PRESENTATION TITLE ARIAL B30PT

Similar documents
DW 개요.PDF

歯목차45호.PDF

PowerPoint 프레젠테이션

ecorp-프로젝트제안서작성실무(양식3)

Service-Oriented Architecture Copyright Tmax Soft 2005

Intra_DW_Ch4.PDF

슬라이드 1

E-BI Day Presentation

歯CRM개괄_허순영.PDF

Portal_9iAS.ppt [읽기 전용]

Oracle Apps Day_SEM

I. - II. DW ETT Best Practice

ETL_project_best_practice1.ppt

기타자료.PDF

15_3oracle

슬라이드 제목 없음

MS-SQL SERVER 대비 기능

SW¹é¼Ł-³¯°³Æ÷ÇÔÇ¥Áö2013

歯부장

PowerPoint 프레젠테이션

Microsoft PowerPoint - 3.공영DBM_최동욱_본부장-중소기업의_실용주의_CRM

Microsoft PowerPoint - SVPSVI for LGNSYS_ ppt

CRM Fair 2004

_LG히다찌 브로슈어

Model Investor MANDO Portal Site People Customer BIS Supplier C R M PLM ERP MES HRIS S C M KMS Web -Based

dbms_snu.PDF

Oracle9i Real Application Clusters

김기남_ATDC2016_160620_[키노트].key

차세대 시스템 개발과 스마트 캠퍼스 구축의 시대! 2014년 현재 대학 정보화 화두는 차세대, 스마트 캠퍼스, 개인정보보호 입니다. 대학 정보화 동향 1990년대 후반부터 2000년대 초반 붐처럼 일었던 학사행정 시스템 구축의 시기를 지나 2000년대 중 후반 부터는

Voice Portal using Oracle 9i AS Wireless

PowerPoint 프레젠테이션

Web Application Hosting in the AWS Cloud Contents 개요 가용성과 확장성이 높은 웹 호스팅은 복잡하고 비용이 많이 드는 사업이 될 수 있습니다. 전통적인 웹 확장 아키텍처는 높은 수준의 안정성을 보장하기 위해 복잡한 솔루션으로 구현

이제는 쓸모없는 질문들 1. 스마트폰 열기가 과연 계속될까? 2. 언제 스마트폰이 일반 휴대폰을 앞지를까? (2010년 10%, 2012년 33% 예상) 3. 삼성의 스마트폰 OS 바다는 과연 성공할 수 있을까? 지금부터 기업들이 관심 가져야 할 질문들 1. 스마트폰은

PowerPoint 프레젠테이션

untitled

Oracle Database 10g: Self-Managing Database DB TSC

Corporate PPT Template

untitled

歯I-3_무선통신기반차세대망-조동호.PDF

Backup Exec

J2EE & Web Services iSeminar

untitled

정보기술응용학회 발표

고객 지향적인 IT 투자와 운영이 요구되는 시대! 2014년 현재 유통, 서비스 업계의 정보화 화두는 BYOD 수용과 고객의 마음을 읽는 분석 입니다. Market Overview _ Cross Industry 의 정보화 동향 유통과 서비스 업계의 IT 환경은 발 빠르

Microsoft PowerPoint - XP Style

Agenda POS Market Trends RSS Product Line-Up Reference & Value Propositions Summary 2

AGENDA 모바일 산업의 환경변화 모바일 클라우드 서비스의 등장 모바일 클라우드 서비스 융합사례

Domino Designer Portal Development tools Rational Application Developer WebSphere Portlet Factory Workplace Designer Workplace Forms Designer

PowerPoint Presentation

Agenda I. What is SRM? II. Why SRM? Trend, III. Function / To-be - IV. V. Critical Success Factor 2

IBM Business Intelligence Solution Seminar 2005 Choose the Right Data Integration Solution ; Best Practices on EII/EAI/ETL IBM DB2 Technical Sales BI

