w y wz 8«( 2y) 83~90, 2005 J. of the Korean Society for Environmental Analysis w wv w e m t Cu, Zn Ni» w t w» Determination of Cu, Zn and Ni in Sediment Certified Reference Materials by Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry using Off-line Solvent Extraction Jung Ki Suh Division of Chemical Metrology and Materials Evaluation, Korea Research Institute of Standards and Science, P.O. Box 102, Yusung, Taejon 305-600, Korea Isotope Dilution-Inductively Coupled Plasma Mass Spectrometry (ID-ICPMS) was applied to determine Cu, Zn and Ni in marine sediment PACS-2 and estuarine sediment NIST1646a. These materials contain high amounts of potential interferences such as Ca, Mg, P, S, and Cl. Therefore, an off-line solvent extraction with solvent extraction using ammonium pyrrolidinedithiocarbamate (APDC) as a chelate was employed to separate the metals from the sample matrix. Contamination from reagents and from the extraction procedure was minimal and precise results was obtained for these CRM materials. Microwave digestion method using HNO3/HF/ HClO4 media for the dissolution of solid sample was studied. Key words: ID-ICPMS, PACS-2, NIST1646a, Solvent Extraction, APDC, Microwave Digestion 1. y w w š 1). p e m Cu, Zn, Ni, Pb Cd ƒ y d w š 2). EUù US-EPA» sww š x w guideline w š. w m d w v, yƒ y ƒw»w». x x. ƒ š, k. w w w (wet digestion) ù zy (dry ashing) j. 1975 j q w w w j { w j k š, w v w 3-5). j q w» Ÿ w š, m 6), sediment 7), ash 8), t 9), 10), 11) w w š. e m w w j q w x mw yw w y w. Valerie Sandroni Clare M. M. Smith w w e m t PACS-1 ww yw HNO 3 /HF (3 ml : 2 ml) w ww ƒ ƒ z To whom correspondence should be addressed.
84» š 12). HNO 3 /HCl/HF yw w w z ùkþ ù, Mg z 2 y w, MgCl 2 e q w. ù x z j ùkùš, Cu 93.1%, Zn 98.9%, Ni 113. 4% z ùküš. e m w HClO 4 /HF/HNO 3 w wet digestion w t U, Th, Cd, Mo ew š 13). x e m t (marine sediment, esturarine sediment) w w j q w w w HNO 3 /HF/HClO 4 w w w, ew w y w. w m e (sediment) w p Ni, Cu, Zn (Isotope Dilution Mass Spectrometry, IDMS) w y wš w.» w w» (Dynamic reaction cellquadrupole inductively coupled plasma mass spectrometry, DRC-Q-ICP-MS) w. m e p (P) y (S) Ca, Mg, Cl w wš DRC w wš, w» w k p- (Chelationsolvent extraction method) y w. w» w t w w. m e Ni. Cu, Zn w» w t NIST SRM 1646a (Estuarine Sediment) NRC-CNRC CRM PACS- 2 (Marine Sediment) w. 2. x 2.1.»» x»» ELAN 6100 DRC-ICP- MS(Perkin-Elmer SCIEX, Concord, ON, Canada) w, e Meinhard-type concentric glass nebulizer