11(2)-03(김수옥).fm

Similar documents
15(1)-05(김진희1).fm

10(3)-09.fm

16(1)-3(국문)(p.40-45).fm

14(4)-14(심고문2).fm

14(4)-06(이희재).fm

14.531~539(08-037).fm

10(3)-12.fm

605.fm

< DC1A4C3A5B5BFC7E22E666D>

12.077~081(A12_이종국).fm

82-01.fm

10(3)-02.fm

8(3)-01.fm

09구자용(489~500)

untitled

50(1)-09.fm

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE. vol. 29, no. 10, Oct ,,. 0.5 %.., cm mm FR4 (ε r =4.4)

10(1)-05(서희철).fm

9(3)-4(p ).fm

09È«¼®¿µ 5~152s

11(5)-12(09-10)p fm

DBPIA-NURIMEDIA

69-1(p.1-27).fm

304.fm

50(5)-07.fm

15.101~109(174-하천방재).fm

31(3B)-07(7055).fm

인문사회과학기술융합학회

03이경미(237~248)ok

82.fm

12(4) 10.fm

10(3)-10.fm

14.fm

19(1) 02.fm

12(2)-04.fm

12(3) 10.fm

7(4)-07.fm

달생산이 초산모 분만시간에 미치는 영향 Ⅰ. 서 론 Ⅱ. 연구대상 및 방법 達 은 23) 의 丹 溪 에 최초로 기 재된 처방으로, 에 복용하면 한 다하여 난산의 예방과 및, 등에 널리 활용되어 왔다. 達 은 이 毒 하고 는 甘 苦 하여 氣, 氣 寬,, 結 의 효능이 있

07.051~058(345).fm

09-감마선(dh)

fm

<30312DC0CCC7E2B9FC2E666D>

#Ȳ¿ë¼®

(JBE Vol. 21, No. 1, January 2016) (Regular Paper) 21 1, (JBE Vol. 21, No. 1, January 2016) ISSN 228

93.fm

» t d» y w š q, w d» y ƒ ƒ w tree-ring t w d» y ƒ w š w. w tree-ring t mw»z y p q w š w. Tree-ring t mw, 500» ƒ wš p w» ƒ, y»z p wš»»z y. ù tree-ring

아태연구(송석원) hwp

(2)-02(최경자).fm

51(4)-13.fm

8(2)-4(p ).fm

15(2)-07.fm

Microsoft Word - KSR2012A038.doc

04김호걸(39~50)ok

02¿ÀÇö¹Ì(5~493s

Microsoft Word - KSR2012A021.doc

139~144 ¿À°ø¾àħ

17.393~400(11-033).fm

02ÇãÀÎÇý ~26š

03-서연옥.hwp

untitled

B-05 Hierarchical Bayesian Model을 이용한 GCMs 의 최적 Multi-Model Ensemble 모형 구축

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Feb.; 29(2), IS

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

08원재호( )

歯1.PDF

w wƒ ƒw xù x mw w w w w. x¾ w s³ w» w ƒ z š œ Darcy-Weisbach œ w ù, ù f Reynolds (ε/d) w w» rw rw. w w š w tx x w. h L = f --- l V 2 Darcy Weisbach d

49(6)-06.fm

433대지05박창용

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Dec.; 27(12),

32(4B)-04(7455).fm

, 66~67dB»e 55dB š 12dBù û»e(65db) w 70~71dB ñ. ù ü»» 35dB(ü), 45dB() r. w» w 1938 œk ³Ø w, 1960 Ø, 1968 ³Ø w. w 1972 ³Ø w w ³ ƒwš, ù y Ø w ³w

16(2)-7(p ).fm

012임수진

<30332DB9E8B0E6BCAE2E666D>

Lumbar spine

歯kjmh2004v13n1.PDF

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Sep.; 30(9),

DBPIA-NURIMEDIA

09권오설_ok.hwp

11(1)-15.fm

Can032.hwp

10(1)-08.fm

07.045~051(D04_신상욱).fm

<31372DB9DABAB4C8A32E687770>

<312D303128C1B6BAB4BFC1292E666D>

16(5)-03(56).fm

04_이근원_21~27.hwp

THE JOURNAL OF KOREAN INSTITUTE OF ELECTROMAGNETIC ENGINEERING AND SCIENCE Nov.; 26(11),

fm

4.fm

27(5A)-07(5806).fm

<35335FBCDBC7D1C1A42DB8E2B8AEBDBAC5CDC0C720C0FCB1E2C0FB20C6AFBCBA20BAD0BCAE2E687770>

14(4) 09.fm

현대패션의 로맨틱 이미지에 관한 연구

14(2) 02.fm

Journal of Educational Innovation Research 2018, Vol. 28, No. 4, pp DOI: 3 * The Effect of H

