What’s semiconductor?

Similar documents
Microsoft PowerPoint - dev6_TCAD.ppt [호환 모드]

<4D F736F F F696E74202D F FB5BFBACEC7CFC0CCC5D820B1E8BFA9C8B22E BC8A3C8AF20B8F0B5E55D>

KAERIAR hwp

Microsoft PowerPoint - ch03ysk2012.ppt [호환 모드]

Microsoft PowerPoint - Chapter4&6(강의용)

歯전기전자공학개론

Microsoft PowerPoint - ch07ysk2012.ppt [호환 모드]

歯03-ICFamily.PDF

구리 전해도금 후 열처리에 따른 미세구조의 변화와 관련된 Electromigration 신뢰성에 관한 연구

PowerPoint 프레젠테이션

Microsoft PowerPoint - Ch3

KAERI/AR-636/2002 : 技術現況分析報告書 : 방사선 계측기술 및 중성자 계측기 기술 개발 현황

Microsoft PowerPoint - ch25ysk.pptx

Microsoft PowerPoint - Ch8

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

유기 발광 다이오드의 전하주입 효율 향상을 통한 발광효율 향상 연구

2001/1학기 공학 물리 중간고사

Microsoft PowerPoint - 3. BJT

Microsoft PowerPoint - 전자물리특강-OLED-Driving

Slide 1

Microsoft PowerPoint - dev7_rf.ppt [호환 모드]

歯4.PDF

MOSFET 란

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

Microsoft Power Point 2002

PowerPoint Presentation

#Ȳ¿ë¼®

PowerPoint 프레젠테이션

KEIT PD(15-10)-내지.indd

목차 ⅰ ⅲ ⅳ Abstract v Ⅰ Ⅱ Ⅲ i

PowerPoint Presentation

Output file

< C6AFC1FD28B1C7C7F5C1DF292E687770>

<4D F736F F F696E74202D DC0FCB1E2C0FCC0DAC8B8B7CEB1E2C3CA>

Electropure EDI OEM Presentation

untitled

DISPLAY CLASS Electronic Information Displays CRT Flat Panel Display Projection Emissive Display Non Emissive Display Cathode Ray Tube Light Valve FED

05-1Ưº°±âȹ

2-32

실적 및 전망 09년 하반 PECVD 고객 다변화에 따른 실적개선 10년 태양광 R&D 장비 매출을 반으로 본격적인 상업생산 시작 1. 09년 3Q 실적 동사는 09년 3Q에 매출과 영업이익으로 각각 142 억원(YoY 16.7%, QoQ 142%), 6 억원(흑전환)

전기정보 11월(내지).qxp

전자회로-07장


00....

Vertical Probe Card Technology Pin Technology 1) Probe Pin Testable Pitch:03 (Matrix) Minimum Pin Length:2.67 High Speed Test Application:Test Socket

2-32

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

Chap3.SiliconOxidation.hwp

I. 회사의 개요 1. 회사의 개요 1. 연결대상 종속회사 개황(연결재무제표를 작성하는 주권상장법인이 사업보고서, 분기ㆍ 반기보고서를 제출하는 경우에 한함) 상호 설립일 주소 주요사업 직전사업연도말 자산총액 지배관계 근거 주요종속 회사 여부 (주)이수엑사보드 2004년

1. Features IR-Compact non-contact infrared thermometer measures the infrared wavelength emitted from the target spot and converts it to standard curr

<313920C0CCB1E2BFF82E687770>

<4D F736F F F696E74202D20BEC6B3AFB7CEB1D7B9D7C6C4BFF64943BFF6C5A9BCA55F FBEC8B1E6C3CA2E707074>

X-VA-MT3809G-MT3810G-kor

PJTROHMPCJPS.hwp

<4D F736F F F696E74202D20454D49A3AF454D43BAEDB7CEBCC52EBBEABEF7BFEBC6F7C7D428BBEFC8ADC0FCC0DA >

Coriolis.hwp

10신동석.hwp

Á¶´öÈñ_0304_final.hwp

제 07 장 Al and Cu Metallization.hwp

LCD

저작자표시 - 비영리 - 변경금지 2.0 대한민국 이용자는아래의조건을따르는경우에한하여자유롭게 이저작물을복제, 배포, 전송, 전시, 공연및방송할수있습니다. 다음과같은조건을따라야합니다 : 저작자표시. 귀하는원저작자를표시하여야합니다. 비영리. 귀하는이저작물을영리목적으로이용할

