대한치과보철학회지 :Vol. 45, No. 5, 2007 타이타늄합금에다양한두께로코팅된 TiN 피막의기계적성질 조선대학교치과대학치과보철학교실 이재윤 오동준 김희중 정재헌 Ⅰ. 서론대부분의임플랜트시스템은나사를사용하며, 필연적으로나사의풀림은임플랜트보철치료후나타나는가장흔한합병증중하나이다. 1-4 Jemt 등 3,4 은부분치아결손부를수복한임플랜트상부구조의 13.6% 에서나사의계속적인풀림이발생했다고보고했으며, 단독식립의경우, 장착후 1년동안다시조여야하는나사가 26% 를차지했다고보고했다. 지대주나사풀림의원인으로는부적절한전하중 (preload), 임플랜트구성요소간의불량한적합도, 침하 (settling), 이악물기와같은비기능력, 캔틸레버 (cantilever) 에의한과하중 (over load), 고정나사의불량한적합, 고정체내부에유입된잔사와골의탄성등이보고되었으나가장큰원인은전하중의상실이다. 5 전하중이란, 나사를조일때발생하는나사내부의인장력을말하며, 나사에발생된이인장력은결과적으로임플랜트고정체와상부보철물사이에서압축성잠금력 (compressive clamping force) 으로작용하게된다. 5,6 그러나나사를조일때최초에가해진토크의약 90% 는마찰을극복하는데사용되고, 오직 10% 만이전하중을유발하므로, 나사연결의안정성을얻기위해서는전하중을최대화해야하고, 마찰을최소화해야한다. 7 지대주나사의마찰저항을감소시킬목적으로 0.76μm의순금 (pure gold) 을코팅한 3i의 Gold-tite 와테플론 (teflon) 을코팅한 Steri-Oss의 Torq-tite, 2.5μm의 tungsten carbide(wc) 를코팅한 Osstem의 WCC 나사가시판되고있다. 이러한코팅처리된지대주나사는마찰저항의감소로더욱큰전하중을발생시키며, 임플랜트구성요소의안정성을증진시키는효과가있다고보고되었다. 8.9 그러나 Martin 등 10 은코팅재료의낮은마모저항성과접합강도때문에, 반복적인나사의착탈시, 지대주나사표면에서코팅재료가떨어져나와조임에문제를야기한다고언급했다. 최근 titanium nitride(tin) 코팅이기존제품의문제점을개선하기위한방법으로연구되고있다. 11 TiN은금속표면에코팅시, 마찰계수의감소와부식에대한저항, 기계적취약함의해소등이보고되므로, 산업적으로널리사용되고있다. 특히, 절삭공구에주로사용되는경질코팅 (hard coating) 의한종류이며, 또한 TiN 코팅은표면이금빛을띄기때문에장식용구에도사용된다. 치과계에서도은-팔라듐 (Ag-Pd), 코발트 -크롬- 몰리브덴 (Co-Cr-Mo), 니켈- 크롬 (Ni-Cr), 스테인리스스틸과같은은색을띄는합금의표면을금빛으로바꾸기위해 TiN 코팅이사용되고있으며, 임플랜트지대주나사에 TiN을코팅시, 마찰계수의감소에따른나사풀림의감소와마모저항의향상등이보고되고있다. 12 그러나임플랜트지대주나사에 TiN을코팅시정량화된코팅두께에대한연구는보고되지않고있는실정이다. 675
따라서본연구의목적은타이타늄합금에코팅시간을달리해다양한두께로 TiN을코팅처리한후, 이들의기계적성질을측정하여적절한코팅두께를평가하는것이다. Ⅱ. 연구재료및방법 1. 연구재료 95개의지름 15mm, 두께 3mm인타이타늄합금 (Ti-6Al-4V) 원형시편 (Fig. 1) 을본실험을위해준비하였고, 코팅시간을달리한 6개의실험군과코팅처리를하지않은 1개의대조군으로분류하였다 (Table I). 2. 연구방법 3) 이온도금법 (ion plating) 을이용한 TiN 표면코팅타이타늄합금시편에아크이온도금법 (Arc ion plating) 을이용해 TiN을코팅처리했다. 시편을아크이온도금장치기기에장착한후, 진공챔버를 3.0 10-5 torr까지배기시키고 mass flow controller를이용하여 Ar gas를 10-20m torr로공급하였다. 이후 900W의 power로 Ar 플라즈마를발생시키고시료대에 DC를인가하여약 10분동안산화층을비롯한시험편표면의오염물질을제거한후, 진공챔버를다시 3.0 10-5 torr로배기시켰다. 이온도금을위해질소가스를 10-20m torr로공급하였다. 코팅두께를조절하기위해서, 각그룹은코팅침착시간을달리해 30 분, 60분, 90 분, 120분, 150분, 180분간시행하였다. 접착도를증가시키기위하여온도는 350-380 로하였다. 1. 시편의제작 1) 타이타늄합금시편의마운팅각시편들을레진과경화제로구성된불포화폴리에스터 (Epovia, CrayValley Inc., Jeonju, Korea) 에마운팅하였다 (Fig. 2). 2) 연마와마운팅된시편의초음파세척모든시편들을자동연마기구 (Mecapol P 260, Presi, France) 를이용해 200, 600, 1000 grit 실리콘카바이드페이퍼로일차연마한후, 최종적으로 Al2O3(1.0μm ) 를이용해미세연마를시행하였다 (Fig. 3). 