11(4)-03(김태림).fm

<353420B1C7B9CCB6F52DC1F5B0ADC7F6BDC7C0BB20C0CCBFEBC7D120BEC6B5BFB1B3C0B0C7C1B7CEB1D7B7A52E687770>

06.177~184(10-079).fm

04-다시_고속철도61~80p

Transcription:

w» wz, 11«2y(2009) Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2, (2009), pp. 61~71 š y» e w y ½ 1 Á½ 1 Á 1 *Á½ 2 Á y 3 Á 1 1 w k lœw, 2 p w, 3»» (2009 6 2 ; 2009 6 22 ; 2009 6 22 ) Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear Soo-Ock Kim 1, Jin-Hee Kim 1, Uran Chung 1 *, Seung-Heui Kim 2, Gun Hwan Park 3 and Jin I. Yun 1 1 Department of Ecosystem Engineering, Kyung Hee University 2 National Institute of Horticultural & Herbal Science 3 Gyeonggi-do Agricultural Research & Extension Service (Received June 2, 2009; Revised June 22, 2009; Accepted June 22, 2009) ABSTRACT Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from 4 o C to 10 o C (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error. Key words : Pear, Chilling requirement, Dormancy, Budburst, Full bloom, Phenology model * Corresponding Author : Uran Chung (agmet@naver.com)

62 Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2 I. ùy w» ù y»» ù y» w (Jang et al., 2002). w» w»ƒ š ƒ ù y w (Jacobs et al., 2002). { w w» w ûj { w t w š (National Institute of Fruit Tree Science, 2003). ùy w y» w»z y w w. y» dw z x ƒ t š(pyrus pirifolia Nakai) 2 w l 5 o C s³» w y»» d (Jang et al., 2002). w (1990) s³» w (DVR; development rate) wš (DVS; development stage) w y e x w,,» d w. ù y» d» w w» { k» y» e w w. ù ƒ š { w w y w w { k yw ƒ š ó x». {», y y š (7 o C w) w» ü (Faust, 1989; Kwon et al., 2006;, 2004). w {» w w w k { {. l ƒ ü { {, ü { š» (chilling requirement)ƒ ü { z w y ƒ ú. ü { kq ww y w ƒ { y { k {, { š (, 2004). ù ü { 12 w 1. ù { k ù z ƒ l w ¾» l q w { x Kwon et al.(2005) s t Campbell Early Kyoho ü { kq w yw Jung et al. (2005) 1955 l 2004 ¾ ûw» d l { x w y x w. ü t ƒ ƒ š x w x { x wš k š» š y» yw dw wš w. II. 2.1. { x { x» k» (IBIMET) w chill-day x w (Cesaraccio et al., 2004). Cesaraccio et al.(2004) { x ù {» ü {» (period of rest) y {» (period of quiescence) ù txw. ù» y z l ü { kq (breaking rest) ú¾ Table 1 chill days w wš (chilling requirement) š w. w ü { kq z l Table 1 anti-chill days w j ú d»(budburst) w.»» (temperature threshold, T C ) wì t š w» chill days anti-chill daysƒ.» ü { kq w z 0 o C T C ü z {w 0 o C»