슬라이드 제목 없음

Vol August KCC Inside Special Theme KCC Life KCC News 04 KCC 하이라이트Ⅰ KCC 울산 신공장 준공식 거행 06 KCC 하이라이트Ⅱ 김천공장 통전식 및 안전 기원제 실시 08 KCC

1508 고려 카달록

5. Kapitel URE neu

02 Reihe bis 750 bar GB-9.03

PowerChute Personal Edition v3.1.0 에이전트 사용 설명서

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 26, no. 3, Mar (NFC: non-foster Circuit).,. (non-foster match

(Exposure) Exposure (Exposure Assesment) EMF Unknown to mechanism Health Effect (Effect) Unknown to mechanism Behavior pattern (Micro- Environment) Re

Small-Cell 2.6 GHz Doherty 표 1. Silicon LDMOS FET Table 1. Comparison of silicon LDMOS FET and GaN- HEMT. Silicon LDMOS FET Bandgap 1.1 ev 3.4 ev 75 V

슬라이드 1

Microsoft PowerPoint - 카메라 시스템

Development of culture technic for practical cultivation under structure in Gastrodia elate Blume

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

DC Link Application DC Link capacitor can be universally used for the assembly of low inductance DC buffer circuits and DC filtering, smoothing. They

서보교육자료배포용.ppt

가. 회사의 법적, 상업적 명칭 당사의 명칭은 주성엔지니어링 주식회사라고 표기합니다. 또한 영문으로는 JUSUNG Engineering Co., Ltd. 라 표기합니다. 나. 설립일자 및 존속기간 당사는 반도체, FPD, 태양전지, 신재생에너지, LED 및 OLED 제

- 2 -

4 CD Construct Special Model VI 2 nd Order Model VI 2 Note: Hands-on 1, 2 RC 1 RLC mass-spring-damper 2 2 ζ ω n (rad/sec) 2 ( ζ < 1), 1 (ζ = 1), ( ) 1

,,,,,, (41) ( e f f e c t ), ( c u r r e n t ) ( p o t e n t i a l difference),, ( r e s i s t a n c e ) 2,,,,,,,, (41), (42) (42) ( 41) (Ohm s law),

11¹Ú´ö±Ô

歯동작원리.PDF

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

서강대학교 기초과학연구소대학중점연구소 심포지엄기초과학연구소

PowerPoint Presentation

원고스타일 정의

Microsoft PowerPoint - energy_materials( ) [호환 모드]

<4D F736F F F696E74202D20B3AAB3EBC8ADC7D0B0F8C1A4202DB3AAB3EBB1E2BCFA2E BC8A3C8AF20B8F0B5E55D>

소개.PDF

<BCF6BDC D31385FB0EDBCD3B5B5B7CEC8DEB0D4C5B8BFEEB5B5C0D4B1B8BBF3BFACB1B85FB1C7BFB5C0CE2E687770>

슬라이드 1

한국콘베어-AP8p

Dual- Gate FET T he Analysis and Applications of Nonlinear Characteris tics of Dual- Gate FET

232 도시행정학보 제25집 제4호 I. 서 론 1. 연구의 배경 및 목적 사회가 다원화될수록 다양성과 복합성의 요소는 증가하게 된다. 도시의 발달은 사회의 다원 화와 밀접하게 관련되어 있기 때문에 현대화된 도시는 경제, 사회, 정치 등이 복합적으로 연 계되어 있어 특



½½¶óÀ̵å Á¦¸ñ ¾øÀ½

<B3EDB9AEC1FD5F3235C1FD2E687770>

Microsoft PowerPoint - ICCAD_Analog_lec01.ppt [호환 모드]

14.fm

Transcription:

Lecture 2 집적회로란 : 무어의법칙, 집적화의장점, 종류, 반도체칩의일생 원광대학교이재철 http://edu.idec.or.kr

Semiconductor? Conductor: Low resistivity Easily conducts Electrical Current Metals(copper, gold, sliver, etc.) Insulator: High resistivity Blocks Electrical Current Compounds(Wood, Rubber, etc.) Semiconductor: Intermediate resistivity Medium Electrical Conductivity

Why? The behavior of valence electron Insulator: Many but Bound to nucleus Conductor: Few and Free from nucleus Semiconductor: Just in between: 전자 양성자중성자 Nucleus

The Silicon Atom 14 electrons occupying the 1st 3 energy levels: 1s, 2s, 2p orbitals filled by 10 electrons 3s, 3p orbitals filled by 4 electrons Each has one electron and is capable of forming a bond with a neighboring atom

Semiconductor Materials Elemental Semiconductor A Single Element Si, Ge Compound Semiconductor Two or More Elements III-V: GaAs, InP, GaN, AlxGa1-xAs 1 H 수소 3 Li 리튬 11 Na 나트륨 I II III IV V VI VII 0 4 Be 베릴륨 12 Mg 마그네슘 전자의개수 원소기호 5 B 붕소 13 Al 알루미늄 31 Ga 갈륨 6 C 탄소 14 Si 실리콘 32 Ge 게르마늄 7 N 질소 15 P 인 33 As 비소 8 O 산소 16 S 황 9 F 불소 17 Cl 염소 2 He 헬륨 10 Ne 네온 18 Ar 아르곤

Electronic Properties of Si Silicon is a semiconductor material. Pure Si has relatively high resistivity at room temperature. There are 2 types of mobile charge-carriers in Si: Conduction electrons are negatively charged. Holes are positively charged. They are an absence of electrons. The concentration of conduction electrons & holes in a semiconductor can be affected in several ways: by adding special impurity atoms (dopants) by applying an electric field by changing the temperature by irradiation

Intrinsic Semiconductor Silicon: 4 Valence Electrons Si Si Si Si Si Si Si Si Si Diamond Structure 2D Model

n-type Small number (~ ppm) of Impurities of Group V(e.g. P, As) 인원자 ( 도너 ) Si Si Si 공유결합 자유전자 Si P Si 자유전자 도너 Si Si Si

p-type Small number (~ ppm) of Impurities of Group III(e.g. B, In) 공유결합 붕소원자 ( 억셉터 ) 정공 Si Si Si B Si Si 정공 억셉터 Si Si Si

pn Junction Diode Schematic diagram p-type n-type I D Circuit symbol net acceptor concentration N A net donor concentration N D + V D Physical structure: + I D metal SiO 2 SiO 2 V D p-type Si n-type Si metal

p-n n Junction Diode Depletion layer formation by diffusion Diffusion due to difference of density p 형 n 형 공핍층 B B B P P B B B P P B B B B B P P P B B B B B P P P B P P B P P pn 접합에서캐리어의확산 공핍층의형성

Depletion Region When the junction is first formed, mobile carriers diffuse across the junction (due to the concentration gradients) Holes diffuse from the p side to the n side, leaving behind negatively charged immobile acceptor ions Electrons diffuse from the n side to the p side, leaving behind positively charged immobile donor ions A region depleted of mobile carriers is formed at the junction. The space charge due to immobile ions in the depletion region establishes an electric field that opposes carrier diffusion.

Electric Field and Built-In Potential φ 0 p + + + + + n No net current flows across the junction when the externally applied voltage is 0 V. electric field (V/cm) potential (V) distance kt φ 0 ln q kt q N N A = 2 ni distance D ln( 10) = 60 mv for T = 300K built-in potential φ 0

Effect of Applied Voltage V D p + + + + + n The quasi-neutral p and n regions have low resistivity, whereas the depletion region has high resistivity. Thus, when an external voltage V D is applied across the diode, almost all of this voltage is dropped across the depletion region. (Think of a voltage divider circuit.) If V D > 0 (forward bias), the potential barrier to carrier diffusion is reduced by the applied voltage. If V D < 0 (reverse bias), the potential barrier to carrier diffusion is increased by the applied voltage.