연마된시편들은초음파세척기를이용하여알코올과아세톤용액으로각 10 분간세척하였다 (Fig. 4). Fig. 1. Titanium alloy disc used in this study. Table I. Classification of groups Group of specimen Coating deposition time Diameter Length of specimen A(15) 30 min ф15 mm 3 mm B(15) 60 min ф15 mm 3 mm C(15) Experimental 90 min ф15 mm 3 mm D(15) group 120 min ф15 mm 3 mm E(15) 150 min ф15 mm 3 mm F(15) 180 min ф15 mm 3 mm G( 5 ) Control group None ф15 mm 3 mm 676
Fig. 2. Mounting media (Epovia, CrayValley Inc. Jeonju, Korea) and specimens which were mounted. Fig. 3. Polishing unit (Mecapol P 260, Presi, France). Fig. 4. Ultrasonic cleaner (Branson 3510, Bransonic, USA). Fig. 6. Scratch tester (Revetest, CSM Instrument, Switzerland). Fig. 5. Ion plating apparutus(hybrid, Artecsystem, Incheon, Korea). 677
Fig. 7. Wear tester(r&b, Daejeon, Korea). 마모성을측정하였다 (Fig. 7). 시편과상대마모재 (Grade 5 titanium alloy) 를마모시험기의지그플레이트에장착한후, 1Kg의하중을가하며 20rpm으로회전시켰다. 마찰계수가변하는회전수를측정하여상대적인내마모성을평가하였다. 각그룹에서 5개의시편을무작위로선택한후, 시편당 1회측정하였다. Fig. 8. AFM (Dicp-II, Veeco Co, USA). 2. 측정 1) 코팅표면조사이온도금후도금의표면조직의변화를조사하기위하여 FE-SEM (field emission scanning electron microscopy) 을이용하여표면을분석하였다. 2) 코팅의접합강도측정 Scratch tester (Revetest, CSM Instrument, Switzerland) 를이용해마찰계수와음파 (acoustic emission) 를분석한후, 코팅층의접합강도를측정하였다 (Fig. 6). 각그룹에서 5개의시편을무작위로선택한후, 시편당 2회측정하였다. 3) 내마모성시험마모시험기 (R&B, Korea) 를이용해각그룹의내 4) 표면거칠기 (Ra) 측정 AFM(Atomic Force Microscope, Dicp-II, Veeco Co, USA) 을이용해 80 μm 80 μm의스캔사이즈로각그룹의표면거칠기를측정하였다 (Fig. 8). 각그룹에서 5개의시편을무작위로선택한후, 시편당 1회측정하였다. 5) 통계분석 SPSS ver.10.0.7 for WIN(SPSS Inc. Chicago, IL, USA) 프로그램을이용해실험결과를통계처리했다. 각그룹의통계적유의성은 one way ANOVA를이용하였고, 각그룹간의사후검정은 Duncan s multiple comparison test를통해시행하였다. Ⅲ. 결과 1. FE-SEM에의한코팅표면관찰 1) 코팅두께의관찰실험군과동일한조건으로 TiN 을웨이퍼 (wafer) 에코팅한후 FE-SEM을이용해코팅두께를평가한 678
Group A (CDT 30min) Group B (CDT 60min) Group C (CDT 90min) Group D (CDT 120min) Group E (CDT 150min) Group F (CDT 180min) Fig. 9. SEM micrographs showing coating thickness of each group. Thickness( μm ) 로관찰한사진으로모든그룹의코팅표면에서 pore를관찰할수있었다. 코팅처리를하지않은대조군 Group G의표면은 scratch가있는양상을보였으며, Group A의경우도대조군과유사한 scratch 양상을볼수있었다. 그러나 Group A를제외한코팅처리된나머지군들은비교적균질하고매끈한표면을관찰할수있었다. 2. 코팅의접합강도측정 Time(min) Fig. 10. Coating thickness according to deposition time. 결과, Group A는 0.48μm, Group B는 0.51μm, Group C는 1.05μm, Group D는 1.32μm, Group E는 1.40μm, Group F는 2.10μm로측정되었다 (Fig. 9, 10). 2) 코팅표면의관찰 Fig. 11은코팅표면을 10,000배, 20,000배의배율 Fig. 12은긁힘시험시, 점진적인하중의증가에따른마찰계수와음파의변화를보여주는그래프이다. 그래프를분석해코팅층의박리가일어나는시점을예측하고, 광학현미경으로실제박리가일어난지점의거리를측정하여그래프에대입한후, 코팅층의접합강도를결정한다. Table II는이와같이하여구한각 Group의코팅접합강도를보여준다. 측정결과, 코팅두께가증가할수록코팅층의접합강도가커지는양상을보였다. 679
