperature and humidity sensors. The PSD estimates PM2.5 density by measuring light scattered by PM2.5. To gauge performance of the PSD, PM2.5 density of open air was measured with the PSD and compared with that of the collocated-government-certified measuring station. Measurements were taken at a sampling frequency of 100 Hz and moving-averaged to remove measurement noise. When compared to the result of the measuring station, average percentile error of PM2.5 density from the PSD is found to be 31%. A correlation coefficient is found to be 0.72 which indicates a strong correlation. Instantaneous variation, however, may far exceed average errors, leading to a conclusion that the PSD is more suitable for estimating average trend of PM2.5 density variations than estimating instantaneous PM2.5 density. Key Words : internet of things, PM2.5, sensor network, CC3200 micro-processor, moving-average 1. 서론 최근미세먼지의위험관련많은연구결과가발표되고있다. 특히입자직경 2.5 마이크론이하의초미세먼지 (PM2.5) 는폐부깊숙이침투하여심각한호흡및심장관련질환을유발한다는연구결과 1) 가보고되고있다. 이러한초미세먼지의위험을감소시키기위해, 세계보건기구 (WHO), 미국 EPA(environmental protection agency), 유럽연합 (EU) 등은초미세먼지의인체노출기준한도를규정하거나권고하고있다. (Table 1 참조 ). Table 1. Worldwide PM2.5 regulations and guidelines Institution Standard [µg/m 3 ] Daily Annually World health organization(who) < 25 < 15 Environmental protection agency(usa) < 35 < 15 Europe union N/A < 25 초미세먼지대책수립에가장중요한첫번째단계는초미세먼지의측정이다. 초미세먼지측정소는전국적으로 145 개소가설치되어있으며서울 25 개소, 인천 16 개소, 대구 8 개소, 부산 21 개소등 50% 이상의측정소가도시에위치하고있다. 광범위한측정망구축을통해초미세먼지오염현황파악및오염이급격하게증가하는지역관찰이중요하지만현재의초미세먼지측정소의수는효과적인측정망구축에는매우부족하다. 정부공인측정소의초미세먼지측정방법은대부분베타선흡수방식 (Beta attenuation monitor) 으로대기중부유하고있는 2.5 μm이하입자상물질을일정시간여과지위에포집하여베타선을투과시켜입자상물질의질량농도를연속적으로측정하는방법이다. 측정장치가고가이며고정식으로대부분건물옥상이나공원에설치되어있다. 반면광산란방식 (light-scattering method) 은적외선또는레이저를대기중에조사하여대기중초미세먼지에의한빛의산란양을측정하여 Corresponding Author : Byoung Gook Loh, Tel : +82-02-760-5895, E-mail : bgloh@hansung.ac.kr Department of IT applied Engineering, Hansung University, Samseon-dong, Sungbuk-gu, Seoul 02876, Korea 21
노병국 최기흥 초미세먼지의질량농도로변환하는방법으로베타선흡수방식과비교하여상대적으로정밀도는낮으나장치의소형화, 실시간측정가능및기기제작비용의획기적인감소에적합한기술이다. 최근초미세먼지에대한증대된관심으로다양한광산란방식초미세먼지측정센서가개발되었다 1,2). 신뢰성이입증된초미세먼지측정장치와의보정 (calibration) 을통해광산란방식초미세먼지측정장치의정확도를증대시킬수있다는연구결과가보고되고있다 2). 본연구에서는광산란방식의초미세먼지측정센서와 IoT(Internet of Things, 사물인터넷 ) 를융합하여초미세먼지측정망구축을위한휴대용 IoT 초미세먼지측정기를제작하였다. 또한기초실험결과에근거하여측정기의특성, 한계, 및개선점에관해토의하였다. Fig. 2. Functional block diagram of IoT PMS. 2. IoT 초미세먼지측정시스템 2.1 IoT 초미세먼지측정시스템의구성 IoT 초미세먼지측정장치는센서 (sensor), 신호처리회로 (signal processing circuit), 그리고마이크로프로세서 (microprocessor) 로구성된다. 센서는 PM2.5 센서이외에온도, 습도센서를포함하고있으며현장의필요에따라센서의추가가용이하도록설계되었다. 