엔젤입문 초급자과정

Microsoft Word doc

PowerPoint 프레젠테이션

1.장인석-ITIL 소개.ppt

PCServerMgmt7

04-다시_고속철도61~80p

리포트_03.PDF

untitled

Joseph Hwang, IBM Rational Software

PowerPoint 프레젠테이션

월간 SW 산업동향 ( ~ ) Ⅰ. Summary 1 Ⅱ SW 5 2. SW 7 Ⅲ Ⅳ. SW SW Ⅴ : Big Data, 38

vm-웨어-01장

ORANGE FOR ORACLE V4.0 INSTALLATION GUIDE (Online Upgrade) ORANGE CONFIGURATION ADMIN O

목 차

IBMDW성공사례원고

<4D F736F F D205B4354BDC9C3FEB8AEC6F7C6AE5D3131C8A35FC5ACB6F3BFECB5E520C4C4C7BBC6C320B1E2BCFA20B5BFC7E2>

oracle9i_newfeatures.PDF

CONTENTS CONTENTS CONTENT 1. SSD & HDD 비교 2. SSD 서버 & HDD 서버 비교 3. LSD SSD 서버 & HDD 서버 비교 4. LSD SSD 서버 & 글로벌 SSD 서버 비교 2

<30362E20C6EDC1FD2DB0EDBFB5B4EBB4D420BCF6C1A42E687770>

3Æí2Àå¨éÀç

スライド タイトルなし

? Search Search Search Search Long-Tail Long-Tail Long-Tail Long-Tail Media Media Media Media Web2.0 Web2.0 Web2.0 Web2.0 Communication Advertisement

thesis

CMS-내지(서진이)

Innovation: CEO In 2006, 2 in 3 CEOs said they would have to bring about fundamental change to their business in the next 2 years to implement their s

±èÇö¿í Ãâ·Â

歯이시홍).PDF

1217 WebTrafMon II

歯부장

03.Agile.key

S Special Report ORACLE이 주도하는 MODERN MARKETING의 세계 각하게 고민하게 되었다. 유통채널인 Place 요소의 혁신적 변화는 최근 O2O(Online To Offline)나 Omni - Channel 혁신이라는 Keyword로 많이 회

당사의 명칭은 "주식회사 다우기술"로 표기하며 영문으로는 "Daou Tech Inc." 로 표기합니다. 또한, 약식으로는 "(주)다우기술"로 표기합니다. 나. 설립일자 및 존속기간 당사는 1986년 1월 9일 설립되었으며, 1997년 8월 27일 유가증권시장에 상장되

歯4Q01_실적

2017 1

Microsoft PowerPoint - 발표_090513_IBM세미나_IPTV_디디오넷_완료.ppt

Microsoft PowerPoint - 6.CRM_Consulting.ppt

歯김한석.PDF

F1-1(수정).ppt

(A4)2급-A형_ hwp

Oracle CX Cloud

(......).hwp

Ç¥Áö

Mstage.PDF

ecorp-프로젝트제안서작성실무(양식4)


Chap7.PDF

歯목차.PDF

1 전통 소프트웨어 가. ERP 시장 ERP 업계, 클라우드 기반 서비스로 새로운 활력 모색 - SAP-LGCNS : SAP HANA 클라우드(SAP HEC)를 통해 국내 사례 확보 및 아태 지역 진 출 추진 - 영림원 : 아시아 클라우드 ERP 시장 공략 추진 - 더

RED HAT JBoss Data Grid (JDG)? KANGWUK HEO Middleware Solu6on Architect Service Team, Red Hat Korea 1

Transcription:

Sybase IWS Solution, tkang@sybase.com

Agenda CRM CRM Sybase IWS Sybase IQ 2

Business Challenges 3

CRM Initiative,,, 4

CRM Type Operational CRM Analytical CRM ERP SCM Customer Profile Loyalty Legacy Systems Customer Service Campaign Business Performance Customer Care Marketing Automation Sales Force Automation Profitability Sales

Analytical CRM 7P of Analytical CRM 1. Profiling (segmentation, risk, propensity) 2. Promotions (campaign management) 3. Persistency (loyalty, retention, churn) 4. Performance (sales by product, category, store, channel) 5. Profitability (product margin - gross, net, brand) 6. Prospecting (customer acquisition, cross-sell, up-sell) 7. Product (design, affinity, supply-chain) 6