cyclonic spray chamberƒ. ƒ d Table 1 w. y IDMS y (error multification factor) ƒ 14). w d ƒ š w w. 2.2. IDMS ƒ (enriched spike ) 63 Cu (US Services, Summit, NJ, USA), 62 Ni (ISOTEC INC, a Matheson, USA Company), 68 Zn (US Services, Summit, NJ, USA) w. (mass bias) w t (Isotopic Standards) Cu Ni ƒƒ NIST (Gaithersburg, MD, USA) l w NIST SRM 976 NIST SRM 986 w Table 1. Instrumental parameters and their values for optimum condition ICP-MS instrument DRC-ICP/MS Plasma conditions Rf power 1300 W Plasma gas flow 15 L/min Auxiliary gas flow 1.025 L/min Nebulizer gas flow 1.058 L/min DRC parameters Cu Ni Zn NH 3 reaction gas flow (ml/min) 0.6 0.6 0.8 Rejection parameter a (RPa) 0.0 0 0 Rejection parameter q (RPq) 0.5 0.5 0.5 Autolens On Isotope ratio measured 63 Cu/ 65 Cu 60 Ni/ 62 Ni 66 Zn/ 68 Zn Optimized ratio 0.5 0.3 0.5 Concentration level for measurement (ng/g) 20 10 50
Running Title 85. Zn w w. DRC» 99.9995% NH3(Sokatronic, Pennsylvania U.S.A.) w. w HNO 3, HCl ( ) (Iksan, Korea) w e w w w. k p- CCl 4 (99.8 % Merck, Darmstadt, Germany) w, dispenser (Dispensette Digital type, BRAND, Main, Germany) w w. y (chelating agent) 1-pyrrolidine carbodithioic acid, ammonium salt (APDC 97%, Aldrich, Milwaukee, USA) w. y w» 5% w w. w y 5 ml CCl 4 ƒw 1, d CCl 4 w. 5.0 M ammonium acetate (<95.% Shinyo pure chemicals Co., Osaka Japan) w w. (i.d 2.5 cm length 50 cm, Bio-Rad, glass-econo column, Cat#737-2551) 5 cm Chelex-100 y (Bio-Rad, sodium form, 100-200 mesh, Cat# 142-5842) m g w. w» (125 ml, Teflon FEP, Teflon TFE stopcock, Tefzel ETFE screw closure, Nalgene, Rochester, USA) 10% 2 e k z 1 e g w. x w» (Nalgene, LDPE) w š w laminar flow cabinetü w. 2.3. w e m w j q w e (Milestone, model MLS 1200 mega) w ww, w w Fig. 1 ùkü. x w 2 t NIST1646a estuarine sediment NRC-PACS-2 marine sediment Fig. 1 w wƒ û y w. 2.4. k p- w m e t ƒ ƒ w DRC-ICP-MS w ù, ƒ x y wš w S, P w DRC w y w. w» w APDC-CCl 4 w w. w Fig. 2 w. e m w 3 t d x y w š Fig. 3. k d ùkù. 2.5. d k IDMS w» w Fig. 1. Microwave digestion procedure used for NIST1646a estuarine sediment and NRC-PACS-2 marine sediment sample decomposition. Fig. 2. Chelation-solvent extraction separation procedure used for sediment sample decomposition.