Equilibrium & Reverse Bias I 물 ( 정공 ) 수조 (p 형 ) 수로 (n 형 ) 공핍층 Vz 항복역방향순방향 V 평형상태의 pn 접합 역방향바이어스

Forward Bias As V D increases, the potential barrier to carrier diffusion across the junction decreases*, and current increases exponentially. V D > 0 p + + + + + n I D (Amperes) V D (Volts) * Hence, the width of the depletion region decreases.

Forward Bias 물 ( 정공 ) 양극 (Anode) 음극 (Cathode) 수로 (n 형 ) 전류 공핍층 수조 (p 형 ) 순방향바이어스

I-V Characteristic / kt Exponential diode equation: I = I ( e D 1) D S qv I D (A) kt q = 0.026 Volts for T = 300K I S is the diode saturation current function of n i2, A D, N A, N D, length of quasi-neutral regions typical range of values: 10-14 to 10-17 A/μm 2 Note that e 0.6/0.026 = 10 10 and e 0.72/0.026 = 10 12 V D (V) I D is in the ma range for V D in the range 0.6 to 0.7 V, typically.

Why are pn Junctions Important for ICs? Transistors are made of pn junctions Electrical isolation of transistors located next to each other at the surface of a Si wafer. MOS transistor structure contains reverse-biased diodes. The junction capacitance of these diodes can limit the performance (operating speed) of digital circuits

Device Isolation using pn Junctions regions of n-type Si a b n n n n n p-type Si No current flows if voltages are applied between n-type regions, because two pn junctions are back-to-back n-region a n-region p-region => n-type regions isolated in p-type substrate and vice versa b

Junction Isolation Transistor A Transistor B n n n n p-type Si We can build large circuits consisting of many transistors without worrying about current flow between devices. The p-n junctions isolate the transistors because there is always at least one reverse-biased p-n junction in every potential current path.

Transistors Transistors are three terminal devices that replaced vacuum tubes. They are solid state devices that are used for Amplification Switching Detecting Light The three terminals are the Emitter, Base, Collector (BJT) Source, Gate, Drain (FET)

Transistors Bipolar: Both Hole and Electron are used Unipolar: Only Hole or Electron is used J-FET: Junction Field Effect Transistor MOSFET:Metal-Oxide-Semiconductor TFT: Thin Film Transistor

The BJT Bipolar Junction Transistors are made with n-type and p-type semiconductors. There are two types: npn and pnp. Circuit Symbols E 에미터 N P N C 컬렉터 E 에미터 P N P C 컬렉터 B 베이스 B 베이스 npn 트랜지스터 pnp 트랜지스터

Discrete BJT 보호산화막 에미터베이스 컬렉터

Integrated BJT B E B C 보호산화막 에미터베이스컬렉터 p ISO n 매몰층 p ISO p 기판

Two diodes forward biased reverse biased. 공핍층 공핍층 물 ( 정공 ) 수로 (n 형 ) 수조 (p 형 )

Two Diodes in Connection 공핍층 공핍층 Iforward Ireverse No transistor action

Very thin base width I E αi E ( 1 α ) I E R V F The collector current I C is almost equal to I E, and collector current is controlled by the E-B junction bias. The loss, i.e. α < 1 corresponds to the recombination of holes in base. V R

BJT in Equilibrium 전자 정공 전자 에미터 (n 형 ) 베이스 (p 형 ) 컬렉터 (n 형 ) 물 ( 전자 ) 장벽 ( 베이스 ) 수조 ( 에미터 ) 수조 ( 컬렉터 )

BJT in Active Region I E V EB - + - + I B V BE V CB V BE 에미터 V C 컬렉터

BJT Characteristics

BJT Applications Analog Circuit: Amplifier Digital Circuit: Switch

BJT Advantages Linear Characteristics Large gm Good for Analog Circuits Disadvantages Large Power Consumption Cannot be Scaled Large Space for Isolation Incompatible with CMOS Digital Limited Usage Now

Field Effect Transistor (FET) An electric field is applied normal to the surface of the semiconductor (by applying a voltage to an overlying gate electrode), to modulate the conductance of the semiconductor Modulate drift current flowing between 2 contacts ( source and drain ) by varying the voltage on the gate electrode