센서에서측정된신호는신호처리회로에서마이크로프로세서입력에적합하도록조정된후무선통신 (Wi-fi) 기능을갖춘마이크로프로세서 (Texas Instrument CC3200) 로보내진다. 마이크로프로세서는게이트웨이 (gateway) 를통해클라우드서버에무선으로연결되어측정된데이터를전송한다. Fig. 1. Photo of IoT PM2.5 sensing device (PSD) (dimension : 80 80 200 mm). Fig. 3. Cloud connection of IoT PMS to server. 2.2 광산란방식초미세먼지측정이론적배경광산란방식의초미세먼지농도측정은입사광의강도 (I) 는입사광의경로에존재하는미세입자의직경 (r) 의함수라는 Mie 산란이론에근거하며지배방정식 (governing equation) 은 Eq.(1) 과같다 3,4). I o 은입사광강도 (intensity of incident light), 는산란각 (scattering angle), 는방위각, 는파수 (wave number), 은무차원산란각함수, 그리고 은입자직경을각각나타낸다. Eq.(1) 에따르면미세입자에의한산란으로입사광의강도는감소하며미세입자의양이증가할수록산란에의한입사광의강도감소는증가한다. 파장, 굴절률, 산란각은사용하는광선 ( 적외선혹은레이저 ) 및광학시스템의구조를정하면일정범위를갖는상수로가정할수있으며이경우미세입자직경과산란강도는단조함수 (monotonically increasing) 로정의할수있다. 따라서입사광의강도감소와산란광의비율을측정하는방식으로공기중미세입자즉초미세먼지의농도를추론할수있다 5). (1) 22 J. Korean Soc. Saf., Vol. 32, No. 1, 2017
사물인터넷기반초미세먼지 (PM2.5) 측정장치개발 2.3 초미세먼지센서의내부구조및작동원리 PM2.5 센서 (Sharp DN7C3CA006) 의크기는 53 40 51 mm 이며작동준비시간은 10 초이내이다 6). 센서의작동원리는소형팬 (fan) 을구동하면외부의공기가센서내부로유입된다. 유입된공기중의초미세먼지는비중차이의의해입자분리체임버 (chamber) 역할을하는가상임팩터 (virtual impactor) 에의해내부로직경 2.5 마이크로미터이하의입자가유입된다. 센서특성자료 6) 에따르면 PM2.5 이하의입자중 90% 가가상임팩터내부로인입된다. 인입된초미세먼지는가상임팩터내부에조사된적외선을산란시키며산란된빛의양을측정하여 PM.2.5 입자의공기중농도를간접적으로측정한다. 자세한초미세먼지센서의사양은 Table 2 에나타내었다. Fig. 5 에제시된 PM2.5 농도측정알고리즘은 Texas Instrument 공기질모니터링시스템설계기술자료 7) 를 Fig. 5. Flow-chart of PM2.5 sensing algorithm. 근거하여구성하였다. 측정알고리즘은 10 ms 의주기로 PM2.5 센서의측정전압을표본화 (sampling) 로시작한다. 표본화한신호의노이즈를제거하기위해 20 개의표본화된데이터를이동평균 (moving average) 한다 8). 이동평균한신호를매 1 초의주기로저장하고다시 60 초이동평균하여 1 분의주기로클라우드서버로전송한다. 서버로전송된데이터는웹 (web) 상에그래프형태로게시하여측정치의변화를직관적으로확인할수있으며또한데이터베이스형태로저장되어시계열분석혹은다수의센서데이터에기초한빅데이터 (big data) 분석에활용할수있다. 3. 실험결과 Fig. 4. Working principle of Sharp PM2.5 sensor module. Table 2. Technical specification of Sharp PM2.5 sensor 6) Size 53 x 40 x 51 mm Weight 53 g ± 7 g Sensing range 25 ~ 500 μg/m 3 Sensitivity 1 volt/100 μg Power consumption 1.1 watt Noise 38 db 3.1 초미세먼지측정결과초미세먼지측정장치의성능을검증하기위해광산란방식의상용초미세먼지측정장치인 Dylos (DC1100 PRO) 와비교실험을수행하였다. 밀폐된실험실내에서향을 1분간연소한후소화하여초미세먼지농도를변화시켜가며초미세먼지농도를 Dylos 측정장치와개발된초미세먼지측정장치를이용하여측정하였다. Fig. 6에나타낸개발된초미세먼지측정장치의측정결과를살펴보면측정치의증가와감소의경향을확인할수있다. 측정결과는초미세먼지농도로보정전 한국안전학회지, 제 32 권제 1 호, 2017 년 23
노병국 최기흥 이므로전압으로표시하였다. 이동평균하지않은경우 ( 가는실선 ) 신호상의노이즈가관찰되나이동평균결과 ( 굵은실선 ) 는노이즈가사라진안정적인측정치를확인할수있다. Dylos 측정장치의측정값에근거하여보정한결과는 Fig. 7 에 Dylos 측정결과와함께나타내었다. 측정값의보정을위해측정전압에보정계수 (scaling factor) 를적용한후오프셋 (offset) 값을추가로적용하여미세먼지농도로변환하였다. 향의 1 분간의연소는초미세먼지농도를최대 140 μg/m 3 로증가시켰으며그이후점진적으로감소하며개발된장치의측정결과는상용측정장치인 Dylos 측정장치의결과와매우유사함을확인할수있다. 초미세먼지농도가 10 μg/m 3 전후인경우상대적으로큰오차가발생함을알수있으나이는 WHO 또는대부분의선진국이정한기준이내의매우낮은값으로우리나라의보편적인측정환경하에서는문제가되지않는것으로판단된다. 3.2 PSD의보정광산란방식의초미세먼지측정방식은초미세먼지의농도를추정하기위해보정이반드시필요하며추정초미세먼지농도의정밀도는보정기준의정밀도에의존한다. 