Group A (CDT 30min) Group B (CDT 60min) Group C (CDT 90min) Group D (CDT 120min) Group E (CDT 150min) Group F (CDT 180min) Group G (CDT none) Fig. 11. SEM micrographs showing coating surface of each group. (Left : 10000, Right : 20000) 3. 내마모시험 (Wear resistance test) 4. 표면거칠기측정 Table III은 TiN 공정시간에따른마모의특성을보여준다. 측정결과, 코팅두께의증가에따라내마모성이증가함을알수있었다. 특히 Group D에서통계적으로유의성있는내마모성의향상을볼수있었다. Table IV는 AFM을이용하여표면거칠기를측정한결과로서, 각 Group의표면거칠기를보여준다. 코팅처리를하지않은 Group G와비교시 Group A, B, C는코팅시간의증가에따라표면거칠기의증가를보였으나, Group D를기점으로표면거칠기의감소를보였고, Group F는 Group G보다더작은표면거칠기를보였다. 680
Table II. Adhesion strength of each group Group Adhesion strength(n) S 2) P-value 1) A 11.4±0.83 a B 16.1±0.60 b C 16.8±0.45 b D 23.2±0.63 c <0.01 E 24.7±0.31 c F 29.4±1.19 d 1) Statistical significances were tested by oneway of variances among groups 2) The same letters indicate non-significant difference between groups based on Duncan s multiple comparison test. Group A Group B Group C Group D Group E Group F Fig. 12. Relationship between the friction coefficient and acoustic emission with the progressive increase of load. 681
Table III. Characteristic of wear according to coating deposition time Group Cycle count S 2) P-value 1) A 0 B 1025±39.1 a C 1500±93.0 b <0.01 D 2800±34.3 c E 2800±46.7 c F 3000±91.8 d 1) Statistical significances were tested by oneway of variances among groups 2) The same letters indicate non-significant difference between groups based on Duncan s multiple comparison test. Table IV. Surface roughness of each group Group Roughness (nm) S 2) P-value 1) A 82.1±0.96 b B 104.2±1.14 d C 203.9±9.11 f D 114.9±9.33 e <0.01 E 92.8±8.1 c F 67.4±6.2 a G 78.5±12.2 b 1) Statistical significances were tested by oneway of variances among groups 2) The same letters indicate non-significant difference between groups based on Duncan s multiple comparison test. Ⅳ. 고찰순금 (pure gold) 이나테플론 (teflon), WC 등을코팅처리한임플랜트지대주나사가시판되고있으며, 이들은마찰저항의감소로더욱큰전하중을발생시키며, 임플랜트구성요소의안정성을증진시키는효과가있다고보고되었다. 