Soo-Ock Kim et al.: Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear 63 Table 1. Equations to calculate chill days (C d ) and anti-chill days (C a ) for the five cases that relate the daily maximum (T x ) and minimum (T n ) temperature to the threshold temperature (T C ) and 0 o C, where T M is the mean daily temperature (Cesaraccio et al., 2004) Case Temperature Chill Days (C d ) Anti-Chill Days (C a ) 1 2 0 T n T x C 0 d T C d ( T M T n ) x -------------- 0 T n T x = C = a T M T x = C = -------------- a 2 2 C = d ( T M T n ) 3 0 T n T x T c C a =0 T 4 T n 0 T x x T x C = -------------- ---- d C a =0 T x T n 2 5 T x C d T n 0 T x T T x x -------------- ---- -------------- T x T n 2 2 T x = C = -------------- a 2 w degree days wš» TC» w degree days anti-chill days chill days w. š TC w w ù» d d RMSE(root mean square error) yw ü. w RMSEƒ w TCƒ ƒ w kw. 2.2. ü { w 2.2.1. x Cesaraccio et al.(2004) { x t š y» d w w» w x ü { w x 2 w w. ü { w x x x ù ww. { w w e» w wš ü { k ww y ƒ w š ƒ w. w s» w { w ¾ (chill-days) w» w. z y» txw. { x w 10 š y» wš d w. 2.2.2. ( x 1) 2007 (1 ) 2008 (2 )» p w (National Institute of Horticultural & Herbal Science, NIHHS) { w x w. 2007 12 12 ù z š 90cm 70 w š 2008 12 10 110 w. 45cm w ƒ w ³ ( t Topsin Paste, thiophanate-methyl) sw w. w ³ vw» w 70% k wš ƒ ƒ» w k w k w. 3 o C š w þ w š w ³ ƒ ƒ 5 w ³ ƒ 5 25 o C w. 2.2.3. ü { w» ( x 2) 2007 12 15 l 2008 3 15 ¾ NIHHS s š z 5 ƒ w 45cm ¼ w 70% k w. w x 1 wì» w 150mm ƒv j w» š 25 o C w. 2008 12 13 (1 ) NIHHS s š 5

64 Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2 w z 1 x w. x 1 wì x e ƒ wù ³ ( t g, chlorothalonil) 0.05% 1l p ƒ» ƒ» w 25 o C. q w» w 1z w. 2 NIHHS s w 2008 12 20 l 2009 2 28 ¾ NIHHS l û 11.5km ew»» (Gyeonggi-do Agricultural Research & Extension Services, GARES) s w w ww. 1 z 2 30 4, 2 10 11 30 25 w. s w q r 1-2mm ù w x y x»(westeood, 1993)»» w» w.» w» z w» ¾» ywš x 1 x 2 w» s³ t r w. x 1 wš x 2» yš ƒ ùkù» ü w s ü { kq w. 2.3. t 2.3.1.» d w NIHHS s š 1994-2008»», GARES s 2001-2009 ¾ š» 2000-2008 ¾» œ.» NIHHS x s ü» d (Automatic Weather Station, AWS) d 2007 10 1 l 2009 3 26 ¾ š» w š 2005»» w. w GARES s l 200m ƒ AWS 1993 8 3 l 2009 3 31 ¾ d š» w. 1 ü { w w» w NIHHS-AWS» w 2 GARES-AWS» w. NIHHS s x 2 GARES s œ». ù ƒ yw { ƒ» { x»» w ü ƒ þƒ» chill days r 10 1 w (Jung et al., 2006).» (1 o C ) ƒ w x mw w ü { w ¾ chill days w. ü { w ú l» anti-chill days w chill days j ú» w.»ƒ d» ƒ ƒà ùkù 0.1 o C ¾» yw» wš d» ±1 e w w» chill days, š w. s³ w { w x x 2 s k ü { kq ú ƒ w ƒƒ ƒ { w v w w. s³» w w. 1 x 1994 l 2007 ¾ NIHHS š d» w RMSEƒ ƒ kw. 2 GARES s š d» (2001-2008 ) w RMSEƒ ƒ k w. k 1 2 d ƒ ƒ j w. 2.3.2.» d» ù 70~80% y ú w. s š y» ƒ y»» dw. š» d w ƒ { ƒ w ƒ wš k» x» d (heating requirement, Hr) w. GARES- AWS» w 2001 2008 ¾