86» kwš 66 Zn/ Zn d w IDMS 68 w. t y w Cu, Zn P, Sƒ y w. Fig. 3. Picture showing chelation-solvent extraction process for decomposed sediment sample. wù» kw w. š w w Ni, Cu Zn ƒ w wì Table 2 w ùkü. Ni 5 Ni Ni 58 64» w (R=m/ m) 10,000 w DRC w Fe, Zn. ƒ ƒ Ni» 60 kw Ni ƒw 62 60 Ni/ Ni 62 d w IDMS w. Cu ƒ k ƒ Cu/ Cu d w IDMS w. Zn 5 ƒ. š w ù DRC w w w w 64 Zn, 70Zn w ƒ 66 Zn» 2.6. d d 0.5 g 3 w. NIST 1646a Estuarine Sediment w 2 110 C o w. d w 0.78 Û 0.05%. NRC CRM PACS-2 105 C 6 w w o 1.12 Û 0.10% ùkû. 3. š 3.1. (Double-Isotope Dilution Mass Spectrometry, IDMS) double-idms v w (1) (2) we tx 15). m s C x D c' y ------------- K R K y y b R b = ------------------------------ ΣK w m x K b R b K x R ix R ix B x c y m z c' y ---- K yi R yi c z ------- K R K b' b' z R z 1 = = ------------------------------- ------------------ Σ m' y K y R y K b' R b' ΣK zi R zi (1) (2)» ƒ y. R b ; spike yw (blend b), R b' ; spike t yw () Table 2. Summary the major interference ions originating from sample matrix and plasma gases during using ICP-MS. Element Isotope (mass, amu) Molecular ion interferences (mass, amu) 58 Ni 23 Na 35 Cl 40 Ar 18 O 40 Ca 18 O 40 Ca 17 O 1 H 42 Ca 16 O 40 Ar 17 O 1 H 29 Si 2 60 Ni 44 Ca 16 O 23 Na 37 Cl 43 Ca 16 O 1 H Ni 61 Ni 44 Ca 16 O 1 H 45 Se 16 O 62 Ni 46 Ti 16 O 23 Na 39 K 46 Ca 16 O 64 Ni 32 Se 16 O 2 32 S 2 Cu 63 Cu 65 Cu 40 Ar 23 Na 49 Ti 16 O 47 Ti 16 O 40 Ar 25 Mg 23 Na 40 Ca 32 S 33 S 46 Ca 16 O 1 H 32 S 10 S 17 O 14 N 12 C 37 Cl 33 S 16 O 2 12 C 16 O 37 Cl 16 O 12 C 35 Cl 12 C 16 O 37 Cl 64 Zn 32 S 16 O 2 48 Ti 16 O 48 Ca 16 O 32 S 2 36 Ar 14 N 2 Zn 66 Zn 67 Zn 68 Zn 50 Ti 16 O 34 S 16 O 32 2 S 16 O 18 O 32 S 17 O 33 2 S 16 O 17 O 32 S 34 S 35 Cl 17 O 2 33 S 34 S 34 S 16 O 17 O 33 S 16 O 18 O 32 S 17 O 18 O 33 S 17 O 2 35 Cl 16 O 2 36 S 16 O 2 34 S 16 O 18 O 40 Ar 14 N 2 35 Cl 16 O 17 O 34 S 2 36 Ar 32 S 34 S 17 O 2 33 S 2 70 Zn 35 Cl 2 40 Ar 14 N 16 O 35 Cl 17 O 18 O 37 Cl 16 O 17 O 34 S 18 O 2 36 S 16 O 18 O 36 Ar 34 S
Running Title 87, R x ;, R z ; t, K b ; R b, K b' ; R b', K x ; R x, K z ; R z, D; w, B; k, C z ; t (Primary Assay standard, PAS), R y ; spike, K y ; R y, m x ; spike yw (blend b), m y ; spike yw (blend b) spike, m' y ; spike t yw () spike, m z ; t, W; w, Σ(K ix R ix );» w w, Σ(K iz R iz ); t» w w. 3.2. e m (Estuarine sediment, NIST 1646a) (Double-Isotope Dilution Mass Spectrometry) w» w ƒw w (blend b), w, ƒw w. 4 w š, ƒw š ƒw k 2 w. w t yw (spike calibration solutions, ) v w. t ƒw w. ƒw t ƒw w w. NIST1646a e m w» w blend b Table 3 w. blend b d (Rb, Rb') t d Table 4~Table 6 ùkü.» mass bias correction t d ù ùkü t y w Zn l w. w Table 3 l w (1), (2) w ƒ w. d NIST1646a (Estuarine sediment) Cu, Ni Zn (Zn š ) w Table 