개발된측정장치의보정은정부공인측정소의측정결과를기준하여수행하였다. 측정장치와정부공인측정소와의거리는 700 m이었다. 공인측정결과는 1시간평균치로매 1시간마다공인측정치를웹에서확인할수있으며웹쿼리 (web querry) 를통해소프트웨어적으로데이터추출을자동화하였다. 110시간동안측정한실험치와공인측정결과를최소자승법을이용하여상관관계분석을수행한결과를 Table 3과 Fig. 8에나타내었다. 상용광산란측정장치인 Dylos DC1100 PRO와의상관관계는 Fig. 9에나타내었다. Dylos 와개발된장치의측정방식은광산란방식이라는관점에서는같지만세부적인측정방식에있어서는차이가있다. Dylos 측정방식은광산란방식에의해초미세먼지입자의개수를먼저추정하고모든입자의크기가동일하다는가정하에초미세먼지농도를추정한다. 이러한세부적인측정방법의차이가 Fig. 8과 9의결과차이를나타낸것으로판단된다. 일반적으로상관관계계수 (coefficient of determination, R 2 ) 0.7 이상의경우높은상관관계로평가하며개발된초미세먼지측정장치와정부공인측정치와의상관계수는 0.72로높은상관관계를갖는다고평가할수있다. Table 3. Coefficients of determination(r 2 ) Fig. 6. Original data and moving average over the period of 60 minutes. Sharp PM2.5 sensor 0.72 Dylos DC1100 PRO 0.65 R 2 Fig. 7. Comparison of the measured results of IoT-based PSD developed with those of Dylos DC1100 PRO. Fig. 8. Correlation between the measured results of IoT-based PSD developed and those of government measuring station. 24 J. Korean Soc. Saf., Vol. 32, No. 1, 2017
사물인터넷기반초미세먼지 (PM2.5) 측정장치개발 지의농도를증가시키는경향이있다. Sharp 초미세먼지센서기술자료 6) 에따른습도보정전후의결과를비교해보았으나유의한차이를관찰할수는없었다. (Fig. 10 두개의실선그래프참조 ) 4. 토의 Fig. 9. Correlation between measured results of Dylos DC1100 PRO and those of government measuring station. Table 4. Measurement error of IoT-based PSD (no. of sample : 107, GSM : government certified measurement, PSDM : PSD measurement) measurement error (%) average (GSM PSDM) / 100 31 % Fig. 10. Comparison of the measured results of IoT-based PSD with government-certified data. Measuring Station(E): Governmentcertified data, Humidity uncorrected: data without humidity correction. Humidity corrected: data corrected according to Sharp PM2.5 sensor technical manual. 상관관계분석을통해얻은결과를사용하여초미세먼지측정값을보정한결과를공인측정소의측정치와비교하여 Table 4 와 Fig. 10 에나타내었다. 두데이터의전체적인변화경향은유사하나측정기간동안미세먼지농도변화가최대 40 μg/m 3 로그리크지않아일부측정구간에서큰오차가관찰되었다. 표본데이터 107 개에대한공인측정치와의기기측정의측정백분율오차는평균 31% 를나타냈다. 3.3 습도의영향 초미세먼지농도측정시공기중습도는초미세먼 광산란방식의초미세먼지측정방식은실시간데이터를상대적으로적은비용으로얻을수있다는장점이있다. 그러나평균적인변화량이아닌특정시점의초미세먼지농도측정값의정밀도는오차가크게발생할가능성이있다. 본연구결과중공인측정소측정값과의비교를보면매시간측정한 107 개측정값의평균오차는 31% 이지만특정시점의오차는평균오차를크게상회하는경우도자주관찰할수있었다. 따라서저가형광산란방식의초미세먼지측정장치의활용은장기간의초미세먼지농도의평균적인변화측정에적합하다고판단된다. 초미세먼지측정장치의정밀도는중량방식측정치와의정밀한보정에전적으로의존한다. 가장일반적인방식은보정기준값과보정대상값간의선형적관계 (y = ax + b, where a : slope, x: input, y: output, b: offset) 를가정하여보정하는방법이다. 지수함수나고차방정식을활용하는비선형방법에비해안정적이며쉽게활용할수있다는장점이있으나정밀도는상대적으로낮다. 선형, 비선형보정방식모두측정시간증가에따른보정상수, 즉선형보정법의경우보정일차식의기울기와오프셋 (offset) 의드리프트 (drift) 보정이필요하다. 가스나소음측정과달리초미세먼지측정은표준시료가존재하지않으므로측정현장에서일반적인표준시료보정방법은적용하기어렵다. 그러나전국의초미세먼지농도정보는매시간공공데이터포털 (portal) (http://openapi.airkorea.or.kr) 을통해이용가능하며이정보를초미세먼지표준시료정보로활용할수있다. 본연구에서개발한초미세먼지측정시스템은웹을통한정보의송수신기능을갖추고있으며웹쿼리 (web querry) 를통해지속적인보정을손쉽게수행할수있다. 5. 결론 광산란방식의휴대용초미세먼지측정기를개발하였다. 사물인터넷접속이용이한저전력소모의 Texas Instrument 사의 CC3200 마이크로프로세서와 Sharp 사의 PM2.5 센서 (DN7C3CA006) 를기반으로장치를구성 한국안전학회지, 제 32 권제 1 호, 2017 년 25