8,9 그러나이들코팅재료들은낮은마모저항성과접합강도때문에, 반복적인나사의착탈시, 지대주나사표면에서코팅재료가쉽게떨어져나가는경향이있다. 10 따라서마모저항성이높고접항강도가큰코팅재료의개선이필요하다. 최근 TiN코팅이기존제품의문제점을개선하기위해활발히연구되고있는실정이며, Kim 등 11 은 TiN 을지대주나사에코팅시, 나사풀림의저항성이커짐을보고했다. 본연구에서는 TiN 박막 (thin film) 을타이타늄합금 (Ti-6Al-4V) 에코팅처리를한후, 기계적성질을평가했다. 박막코팅은화학적진공증착법 (chemical vapor deposition) 이나물리적진공증착법 (physical vapor deposition) 에의해이루어진다. 13-16 화학적진공증착법은약 1000 의온도에서공정이이루어지므로적용범위가제한되어있다. 따라서본연구에서는물리적증착법의한종류인이온도금법 (ion plating) 을이용하여 TiN 박막코팅을시행했다. 이온도금법은고체물질을가열혹은입자를충돌시켜원자, 분자로분해하고이것을다시 D.C나 R.F전원으로이온화시켜처리물질의표면에응축시켜서박막을형성하는방법을말하며, 일반적으로이온도금법에의해형성된막은종래의진공증착이나습식도금에비하여밀착력이 50 100배뛰어나다. 또한 682
화학적진공증착법에비해증착온도가낮으며, 방전에의한활성화효과로균일한화합물막을쉽게얻을수있다. 이러한장점을보유한이온도금법은제품의고급화와경량화추세에따라항공기부품및초경공구, 의료기부품, 각종기계부품, 시계부품, 액세서리등산업전반에널리응용되고있다. 코팅표면의 FE-SEM 관찰 Mezger 등 12 은 TiN 코팅이내마모성, 부식저항성과표면경도에서뛰어난성질을보이지만, pore나 microcrack과같은코팅표면의결함이관찰되므로균질하고연속성있는코팅피막의개선이필요하다고언급했다. 타이타늄합금시편에이온도금된 TiN 피막의표면을 SEM을이용해관찰한결과역시모든그룹의코팅표면에서작은결함을관찰할수있었다. 코팅처리를하지않은 Group G의표면은연마과정의흔적인 scratch를관찰할수있었고, Group A의경우도 Group G와유사한 scratch 양상을볼수있었다. 그러나 Group A를제외한코팅처리된나머지 Group들은비교적균질하고매끈한표면을관찰할수있었다. 코팅표면의 SEM 사진을관찰한결과, 균질하고매끈한표면을얻기위해서는일정두께이상의코팅이필요하다고사료된다. 접합강도 (Adhesion strength) 코팅층의접합강도는긁힘시험 (scratch test) 을통해정량적으로측정된다. 끝이구형인 diamond tip을시편에접촉시킨후, 점진적인하중을가하면서일정속도로이동시키면하중이일정치에도달했을때접착력의상실을의미하는코팅박막의탈락현상이보인다. 14 이때박막이기질에서탈락되는시점의하중을임계하중이라한다. 타이타늄합금에코팅처리된 TiN과 WC피막의기계적성질에관한비교연구에서, TiN 코팅층의접합강도 (25.3N) 가 WC 코팅층의접합강도 (18.4N) 보다높다는연구결과가있다 17. 또한현재시판되고있는 Gold-tite와 Torqtite는코팅의접합강도가낮아코팅물질이쉽게박리되는현상을보이며, 반복적인조임과풀림과정시마찰저항이증가되어나사연결의안정에문제가발생한다는보고가있다. 10 기계적인측면에서기질에대한코팅막의접합강도는가장중요한성질중 하나이다. Milic 등 18 은코팅막의우수한부식, 마모저항성을얻기위해서는기질에대한코팅의접합강도가높아야한다고언급했다. Table II에서보여주는바와같이코팅증착시간의증가에따라접합강도역시증가함을알수있었고, Group D (CDT 120min) 와 Group F (CDT 180min) 에서통계적으로유의성있는접합강도의향상을볼수있었다. 반복적인나사의조임과풀림과정에서코팅층이쉽게박리되는현상을막기위해서는접합강도가높아야하며, 임상적으로적절한접합강도의정량적수치에대한후속연구가필요할것으로사료된다. 내마모시험 (Wear resistance test) 코팅된각 Group의시편과상대마모재 (Grade 5 titanium alloy) 를마모시험기의지그플레이트에장착한후, 1Kg의하중을가하며 20rpm으로회전시킨후, 마찰계수가변하는회전수를측정하여내마모성을평가하였다. 지대주나사에코팅된재료의마모저항성이낮다면소성변형이쉽게발생되고반복적인나사의착탈에의한코팅막의마모현상이나탈락이발생하게되어조임에문제를야기하게된다. 따라서지대주나사의코팅재료는내마모성이우수해야나사풀림의최소화라는소기의목적을달성할수있다. Table III에서보여주는바와같이코팅두께의증가에따라내마모성이증가했으며, 특히 Group D에서통계적으로유의성있는내마모성의향상을볼수있었다. 따라서 TiN 을지대주나사에코팅시, 조임과풀림을반복할때발생하는소성변형을최소화함으로써적은조임력으로쉽게고정체의나사면과접촉을할수있을것으로판단된다. 표면거칠기침하효과 (settling effect) 란, 미세거칠기를가진나사에조임회전력이가해지면현미경적소견으로는항복강도이상의하중을받게되는지점들이생기며, 이지점들에서소성변형이발생하게되고표면의초기접촉부위가변형되어편평하게되는현상을말한다. 19 이렇게나사를안정화시킬수있는접촉면적이생길때까지소성변형이일어나며, 전체 683