JFET 접합형전계효과트랜지스터 (JFET) 의심벌과구조 게이트 (G) D D G G 소스 (S) 드레인 (D) S N-channel S P-channel + - A 공핍층 - +

JFET p 형게이트 p 형게이트 p 형게이트 소스 전자 공핍층 n 형 드레인 소스 공핍층 n 형 드레인 소스 전자 공핍층 n 형 드레인 선형영역 차단영역 포화영역 드레인전류 선형영역 포화영역 게이트전압 차단영역 소스드레인전압

MOSFET D G S N-channel D G S P-channel

MOSFET Cross-section section 알루미늄배선 게이트 절연막 소스 드레인 필드산화막

Cutoff 소스 게이트 Metal Oxide 드레인 소스 게이트 ++++++++++++ 드레인 n Semiconductor n ------------ 공핍층 공핍층 공핍층 공핍층 p 형기판 p 형기판 Without a gate-to-source voltage applied, no current can flow between the source and drain regions. Above a certain gate-to-source voltage (threshold voltage V T ), a conducting layer of mobile electrons is formed at the Si surface beneath the oxide. These electrons can carry current between the source and drain.

Linear Region V GS V DS The MOSFET behaves as a resistor when V DS is low: Drain current I D increases linearly with V DS Resistance R DS between SOURCE & DRAIN depends on V GS R DS is lowered as V GS increases above V T Source Gate +++++++++++++++++ I D Drain I D V GS = 2 V V GS = 1 V > V T V DS I DS = 0 if V GS < V T

Saturation Region As V DS increases above V GS V T V DSAT, the length of the pinch-off region ΔL increases: extra voltage (V DS V Dsat ) is dropped across the distance ΔL the voltage dropped across the inversion-layer resistor remains V Dsat the drain current I D saturates 소스 게이트 +++++++++++++++++ 채널 드레인 공핍층 공핍층 p 형기판

I-V V Relations ID (ma) 2 1 Triode VDS=VGS-VT Saturation VGS=5V VGS=4V VGS=3V VGS=2V VGS=1V 0.0 1.0 2.0 3.0 4.0 5.0 VDS (V) I D as a function of V DS Square Dependence 0.020 I D 0.010 I D Subthreshold Current 0.0 1.0 2.0 3.0 VGS (V) as a function of V GS (for V DS =5v) NMOS Enhancement Transistor : W=100um, L=20um

선형 (Linear ) 영역 Triode, Nonsaturated V GS > V T, V DS < V GS -V T β I = V V V V 2 2 2 [ ( ) ] D GS T DS DS Device Transconductance Process Transconductance β = K' W L K'= μ C = n ox n Aspect Ratio ox μ ε t ox

포화 (Saturation) 영역 V S =0 V GS >V T0 + n + 채널 n + I D + V DS V DS (V GS -V T0 ) V B =0 p(na) V GS > V T, V DS > V GS -V T 1 I = β V V 2 ( ) D GS T 2

Switch Model of NMOS Transistor V GS Gate Source (of carriers) Drain (of carriers) Open (off) (Gate = 0 ) Closed (on) (Gate = 1 ) R on V GS < V T V GS > V T @ Linear Region R ON β ( V V ) K' ( V V )W GS 1 T = 1 GS T L

Switch Model of PMOS Transistor V GS Gate Source (of carriers) Drain (of carriers) Open (off) (Gate = 1 ) Closed (on) (Gate = 0 ) R on V GS > V DD V T V GS < V DD V T

Deep Submicron Issues Threshold Variations Subthreshold Conduction Parasitic Resistances

Future Device

Impact of Interconnect Parasitics Interconnect parasitics reduce reliability affect performance and power consumption Classes of parasitics Capacitive Resistive Inductive

Interconnect: # of Wiring Layers # of metal layers is steadily increasing due to: T ins ρ = 2.2 μω-cm M6 Increasing die size and device count: we need more wires and longer wires to connect everything W S M5 Rising need for a hierarchical wiring network; local wires with high density and global wires with low RC H M4 3.5 Minimum Widths (Relative) 4.0 Minimum Spacing (Relative) 3.0 3.5 substrate M3 M2 M1 poly 0.25 μm wiring stack 2.5 2.0 1.5 1.0 0.5 0.0 1.0μ 0.8μ 0.6μ 0.35μ 0.25μ M5 M4 M3 M2 M1 Poly 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1.0μ 0.8μ 0.6μ 0.35μ 0.25μ M5 M4 M3 M2 M1 Poly