Agenda CRM CRM Sybase IWS Sybase IQ 7

CRM and DW CRM & BI Solutions End User Applications Information Content Applications Data Models Data Warehouse Infrastructure Data Acquisition Database Platform Data Integration Data Management 8

CRM Solution Evolution Market Time 9

Packaged Solution Components / 10

Key Technical Challenges Data Model Data Integration Performance & Scalability 11

Agenda CRM CRM Sybase IWS Sybase IQ 12

Internet Applications: Enterprise Application Studio Mobile and Embedded Computing: SQL Anywhere Studio E n Enterprise Solutions: Adaptive Server t e r p r i s e C o n n e c t Business Intelligence: Industry Warehouse Studio 13

( ) (& ) Enterprise Portal CRM Business Applications Applications Layer Personalization e-information e-commerce Integrated Intelligence Real-time Operational Data Access Not Real-time Analytical Data Access Analytical Marketing Automation Call Center Sales Automation Order Processing Legacy Systems Financial IWS CRM Business Productivity 14

Warehouse Architect Data Warehouse Data Warehouse SYBASE IQ CRM ETL (Option) Informatica Warehouse Control Center BI (Option) 15

Data Model & Applications CRA SQL QuickStart Query Sets CRA Business Objects Integration CRA Cognos Integration CRA MicroStrategy Integration Campaign Web Analytics Household Match Sales Loyalty Customer Care Customer Relationship Analytics (CRA) IWS Customer Analytics Infrastructure (CAI) IWS Core Models IWS Tools Customer Profiling Color-coding Key BAI = Business Analytics Infrastructure BDA = Business Decision Analytics Application Add-on Yet to be Deployed Healthcare BAI Retail Banking BAI Life Insurance BAI P&C Insurance BAI Capital Markets BAI Credit Card BAI Media BAI Telco BAI Healthcare BDA Retail Banking BDA Insurance BDA Insurance BDA Capital Markets BDA Credit Card BDA Media Circulation Analytics Telco BDA 16 Media Advertising Analytics Electronic Bill