Soo-Ock Kim et al.: Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear 65 x l ü { w ú l d»¾ anti-chill days w. anti-chill days s³w Hr w» wì x š antichill days w Hr w ú» w. 2.5. x x w y» d w w» w w (1990) w» d w. w (1990) w š». DVS = n i = 1 DVR i 1 DVR = -------------------------------- i 100 107.94 0.9 t ( ) (1) (2)» t s³» 5 o C û DVR 0 w. DVR w DVSƒ 100» w. 2000 l 2008 ¾ GARES-AWS» w x» w» d wš RMSE w x d w. III. š 3.1. 2007/2008 2008/2009 2 e x ww,» x z w ƒ 1 l» s³ ƒ w ùkû. 1 5 (1 12 ) l 9 (2 9 )¾» y ùkü (Fig. 1).» s³» 7~8 1 w. 2 9 (2 7 ) z l ùkû»» 7~8 w. w 2 w ³ ƒ Fig. 1. Average number of days to floral budburst of Niitaka pear since translocation from 4 o C chambers to 25 o C chambers in 2007 (left) and 2008 (right). Vertical bars indicate one positive and one negative standard deviation from the center symbols which are the arithmetic means. w š w 7~8 w. 2 y w» w ƒw w ³ j w e q. 3.2. ü { w 1 2»» w. 1 x 2 ƒ ùkù» 2008 2 9 2 16 (Fig. 2). ù 0 o C { kq zw

66 Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2 Fig. 2. Average number of days to floral budburst of Niitaka pear since translocation from orchards to 25 o C chambers in 2007 (left) and 2008 (right). Vertical bars indicate one positive and one negative standard deviation from the center symbols which are the arithmetic means. (Lamb, 1948;, 2004) 2 12 13 š» w ¾ { š ƒ w ü { w 2 11 w. 2 x 2 ƒ ùkù» 2009 2 7 2 14 2 11 ü { w q w (Fig. 2). 2009 2 Á s w» ùkü 2 11 š» 8.2 o C ù 12 13.9 o C, 13 17.5 o C» ùkù { kq w ƒ š w. 3.3.» { 3.3.1. { x» d 1 2 { x mw ü { w 2 11 ¾ chill days w w, 1 NIHHS š d»(3 26 ) ú» w» 5.2 o C, -113.2. w NIHHS-AWS» ew» 2007 10 l 2008 3 ¾» w w, 5.2 o C -113.1 1 NIHHS w w. 1994 l 2007 ¾»» wì { x w» wš» NIHHS d» w, RMSEƒ 7.8 ƒ f p 2000 z l d»ƒ d» w ƒ ƒw. j ƒ wù NIHHS 4km»» w q. 2000» y ù NIHHS s y w y ƒ¾ w œ, k q dy j». Han et al.(2008) š»» { kq» ƒ»ƒ ew» 2000 z» s» š d»ƒ w ƒ. w 2000 z s³» 1.9 o C 1993-2000 0.8 o C ƒw» d w w. 2 GARES 2009 d»(3 17 ) ú» w» 4.4 o C, -81.8 m 2001 l 2008 ¾ GARES-AWS» l» w RMSE 4.3 1 w w. 3.3.2. s» d 1 x 2 2 (12 22 ) l 10

Soo-Ock Kim et al.: Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear 67 Fig. 3. Comparison of the observed floral budburst dates with those predicted by the dormancy clock model adjusted with parameters T C =5.8 o C, C r = -104.4 derived from the phenology data of NIHHS orchards and synoptic temperature data at Suwon weather station in 1994-2007 (left), and with parameters T C =5.4 o C, C r = -86.4 derived from both phenology and temperature data at GARES orchards in 2001-2008 (right). (2 16 )¾ ü { w ƒ w ƒƒ»» 1994 l 2007 ¾ NIHHS s d» w (Fig. 3).» d ƒ ƒ { w 1 5 (4 ) ƒ w w» 5.8 o C, -104.4 w. x mw w { w 2 11 w RMSE 7.8 6.2 w.» 1 5 ù ƒ w RMSEƒ ƒw. 2 x 2 5 (1 10 ) l 10 (2 14 )¾ { w ƒ w 6z w 2001 l 2008 ¾ GARES s d» w., x 7 (1 24 ) ü { w w» 5.4 o C, -86.4 w RMSEƒ 3.9» d ƒ ƒ (Table 2). NIHHS GARES»» w q» w wš s ù, m p,,» y w NIHHS GARES d» 11, 1 s³ 5 ƒ w. GARES mw w NIHHS» w y w d ƒ f.