침하효과가나사의탄성신장보다크면더이상나사를잡아줄능력이없게되어나사의풀림이나타난다. 20 Sakaguchi 등 21 은 2-10% 의초기전하중이침하효과의영향으로소실된다고보고했으며, Binon 등 8 은침하효과의크기는초기표면거칠기, 표면경도, 가해지는힘에좌우된다고보고했다. 코팅표면의거칠기가작을수록침하효과가적게일어나나사풀림의가능성이적어지므로균일하고매끈한코팅표면이요구된다. Table IV에서보는바와같이 Group A, B, C는대조군과비교해코팅시간의증가에따라표면거칠기의증가를보였으나, Group D(114.9nm±9.33) 를기점으로코팅시간이증가함에따라표면거칠기의감소를보였고, Group F(67.4nm±6.2) 는코팅처리를하지않은대조군 (78.5nm±12.2) 보다더작은표면거칠기를보였다. 결론적으로, 타이타늄합금에 TiN을코팅시코팅침착시간에따라기계적성질의변화를볼수있었으며, 본실험의결과를종합하여볼때, 타이타늄합금에 TiN 코팅시 120 분정도의코팅시간 (1.32μm이상코팅두께 ) 이필요하리라고사료되며, 추후나사풀림의문제점을크게개선하기위해임플랜트지대주나사에 TiN 코팅시실제나사에적정한코팅시간및코팅두께에관해선앞으로연구가계속되어야하리라고사료된다. Ⅴ. 결론본연구에서는타이타늄합금시편에 TiN 코팅침착시간을 30분 (Group A), 60분 (Group B), 90분 (Group C), 120분 (Group D), 150분 (Group E), 180 분 (Group F) 으로달리하여이시편의표면관찰및기계적성질을측정하므로서다음과같은결론을얻었다. 1. 코팅침착시간의증가에따라코팅두께가증가했다. 2. Group A를제외한모든코팅그룹에서비교적균질하고매끈한표면을관찰할수있었다. 그러나코팅처리를하지않은대조군인 Group G 의표면에서 scratch가있는양상을보였다. 3. 코팅침착시간의증가에따라접합강도가증가하는경향을보였다. 4. 코팅침착시간의증가에따라내마모성이증가하는경향을보였다. 5. 코팅표면의거칠기는 Group A, B, C에서는코팅시간이증가할수록커지다가 Group D, E, F에서는코팅시간이증가함에따라감소하는경향을가졌다. 결론적으로, 타이타늄합금에 TiN을코팅시코팅침착시간에따라기계적성질의변화를볼수있었고, 추후나사풀림의문제점을크게개선하기위해임플랜트지대주나사에 TiN 코팅시실제나사에적정한코팅시간및코팅두께에관해서앞으로연구가계속진행되어야하리라고사료된다. 참고문헌 1. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JYK. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-132. 2. Taylor TD. Prosthodontic problems and limitations associated with osseointegration. J Prosthet Dent 1998;79:74-78. 3. Jemt T. Failures and complication s in 391 consecutively inserted fixed prostheses supported by Banemark implants in edentulous jaws: A study of treatment from the time of prosthesis placement to the first annual checkup. Int J Oral Maxillofac Implants 1991;6:270-276. 4. Jemt T, Pettersson P. A 3-year follow-up study on single implant treatment. J Dent 1993;21:203-208. 5. Binon PP, Sutter F, Beaty K, Brunski J, Gulbransen H, Weiner R. The role of screw in implant systems. Int J Oral Maxillofac Implants (supplement) 1994;9:48-63. 6. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment systems. Int J Oral Maxillofac Implants 1995;10:529-536. 684