노병국 최기흥 하였다. 초미세먼지공인측정소측정치를기준으로보정한평균측정오차는 31% 로계산되었으나순간초미세먼지측정결과는공인측정치와많은차이를나타내었다. 그러나초미세먼지위험평가는초미세먼지농도의정확한측정값보다는농도의상, 중, 하와같은구간강도하의노출시간에더크게의존하므로평균적인경향변화를측정할수있는장치의필요성은증대할것으로판단된다. 개발된 IoT 초미세먼지측정기의경제적인제작비용과다양한센서추가용이성은산업현장에초미세먼지측정네트워크 9,10) 를구성하는데크게기여할것으로예상된다. 또한클라우드서버를통한측정데이터의실시간모니터링기능및데이터베이스저장기능은산업현장초미세먼지위험도현황파악및분석에광범위하게활용할수있을것으로예상된다. 감사의글 : 본연구는한성대학교교내연구비지원과제임. References 1) M. Bell et al., Spatial and Temporal Variation in PM2. 5 Chemical Composition in the United States for Health Effects Studies, Environmental Health Perspectives pp.989-995, 2007. 2) M. Budde et al., Enabling Low-cost Particulate Matter Measurement for Participatory Sensing Scenarios Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia, pp.19, 2013. 3) R. Gong, Rose and W. Keryn, A Light Scattering Method to Measure Real-time Particulate Emissions, Australasian Transport Research Forum (ATRF), 26TH, 2003. 4) H. Grimm and D. J. Eatough, Aerosol Measurement: the use of Optical Light Scattering for the Determination of Particulate Size Distribution, and Particulate Mass, Including the Semi-volatile Fraction, Journal of the Air & Waste Management Association, Vol. 59, Issue 1, p.101-107, 2009. 5) A. Morpurgo et al., A Low-cost Istrument for Environmental Particulate Analysis Based on Optical Scattering, Instrumentation and Measurement Technology Conference (I2MTC), 2012 IEEE International. IEEE, 2012. 6) J. Somei, Device Specification for Sharp PM2.5 Sensor Module (model no.: DN7C3CA006), http://media.digikey. com/pdf/data%20sheets/sharp%20pdfs/dn7c3ca006 _Spec.pdf, 2014. 7) Texas Instrument, PM2.4/PM10 Particle Sensor Analog Front-end for Air Quality Monitoring Design, http://www. ti.com/lit/ug/tidub65c/tidub65c.pdf, 2016. 8) K. Weekly et al., Low-cost Coarse Airborne Particulate Matter Sensing for Indoor Occupancy Detection, IEEE International Conference on Automation Science and Engineering (CASE), pp. 32-37, 2013. 9) M. Gao et. al., A Distributed Network of Low-cost Continuous Reading Sensors to Measure Spatiotemporal Variations of PM2.5 in Xi'an, China, Environmental Pollution, pp.56-65, 2015. 10) D. Palle, Divyavani and K. Aruna, R., Design and Development of CC3200-based CloudIoT for Measuring Humidity and Temperature, International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT)-2016. 26 J. Korean Soc. Saf., Vol. 32, No. 1, 2017