68 Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2 Table 2. Selection procedure for an optimal parameter set (TC and C r ) for predicting budburst of Niitaka pear based on comparison of chill-days model calculation under predetermined rest release dates with observed budburst dates at the GARES orchard in 2001-2008. The combination of T C = 5.4 and C r = -86.4 shows the best fit with the observation Proposed Date for Rest Release Observed budburst Jan 10 Jan 17 Jan 24 Jan 31 Feb 7 Feb 11 Feb 14 Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. Pred. Dev. 2001 3/25 3/30-5 3/31-6 3/28-3 3/25 0 3/25 0 3/24 1 3/23 2 2002 3/21 3/15 6 3/15 6 3/19 2 3/18 3 3/20 1 3/18 3 3/17 4 2003 3/24 3/26-2 3/26-2 3/26-2 3/26-2 3/26-2 3/23 1 3/21 3 2005 3/29 4/2-4 4/2-4 4/2-4 4/2-4 4/1-3 3/31-2 3/30-1 2006 3/22 3/27-5 3/27-5 3/26-4 3/26-4 3/27-5 3/26-4 3/25-3 2007 3/16 3/13 3 3/14 2 3/13 3 3/10 6 3/9 7 3/9 7 3/4 12 2008 3/19 3/20-1 3/20-1 3/20-1 3/20-1 3/20-1 3/19 0 3/18 1 Parameter T C * 5.7 5.7 5.4 5.2 4.8 4.4 4.2 C r -86.2-87.1-86.4-86.2-86.5-81.8-77.3 RMSE 4.9 4.9 3.9 4.3 4.4 4.3 5.8 *1 Threshold temperature for chill-day accumulation 2 Chilling requirement Fig. 4. Inter-annual variations in chill-days accumulation pattern from 1 October to 28 February each year. 3.3.3. { Fig. 4 1 2 10 1 l x mw w ü { w (2 11 )¾ š» d» 5.4 o C chill days w ( q )» 1994 1997, 2000, 2004, 2006 w chill days w wì w. { x mw w ü { w w w 1 chill days -119.5(A) š 2-113.7(B) j ew. w 2 w w -86.4(C)ƒ 1 ú 2007 12 27 (D) 1 s» ƒ ü { w 1 5. 2000» 1993-1994 1996-1997 A D chill days j w w š. ù 2000 z 2003-2004 2005-2006, 1 2 x» 1 wš A D chill days w j š.» w ùkù w»» w y d j w. w» ü» w x { k» x y w w w q. 3.4. y»»» d w w š» d ƒ ƒ w(» 5.4 o C, -86.4) š» d kw. w x mw ü { w

Soo-Ock Kim et al.: Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear 69 Table 3. Determination of the heating requirement (in cumulative anti-chill days) for full bloom of Niitaka pear based on the budburst date predicted by the dormancy clock model adjusted with the selected parameters (TC =5.4, C r = -86.4). Both data for phenology and temperature are from GARES orchards Observed full bloom Cumulative antichill days Predicted date Hr_8 : 242.6 Hr_7 : 231.3 Deviation (days) Predicted date Deviation (days) 2001 4/20 226.6 4/23-3 4/21-1 2002 4/12 218.5 4/15-3 4/14-2 2003 4/18 239.9 4/19-1 4/18 0 2005 4/23 219 4/26-3 4/25-2 2006 4/24 240.7 4/25-1 4/23 1 2007 4/20 254.7 4/19 1 4/17 3 2008 4/14 220.1 4/17-3 4/16-2 RMSE 2.6 2.0 (2 11 ) 18 ¼ 1 24 ü { w w» RMSEƒ 0.4 z. w { x ü { w ú l d»¾ anti-chill days w, 2004 w 2001 l 2008 ¾ 218.5, š 254.7 (Table 3). 2004 anti-chill daysƒ 321.5¾ w w j ùkû antichill daysƒ j»ƒ ù ü { w z» w w. ù 2004 3 4 11.3cm» š m t š m w d» w. 2001 l 2008 anti-chill days s ³w Hr(Hr_8) 2004 sw j š 7 s³w Hr(Hr_7), ƒ w. GARES»» m Hr w, 2004 w Hr_8 242.6 RMSEƒ 2.6 Hr_7 231.3 RMSEƒ 2.0 d ƒ w š Hr 231.3 w. š t ƒ» d ww q w» w { x» x ( w DVS) w 2000-2008»» s š» d d Fig. 5. Comparison of the predicted full bloom dates from 2000 to 2008 simulated by the chill-days model (solid rectangle) and the DVS model (solid triangle) using daily temperature data from GARES orchards. Observed full bloom dates are shown as empty circles.» w x d w (Fig. 5). x w d ql w ùkû ù 9 ƒ x DVS w y ƒ 4 š û 1 ù x d w. p 2004 3 ü s w ù ƒ { ù y x d qw. ½ y (2003) ù mj (cytokinin) ƒ 2 ƒw x šwš ü {