Semiconductor Design Architecture Design Circuit Design Layout Design PhotoMask

Si Wafer 모래 단결정실리콘잉고트 잉고트자르기 연마 고순도실리콘봉 광택내기 다결정실리콘잉고트 단결정잉고트제조 ( 쵸크랄스키방법 ) 완성된웨이퍼

Lithography: Basic Concept 실리콘기판 레지스트현상하기 얇은막입히기 얇은막걷어내기 원판복사하기 레지스트입히기 레지스트벗겨내기

Wafer Processing 실리콘웨이퍼 열처리 완성된웨이퍼 표면단결정기르기 ( 에피택시 ) 모양내기 얇은막입히기 불순물집어넣기 웨이퍼칩 ( 다이 ) 검사

완성된반도체칩단면도 알루미늄배선 게이트 절연막 소스 드레인 필드산화막

Assembly & Packaging 칩검사 칩 ( 다이 ) 잘라내기 봉합하기 도선연결하기 다이붙이기 완성된반도체칩

Photoresist(PR) ) Coating Positive : Exposed Pattern is Removed Negative: Unexposed Pattern is Removed

Stepper Exposure UV: 436 nm (G-Line), 405 nm (H-line), 365 nm (I-line) Excimer Laser: 248 nm, 193 nm UV

Development & Etch

Process Lithography Optical, E-Beam, X-Ray Etch Wet,Dry Diffusion/Oxidation Thin Film Metal, Oxide, Nitride, etc.

Bipolar IC

Bipolar IC: Cross-section section 보호산화막 에미터베이스컬렉터 p ISO n 매몰층 p ISO p 기판

Buried Layer n 매몰층 p 기판 n 에피 n 매몰층

ISO p ISO p ISO

Base p 베이스

Emitter Emitter n 에미터 n 컬렉터

Contact

Metal Al

PAD

The MOS Transistor Poly Gate(G) V G } Field Oxide Source (s) V S Drain (D) VD Channel Stop t ox L p + n + n + p + p(n a ) Bulk(B) V B

The MOS Transistor(Cross-section) section) Gate Oxide Gate Source Polysilicon Drain n + n + Field-Oxide (SiO 2 ) p+ stopper P-substrate Bulk contact Cross-Section of NMOS Transistor

Silicon Gate n-mosfetn p- Type Substrate Initial Oxidation, Nitride Deposition Active Mask Channel Stop Doping/Field Oxidation Gate Oxidation Polysilicon Deposition Poly Mask n+ Doping/ CVD Oxide Contact Mask Metal Mask

Silicon Gate n-mos n (1) Si 3 N 4 Initial Oxide p Sub Initial Oxide and Nitride Thin Film Active Mask FOX Si 3 N 4 FOX p Sub Field Oxide

Silicon Gate n-mos n (2) FOX FOX p Sub Active Area Gate Oxide FOX FOX p Sub Gate Oxide

Silicon Gate n-mos n (3) Poly Mask FOX FOX p Sub Arsenic ions Poly Silicon Gate FOX n+ n+ p Sub FOX n+ n+ Source & Drain Implant

Silicon Gate n-mos n (4) Contact Mask CVD Oxide FOX n+ n+ FOX p Sub Metal Mask Contact FOX n+ n+ p Sub FOX Metal

Advanced Metallization

Advanced Metallization

Chemical Mechanical Polishing (CMP) Chemical mechanical polishing is used to planarize the surface of a wafer at various steps in the process of fabricating an integrated circuit. interlevel dielectric (ILD) layers shallow trench isolation (STI) copper metallization IC with 5 layers of Al wiring damascene process Oxide Isolation of Transistors p+ n p+ SiO 2 n+ p n+ p

Interconnect Impact on Chip

Assembly Wafer Test -->Wafer Yield Die Separation-Scribing Die Attach Die Bonding Thermal, Ultrasonic Molding Package Test --> Package Yield Total Yield