7. Motosh N. Development of design charts for bolts preloaded up to the plastic range. J Eng Ind 1976;98:849-851. 8. Binon PP. Implants and components : Entering the new millenium. Int J Oral Maxillofac Implants 2000;15:76-94. 9. Choi JU, Jeong CM, Jeon YC, Lim JS, Jeong HC, Eom TG, Influence of Tungsten Carbide/Carbon coating on the preload of implant abutment screws. J Korean Acad Prosthodont 2006;44:229-242. 10. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw retations and preloads for four different screw materials and surfaces. J Prosthet Dent 2001;86:24-32. 11. Kim HJ. Choe HC, Kim SG, Chung CH. Effect of TiN coating of abutment screw on detorque force. Int J Oral Maxillofac Implants 2006 under review. 12. Mezger PR, Creugers NH. Titanium nitride coatings in clinical dentistry. J Dent 1992;20:342-344. 13. Arias DF, Arango YC, Devia A. Characterization of bilayer coatings of TiN/ZrN grown using pulsed arc PAPVD. Appl. Sur. Sci 2005;252:1175-1181. 14. Takadoum J, Bennani HH. Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films. Surf. & Coat. Tech. 1997;96:272-282. 15. Sundgren JE. Structure and properties of TiN coatings. Thin Solid Films 1985; 128:21-44. 16. Polonsky IA, Chang TP, Keer LM, Sproul WD. A study of rolling-contact fatigue of bearing steel coated with physical vapor deposition TiN films: Coating response to cyclic contact stress and physical mechanism underlying coating effect on the fatigue life. Wear 1998;215:191-204. 17. Oh DJ, Kim HJ, Chung CH. A study on mechanical properties of TiN, ZrN, WC coating in titanium alloy. J Korean Acad Prosthodont 2006;44:740-750. 18. Millic M, Milosavljevic M, Bibic N, Nenadovic T. Mechanical properties of sputtered TiN coatings. Thin Solid Films 1985;126:319-323. 19. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect : An overview. J Oral Implantol 2003;29:242-245. 20. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-359. 21. Sakaguchi RL, Borgersen SE. Nonlinear contact analysis of preload in dental implant screws. Int J Oral Maxillofac Implants 1995;10:295-302. Reprint request to: Chae-Heon Chung D.D.S., M.S.D., Ph.D. Department of Prosthodontics, College of Dentistry, Chosun University, 421, Seosuk-Dong, Dong-Gu, Gwangju, 501-825, Korea jhajung@mail.chosun.ac.kr 685