7 ùkü. l NIST 1646a (estuarine sediment) Cu, Z, Ni ƒ ew.» ùkü NIST Table 3. The values of parameter for preparation of blend b and solutions for the determination of Cu, Zn and Ni in NIST 1646a estuarine sediment by IDMS Parameter Description Typical value Cu Zn Ni C z Amount content of primary assay standard 1.0469 mg/kg 4.8906 mg/kg 2.3103 mg/kg m z Mass fraction of sample in blend b 0.25023 g 0.25023 g 0.25023 g m y Mass fraction of spike in blend b 0.24889 g 0.24889 g 0.24889 g m' y Mass fraction of spike in 2.50120 g 2.50120 g 2.50120 g m z Mass fraction of primary assay standard in 2.50134 g 2.50134 g 2.50134 g Table 4. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Copper in NIST1646a by IDMS (The level of concentrations were about 20 µg/kg) (NIST 976) (PAS+ 65 Cu) (sample+ 65 Cu) 63 Cu 177650 65 Cu 91017 63 Cu 66990 65 Cu 146502 63 Cu 50670 65 Cu 112917 ( 63 Cu/ 65 Cu) 1.952 0.627 1.1510 0.457 0.720 1.1510 0.449 0.543 1.1510
88» Table 5. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Nickel in NIST 1646a by IDMS (The level of concentrations were about 100 µg/kg) (NIST 986) (PAS+ 62 Ni) (sample + 62 Ni) 60 Ni 221896 62 Ni 34461 60 Ni 77556 62 Ni 274618 60 Ni 59278 62 Ni 216275 ( 60 Ni/ 62 Ni) 6.439 0.617 1.1997 0.282 0.769 1.1997 0.274 0.437 1.1997 Table 6. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Zinc in NIST 1646a by IDMS (The level of concentrations were about 50 µg/kg) (Natural abundance) (PAS+ 68 Zn) (sample + 68 Zn) 66 Zn 128677 68 Zn 96051 66 Zn 85891 68 Zn 195821 66 Zn 35243 68 Zn 80125 ( 66 Zn/ 68 Zn) 1.340 0.834 1.1075 0.439 0.918 1.1075 0.440 0.491 1.1075 Table 7. The analytical results for Cu, Zn and Ni in estuarine sediment (NIST1646a) by dilution ICP-MS method. SRM (Type) NIST1646a (Estuarine sediment) Element *Certified Value Conc., mg/kg Determined Value Cu 10.01 Û 0.3410.19 Û 0.17 Zn 48.9 Û 1.6 47.5 Û 0.5 Ni 23 21.6 Û 0.2 *from certificates of NIST SRM1646a 1646a ƒ ƒ (ID-ICPMS, RNAA, ETAAS, FAAS, WDXRF, ICP-OES) w s³ ùkü. š Ni š y t. 3.2.1 z ww z ƒ Zn y w. w» NIST 1646a 66 Zn/ Zn 68 1.171 ù, z 0.438 ùkû. IDMS w w 10. ƒ ùkù NH 3 w w w ùkü. Table 2 y w 66 Zn Sulfurù Ti y w w NIST 1646a S 0.352%, Ti 0.465% w wš. w y w. 3.3 w e m (Marine sediment, NRC CRM PACS-2) NIST1646a e m w» w ƒ w e m (Marine sediment, NRC CRM PACS-2) w» w yw (blend b) t (PAS) yw () w Table 8 w ùkü. blend b d (Rb, Rb') t d Table 9~Table 11 ùkü.» mass bias correction t d ù ùkü t y w Zn l w.