D_CORE_RPT_STRC COR_RPT_STRC_ID <pk> HOLDING_COMPANY VAR(35) ORG_TYPE ORG_NAME REGION SALES_TEAM_TYPE SALES_TEAM SALES_PERSON_NAME SALES_PERSON_GRADE SALES_PERSON_TYPE CHNL_CATEGORY1 CHNL_TYPE CHNL_SUBCAT CHNL_NAME CHNL_CEASED_TRD_DT CHNL_ENTY_ID CHNL_CITY CHNL_POSTCODE BEGIN_DATE_PRD_ID END_DATE_PRD_ID DV_HR_EVT_TYPE EVT_TXN_ID <pk,fk> EVT_TYP_ID <fk> EVT_TYP_SHRT_NM EVT_TYP_FULL_NM EVT_TYP_CAT_SHRT_N EVT_TYP_CAT_FULL_N VAR(20) VAR(35) VAR(20) VAR(15) VAR(15) char char(18) char F_CPGN_CNTC_EVT CCE_ID <pk> PROMO_EPSD_ID <pk> ENTY_ID <pk,fk> CNTC_PRD_ID <pk> integer CCH_COUNT <pk> CORE EVT_TYPE_ID <fk> COR_RPTG_STRUCT_ID <fk> GEO_ID <fk> MU_ID <fk> FINANCIAL_SCORE_ID <fk> LANGUAGE_ID <fk> PB_SCORE_ID <fk> PRODUCT_ID <fk> DEMO_ID <fk> EMP_ID <fk> COR_EVT_TX_SEQ_NO <fk> SMALLINT TRGT_GRP CORE_EVENTY_TYPE_ID CNTCT_CNTRL_GRP_IN CCE_RESULT P_PSYCH_ID AFFILIATION_ID PA_ID CC_COMM_EVT_AMT D_CPGN_COM_EVT_TYP EVT_TYP_ID <pk,fk> CPGN_COMM_DESC DATE VAR(20) VAR(20) char char EVT_TYP_ID = EVT_TYP_ID EXPERIAN_SCOR_BAND EVT_TYP_ID = EVT_TYP_ID D_CORE_EVT_TYP EVT_TYP_ID <pk> SCOR_N_BAND PRODUCT_ID = PRODUCT_ID PN_BHVR_SCOR_ID = PN_BHVR_SCOR_ID PRFT_IND_BAND EVT_TYP_SHRT_NAM VAR(15) ENTY_ID = ENTY_ID ENTY_ID = EMP_ID GEO_ID = GEO_ID LANGUAGE_ID = LANGUAGE_ID PRODUCT_ID = PRODUCT_ID DEMO_ID = DEMO_ID EVT_TYP_ID = COR_EVT_TYP_ID ENTY_ID = F_C_ENTY_ID GEO_ID = GEO_ID COR_RPT_STRC_ID = COR_RPT_STRC_ID LANGUAGE_ID = LANGUAGE_ID int F_HR_EVT V_E_ENTY_ID <fk> V_E2_ENTY_ID <fk> EVT_DT_PRD_ID ADMIN <pk,fk> EVT_EMP_ID <pk,fk> EVT_EMP_DEMO <pk,fk> EVT_ADMIN_DEMO <pk,fk> CORE_EXT_ID <pk,fk> CORE_RPTG_STRUC <pk,fk> GEO_ID <pk,fk> MU_ID <pk> FIN_SCORE_ID <pk,fk> LANGUAGE_ID <pk,fk> PB_SCORE_ID <pk> F_C_ENTY_ID <fk> PRODUCT_ID <pk> DEMO_ID <pk,fk> EMP_ID <pk,fk> CDEX_SEQ_NO <pk> QTY char(3) decimal(10,2) EVT_TYP_LONG_NAM EVT_TYP_SUBTYP_NAM integer D_LANGUAGE LANGUAGE_ID <pk> ISO_LANG_CODE ISO_LANG_NAME LANG_GROUP D_PN_BHVR_SCOR char PN_BHVR_SCOR_ID <pk> SCORE1_BAND SCORE_N_BAND FNCL_SCORES_ID <pk> LANGUAGE_ID = LANGUAGE_ID INTERNAL_FNCL_SCOR VAR(50) VAR(35) VAR(15) VAR(20) VAR(20) VAR(20) ENTY_ID = ENTY_ID FNCL_SCOR_ID = FNCL_SCOR_ID MEASURE_UNIT_ID = MEASURE_UNIT_ID FNCL_SCORES_ID = FNCL_SCOR_ID F_CORE_EVT COR_EVT_TXN_ID <pk> COR_EVT_TYP_ID <pk,fk> D_M_MEASURE_UNIT_ID <fk> COR_RPT_STRC_ID <pk,fk> GEO_ID <pk,fk> MEASURE_UNIT_ID <pk,fk> FNCL_SCOR_ID <pk,fk> LANGUAGE_ID <pk,fk> PN_BHVR_SCOR_ID <pk,fk> PRODUCT_ID <pk,fk> DEMO_ID <pk,fk> ENTY_ID <pk,fk> V_E_ENTY_ID <fk> COR_EVT_TXN_SEQ_NB <pk> NUMBER PRD_ID <fk> AMOUNT F_SALES_EVENT DEBT_INCOME_RATIO NUMBER D_PRODUCT PRODUCT_ID <pk,fk> ENTY_ID <fk> PRODUCT_LINE PRODUCT_GROUP PRODUCT_CODE PRODUCT_NAME PD_VARIANT_CODE PRODUCT_VARIANT GRP_INDV_IND PD_START_PRD_ID PD_END_PRD_ID EVT_TXN_ID <fk> EVT_TYP_ID <fk> RPT_STRC_ID <fk> MEASURE_UNIT_ID <fk> FNCL_SCOR_ID <fk> PN_BHVR_SCOR_ID <fk> ENTY_ID <fk> EMP_ID <fk> EVT_TXN_SEQ_NBR <fk> D_FNCL_SCOR PRD_ID = PRD_ID VAR(35) VAR(50) VAR(50) VAR(50) NUMBER MEASURE_UNIT_ID = D_M_MEASURE_UNIT_ID ENTY_ID = V_E_ENTY_ID MEASURE_UNIT_ID = MEASURE_UNIT_ID ENTY_ID = ENTY_ID DEMO_ID = DEMO_ID ENTY_ID = F_C_ENTY_ID COR_EVT_TYP_ID = COR_EVT_TYP_ID GEO_ID = GEO_ID COR_RPT_STRC_ID = COR_RPT_STRC_ID ENTY_ID = CNTC_RSOL_EMP_ID GEO_ID = GEO_ID FNCL_SCOR_ID = FNCL_SCOR_ID MEASURE_UNIT_ID = MEASURE_UNIT_ID COR_EVT_TXN_ID = COR_EVT_TXN_ID LANGUAGE_ID = LANGUAGE_ID COR_EVT_TXN_SEQ_NB = COR_EVT_TXN_SEQ_NB PN_BHVR_SCOR_ID = PN_BHVR_SCOR_ID D_TIME_PERIOD PRODUCT_ID = PRODUCT_ID DEMO_ID = DEMO_ID D_MSR_UNIT MEASURE_UNIT_ID <pk> SHRT_DESC LONG_DESC PRD_ID <pk> DT_NA DATE DAY_NAME DAY_ABR DAY_IN_WEEK DAY_IN_MONTH DAY_IN_YEAR WEEK_IN_MONTH WEEK_IN_YEAR CLNT_SVC_WK_IN_YR MONTH_NAME MONTH_ABR MONTH_IN_YEAR CALENDAR_QTR MONTH_IN_QTR WEEK_IN_QTR DAY_IN_QTR FINANCIAL_QTR COMPETITOR_FSCL_YR MONTH_IN_FNCL_QTR WEEK_IN_FNCL_QTR DAY_IN_FNCL_QTR SEMI_YEARLY YEAR_NAME YEAR_ABR SEASON_NAME SEASON_ABR NBR_DAYS_SINCE_90 HOLIDAY_IND XMAS_HLDY_IND EASTER_HLDY_IND char(4) DATE char(8) char(3) SMALLINT SMALLINT SMALLINT SMALLINT SMALLINT char(18) char(10) char(3) SMALLINT char(6) SMALLINT SMALLINT SMALLINT char(6) char(6) SMALLINT SMALLINT SMALLINT SMALLINT char(18) char(4) char(18) char(6) integer char(6) char(20) D_DEMOGRAPHICS DEMO_ID <pk> ALL_ENTRIES INCOME_BAND AGE_BAND GNDR MRTL_STAT HIGH_VALUE_INDICAT ACMDTN_CTGRY NBR_IN_HH_BAND CHLD_AT_HOME_BAND SIZE_CLS LEGAL_ORG_TYPE NBR_EMP_BAND SECTOR_CLS MAIL_PRMSN_IND TELMKT_PRMSN_IND F_CUS_CNTC_EVT V_E_ENTY_ID <fk> CUS_CNTC_ID <pk> D_C_CTCT_RSOL_ID <fk> LGCY_SYS_CUS_CNTC CUS_CNTC_REF CUS_CNTC_EVT_ID char F_C_ENTY_ID <fk> CUS_STSF_RT_ID <fk> CNTC_INIT_DT_ID ENTY_ID RPT_STRC_ID GEO_ID ADR_ID EMP_DEMO_ID EMP_NAME_PFX EMP_SNAME EMP_FNAME EMP_MNAME EMP_NAME_SFX EMP_NTL_INS_NBR EMP_HOME_TEL_NBR EMP_PRIM_FAX_NBR EMP_EMAIL_ID EMP_DOB EMP_GNDR EMP_MRTL_STAT EMP_LIFE_STAT EMP_PREF_LANG HOUR_ID <fk> MINUTE_ID <fk> INIT_CNTC_EMP <fk> char COR_EVT_TXN_ID <fk> COR_EVT_TYP_ID <fk> COR_RPT_STRC_ID <fk> GEO_ID <fk> MEASURE_UNIT_ID <fk> FNCL_SCOR_ID <fk> LANGUAGE_ID <fk> PN_BHVR_SCOR_ID <fk> PRODUCT_ID <fk> DEMO_ID <fk> CNTC_RSOL_EMP_ID <fk> CUS_ID <fk> SRSNS_CUS_CO_ID <fk> DV_EMP D_GEOGRAPHY GEO_ID <pk> ALL_ENTRIES POSTAL_CODE CITY POSTAL_CD_PFX HZRD_WTHR_AREA HZD_WTHR_TYPE DMA_CODE SMSA_CODE ST_PROV_AREA TV_REGION NTL_RADIO_AREA LCL_RADIO_AREA REGION COUNTRY <pk,fk> CONTINENTY_ABBR GEO_SUB_CNTNT_ABBR SMRY_EFF_DT SMRY_END_DT VAR(50) VAR(50) VAR(50) VAR(50) VAR(50) PRISN_ADRS_IND VAR(15) VAR(15) VAR(15) DATE VAR(20) VARYING(1 5) char char(3) char(3) char(3) char(3) Industry-Specific Business Performance Industry-Specific Profitability Sales Loyalty Campaign Customer Profiling Customer Care 17