ABSTRACT MECHANICAL PROPERTIES OF TIN COATED FILM WITH VARIOUS COATING THICKNESS ON TITANIUM ALLOY Jae-Yun Lee, D.D.S., M.S.D., Dong-Joon Oh, D.D.S., M.S.D., Hee-Jung Kim, D.D.S., M.S.D., PhD., Chae-Heon Chung, D.D.S., M.S.D., Ph.D. Department of Prosthodontics, College of Dentistry, Chosun University, Korea Statement of problem: Titanium nitride(tin) coatings are the most general and popular coating method and used to improve the properties of metallic surface for industrial purposes. When TiN coating applied to the abutment screw, frictional resistance would be reduced, as a results, the greater preload and prevention of the screw loosening could be expected. Purpose: The purpose of this study was to investigate mechanical properties of TiN coated film of various coating thickness on the titanium alloy surface and to evaluate proper coating thickness. Material and method: 95 Titanium alloy (Ti-6Al-4V) discs of 15 mm in diameter and 3 mm in thickness were prepared for TiN coating and divided into 7 groups in this study. Accoding to coating deposition time (CDT) with TiN by using Arc ion plating, were divided into 7 groups : Group A (CDT 30min), Group B (CDT 60min), Group C (CDT 90min), Group D (CDT 120min), Group E (CDT 150min), Group F(CDT 180min) and Group G (no CDT) as a control group. TiN coating surface was observed with Atomic Force Microscope(AFM), field emission scanning electron microscopy(fe-sem) and examined with scratch tester, wear tester. Result: 1. Coating thickness for each coated group was increased in proportion to coating deposition time. 2. Surface of all coated groups except Group A was homogeneous and smooth. However, surface of none coated Group G had scratch. 3. Adhesion strength for each coated group was increased in proportion to coating deposition time. 4. Wear resistance for each coated group was increased in proportion to coating deposition time. 5. Surface roughness in Group A, B, C was increased in proportion to coating deposition time. But, surface roughness in Group D, E, F was showed decreased tendency in proportion to coating deposition time. Conclusion: According to coating deposition time, mechanical properties of TiN coated film were changed. It was considered that 120 minutes coating deposition time (1.32μm in coating thickness) is necessary. Key words : Titanium nitride(tin), Adhesion strength, Wear resistance, Surface roughness 686