Running Title 89 Table 8. The values of parameter for preparation of blend b and solutions for the determination of Cu, Zn and Ni in PACS-2 sediment by IDMS Parameter Description Typical value Cu Zn Ni C z Amount content of primary assay standard 77.8038 mg/kg 35.8795 mg/kg 9.9496 mg/kg m x Mass fraction of sample in blend b 0.25065 g 0.25065 g 0.25065 g m y Mass fraction of spike in blend b 1.01935 g 1.01935 g 1.01935 g m' y Mass fraction of spike in 1.01893 g 1.01893 g 1.01893 g m z Mass fraction of primary assay standard in 1.00637 g 1.00637 g 1.00637 g Table 9. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Copper in PACS-2 by IDMS (The level of concentrations were about 50 µg/kg) (NIST 976) (PAS + 65 Cu) (sample + 65 Cu) 63 Cu 122751 65 Cu 61833 63 Cu 137601 65 Cu 297716 63 Cu 125306 65 Cu 268465 ( 63 Cu/ 65 Cu) 1.986 1.038 1.1313 0.462 0.513 0.467 0.803 Table 10. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Nickel in PACS-2 by IDMS (The level of concentrations were about 10 µg/kg) (NIST 986) 60 Ni 42503 62 Ni 6267 ( 60 Ni/ 62 Ni) 6.785 1.012 1.0634 (PAS+ 62 Ni) (sample + 62 Ni) 60 Ni 8719 62 Ni 29692 60 Ni 5914 62 Ni 19983 0.294 0.946 1.0634 0.296 0.774 1.0634 Table 11. Typical value of intensities and ratios for isotopic standard, blend b and solutions for the determination of Zinc in PACS-2 by IDMS (The level of concentrations were about 50 µg/kg) (Natural abundance) (PAS+ 68 Zn) (sample + 68 Zn) 66 Zn 208012 68 Zn 153138 66 Zn 32127 68 Zn 144314 66 Zn 75813 68 Zn 168251 ( 66 Zn/ 68 Zn) 1.358 0.483 1.0928 0.223 0.789 1.0928 0.451 0.671 1.0928 w Table 8 l w (1), (2) w ƒ w. d NRC PACS-2 (marine sediment) Cu, Ni Zn w Table 12 ùkü. eù t» (National Research Council Canada, NRCC) l œ w
90» Table 12. The analytical results for Cu, Zn and Ni in PACS-2 marine sediment by dilution ICP-MS method. SRM (Type) NRC PACS-2 (marine Sediment) Element Certified Value** e m PACS-2 IDMS w x ƒ ew. PACS-2 5ƒ w s³ w w. d y ƒ y w. 4. Conc., mg/kg Determined Value Cu 310 Û 12 307.7 Û 9.6 Zn 364 Û 23 368.9 Û 3.0 Ni 39.5 Û 2.3 40.7 Û 2.2 ** from certificates of NRC-CRM PACS-2 l x w e m j q w e w w w e m w y w. y. e m m j q w e ƒ. ƒ w w w ƒ w x mw. x w w, e m w. š x 1. M. J. Beckett, in : T. Caimey (Ed.), 1993, Land Contamination in contaminated Land: Problems and solutions, Blackie, Glasgow. 2. W. Brumbaugh, J. Arms, Environ. Toxicol. Chem., 1996, 15, 282. 3. A. Abu-Samra, J. S. Moris, S. R. Koirtyohann, Anal. Chem. 1975, 47, 1475. 4. H. Lachas, R. Richaus, K. E. Jarvis, A. A. Herod, D. R. Dugwell, R. Kandiyoti, Analyst, 1999, 124, 177. 5. F. E. Smith, E. A. Amesault, Talanta, 1996, 43, 1207. 6. A. Carlosena, D. Prada, J. M. Andrade, P. Lopez, S. Muniategui, Fresenius J. Anal. Chem., 1996, 355, 289. 7. M. Bettineli, G. M. Beone, S. Spezia, C. Baffi, Anal. Chim. Acta, 2000, 424, 289. 8. Z. Mester, M. Angelone, C. Brunori, C. Cremisini, H. Muntau, R. Morabito, Anal. Chim. Acta, 1999, 395, 157. 9. K. Julshan, A. Maage, H. C. Wallin, J. AOAC Int., 1998, 81(6), 1201. 10. M. D. De Almeida, K. C. Leandro, C. V. Da Costa, R. E. Santelli, M. De LaGuardia, J. Anal. At. Spectrom., 1997, 12 (10), 1235. 11. O. Muozo, D. Velez, R. Montoro, A. Arroyo, M. Zamarano, At. Spectrom., 2000, 15(6), 711. 12. Valerie Sandroni, Clare M. M. Smith, Analytica Chimica Acta, 2002, 468, 335-344. 13. Y. Zheng, B. Weinman, T. Cronin, M. Q. Fleisher, R. F. Anderson, Applied Geochemistry, 2003, 18, 539-549. 14. J. I. Garcia Alonso, Anal. Chim. Acta, 1995, 312, 57. 15. De Bievre P, Fresenius J. Anal. Chem, 1994, 350, 277.