Key Business Measurements CRM CRM -- -- Business Business Performance Performance -- -- 18 Industry Warehouse Key Studios Business Measures Campaign Customer Profiling Customer Care Customer Loyalty Sales Profitability Traffic Persistency Management Churn Management Network Management Risk Management Usage Healthcare Treatment Market Basket Asset Management Outage Sales & Returns Fault Payment Method Location Cost Discovery Circulation, Advertising Retail Banking Insurance Credit Card Telco Utilities Healthcare Retail Media

IWS Project Life Cycle Typical Projects Start Here Start Here with Sybase IWS Resources Gather Requirements Understand Line-of-Business Design Schema ETL Templates Build Queries for Implement Test Sybase IWS 1stSaves Generation Both Time Warehouse & Money Time User Feedback Refine Test 2nd Generation 19

IWS Key Benefits Business Orientation Industry-oriented Data Reduced Risk Rapid Implementation Modular & Extensible High Performance Cost Management Integrated Open 20

Agenda CRM CRM Sybase IWS Sybase IQ 21

DW DBMS Requirements,,, D/W DBMS Partition Parallel Processing I/O Index Node Ad-hoc( ) Schema( ) 22

Sybase IQ vs. Traditional RDBMS Sybase IQ Column oriented - optimal for BI Ad-hoc access Data compression Little to no aggregation Efficient parallel access to Vertical Data Storage Simple data load, no table partition management Traditional RDBMS Row oriented - optimal for OLTP Repeatable access to data Index Explosion Pre-aggregation - Data Explosion Clustering, Partitioning, MPP - high cost Complex data loading and management across partitions 23

Sybase IQ Features Sybase IQ,,, DSSDW RDBMS Partitioning Vertical Partition Horizontal Partition (Bit-Wise) 7 ASIQ Multiplex Shared Disk Node 24

Flexibility Preplanned reports 51% Ad-hoc Queries 49% Data Warehouse Ad-Hoc Full Table Scan Ad-Hoc Plan Ad-Hoc Table Sybase IQ ColumnIndex. 25

Scalability Node SMP Cluster Shared Disk Sybase IQ Multiplex Node Sybase IQ Sybase IQ Multiplex (MPP, SMP Cluster) Node NodeH/W C P U C P U C P U System Memory System Memory System Memory Sybase IQ MPX Sybase IQ MPX Sybase IQ MPX I/O I/O I/O I/O I/O I/O NodeDB Shared DB 26

Peformance Column Read : 90% I/O : DW. RDBMS SYBASE IQ c1 c2 c3 c4 c5 c6 c7 c8 c9 c1 c2 c3 c4 c5 c6 c7 c8 c9 Vertical Processing (Column-Based) Input/Output Data ( Column ) I/O 90% 27

Economy Sybase IQ - Raw Data~70% Data I/O Overhead H/W CPU, Memory Cache, Multi-Processing 10000 Raw Data 1TB 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 7010 DB2 UDB IBM 5410 NCR 8520 Informix Sun 9870 Oracle8 Sun 970 Sybase IQ 28

Agenda CRM CRM Sybase IWS Sybase IQ 29

The Next Generation CRM Solution - Sybas IWS Business Model Applications Data Model Data Management 30