70 Korean Journal of Agricultural and Forest Meteorology, Vol. 11, No. 2 mj y ƒ w.» yƒ ü { y y { y k e ww { x w». w 2004 w» RMSE DVS 3.2 w { x 1.9 š» d. ù ù { kq v w» w w y»» ù ³ w w y j š.»z y ù w w vwƒ w w yw y» d v.» y» d l ùkù» w w { k w y» w ƒ. {»» w w ü { w,, y dw { x t š wš ww.» ü { w ü» w y ó ù s š ƒ w x ww s d š» w ü { w ¾ wš w.» 4 o C 10 o C wš 0.1 o C ¾ yw { x w» d»ƒ ew w w» w.» d w z y» w { x ƒw t š» dw w. x w 9 y» w RMSEƒ 1.9 š» d y w q. 1 w 2008 w» œ ( :» y e wsƒ) w. x w,, œw p w»» Ì. mw t w j. REFERENCES Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species. Agricultural and Forest Meteorology 126, 1-13. Faust, M., 1989: Resistance of fruit trees to cold. In Physiology of Temperate Zone Fruit Trees. John Wiley and Sons, 307-331. Han, J. H., S. H. Lee, J. J. Choi, S. B. Jung, and H. I. Jang, 2008: Estimation of dormancy breaking time by development rate model in Niitaka pear (Pyrus pirifolia Nakai). Korean Journal of Agricultural and Forest Meteorology 10, 58-64. (In Korean with English abstract) Jacobs, J. N., G. Jacobs, and N. C. Cook, 2002: Chilling period influences the progression of bud dormancy more than dose chilling temperature in apple and pear shoots. Journal of Horticultural Science and Biotechnology 77, 333-339. Jang, H. I., H. H. Seo, and S. J. Park, 2002: Strategy for fruit cultivation under the changing climate. Korean Journal of Horticultural Science and Technology 20, 270-275. (In Korean with English abstract) Jung, J. E., E. Y. Kwon, U. Chung, and J. I. Yun, 2005: Predicting cherry flowering date using a plant phenology model. Korean Journal of Agricultural and Forest Meteorology 7, 148-155. (In Korean with English abstract) Jung, J. E., H. C. Seo, U. Chung, and J. I. Yun, 2006: Spring phenology of a Grapevine cultivar under the changing climate in Korea during 1921-2000. Korean Journal of Agricultural and Forest Meteorology 8, 116-124. (In Korean with English abstract) Kwon, E. Y., G. C. Song, and J. I. Yun, 2005: Prediction of dormancy release and bud burst in Korean grapevine cultivars using daily temperature data. Korean Journal of Agricultural and Forest Meteorology 7, 185-191. (In Korean with English abstract) Kwon, E. Y., J. E. Jung, U. Chung, S. J. Lee, G. C. Song, D. G. Choi, and J. I. Yun, 2006: A thermal time - driven dormancy index as a complementary criterion

Soo-Ock Kim et al.: Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear 71 for grapevine freeze risk evaluation. Korean Journal of Agricultural and Forest Meteorology 8, 1-9. (In Korean with English abstract) Lamb, R. C., 1948: Effect of temperatures above and below freezing on the breaking of rest in the latham raspberry. Journal of the American Society for Horticultural Science 51, 313-315. National Institute of Fruit Tree Science, 2003: Research Report of Fruit Production Constitution, Japan, 59-65. Westeood, Melvin N. 1993: Temperate-zone pomology; Physiology and culture (3rd ed.). Timber Press Inc., 428-429. ½ y, ½y,,, ½,,,,, 2003:. q, 485pp. w, 1990:»zp.. 205pp.,, ½, ½, ½, ½k, ¼,,,,, w,, 2004:. q ¼, 364pp.