Korean J. Soil Sci. Fert. Vol.51, No.4, pp.596-607, 2018 Korean Journal of Soil Science and Fertilizer Article https://doi.org/10.7745/kjssf.2018.51.4.596 pissn : 0367-6315 eissn : 2288-2162 The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth Jae Hong Yoo, Young Don Lee 1, Khalid A. Hussein 1, and Jin Ho Joo 1 * Agricultural Microbiology Division, Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju 55365, Korea 1 Department of Biological Environment, Kangwon National University, Chuncheon 24341, Korea *Corresponding author: jhjoo@kangwon.ac.kr A B S T R A C T Received: October 17, 2018 Revised: November 8, 2018 Accepted: November 28, 2018 Composting of food waste might be effective way for food waste disposal which could be applied to improve soil properties in agricultural field. The purpose of this study is to evaluate the effect of food waste on two crops (Chinese cabbage, Tomato) compared to livestock manure. Seven different treatments (one livestock manure, two food wastes, one livestock manure + chemical fertilizer, two food waste + chemical fertilizer, and control) were applied to two crops. Treatment of livestock + chemical fertilizer and microorganism treated food waste +chemical fertilizer showed statistically significant differences on leaf width and root of Chinese cabbage compared to other treatments. They showed highest values for these parameters. Value of four parameters (shoot, total, fresh weight and chlorophyll content) were highest with treatment of livestock + chemical fertilizer and microorganism treated food waste + chemical fertilizer for tomato growth. Keywords: Food waste compost, Compost, Chinese cabbage, Tomato, Livestock manure Chinese cabbage growth and Tomato with different treatments of compost. Dry weight Chlorophyll Dry weight Chlorophyll Chinese cabbage Tomato g O.D.(SPAD) g O.D.(SPAD) Control 9.6±1.82 d 22.0±0.82 e Control 14.8±1.15 b 39.6±5.01 b LC 13.4±1.19 c 31.0±0.31 d LC 20.0±2.32 a 48.2±2.22 a LC+NPK 15.0±0.88 bc 36.9±0.94 ab LC+NPK 18.4±3.06 a 49.5±1.39 a FWC 14.6±0.39 bc 33.5±0.66 ac FWC 19.6±0.59 a 40.4±0.46 b FWC+NPK 17.9±0.57 a 35.0±0.57 bc FWC+NPK 18.6±0.34 a 48.4±0.40 a MFWC 16.1±0.38 ab 36.5±2.13 ab MFWC 19.9±0.58 a 45.5±0.45 a MFWC+NPK 16.1±0.60 ab 38.1±0.24 a MFWC+NPK 19.1±0.80 a 49.5±0.17 a The different letters are significantly (P<0.05) different according to Duncan's multiple test. C The Korean Society of Soil Science and Fertilizer. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 597 Introduction 현재우리나라는국가소득증대와비례하여음식물쓰레기발생량또한점차증가하고있는추세이다. 발생량의경우매년꾸준히증가하여 2016년 1인당 0.27 kg day -1 에서 2017년 0.38 kg day -1 로약 40% 증가한것으로조사되었으며이는생활폐기물전체발생량의 39.5% 를차지하는비율이다 (Ministry of Environment, 2017). 국내에서는 2013 년부터용량에따른종량제정책을도입하여발생량을줄이고자노력중에있으며, 2005년부터시행된음식물쓰레기직매립금지법안에따라음식물쓰레기자원화시설을확충하여폐기되는음식물을대상으로퇴비화및사료화를진행하고있다. 현재음식물쓰레기처리방안으로는소각과자원화방법이시도되고있으나음식물쓰레기에함유된 80% 이상의높은수분함량으로인해발열량이낮아소각처리보다자원화방법이보편화되었다 (Lee et al., 2015). 자원화방법은호기성퇴비화, 혐기성발효, 습식사료화, 건식사료화등이있으며, 그중경제적효용성이큰호기성퇴비화방법이주로활용되고있다 (Lee and Lim, 2003). 호기성퇴비화는호기성조건에서미생물을통해음식물쓰레기를생물학적으로분해하여불안정한유기물을부식성유기물로변환하는과정으로음식물쓰레기를자원으로전환하기용이한방법이다 (Han et al., 2007). 반면자원화시설에서생산된음식물쓰레기퇴비는미생물활성이불안정하여미부숙상태에서출하되는사례가있어퇴비안정성이우려되는실정이다 (Phae, 2002). 퇴비가미부숙될경우높은유기물함량으로인해토양에처리시미생물의유기물분해로재발열되어작물생육에장해를초래한다는점에서 (Kim et al., 2005) 음식물쓰레기퇴비화시미생물활성을안정화시키는방안이모색되어야한다. 이에음식물쓰레기성상에따라원자재를효과적으로분해할수있는미생물제제에대한연구가활발하게이루어지고있다. Yoo et al. (2016) 은 protase, amylase 등의효소분비미생물의활성을통해분해시켜악취저감및완전부숙된퇴비화가가능할것으로보고하였다 (Yoo et al., 2016). 또한 Kang 등의선행연구에따르면퇴비화시미생물제제를처리할경우, 8일이내에신속한퇴비화가가능하며, 통기성을높일경우다량의원자재를빠른시간내처리할수있다는것을규명하였고 (Kang et al., 2011), Lee et al. (2001) 은 Bacillus subtilis의경우 xylanase, lactase와같은체외분비효소를이용하여음식물쓰레기내탄수화물, 단백질, 지방뿐만아니라식물체와톱밥내 cellulose, hemicellulose, lignin 분해가가능하다는연구결과를보고하였다 (Lee and Park, 2001). 선행연구를토대로판단할때미생물을활용하여음식물쓰레기의퇴비화시난분해성물질의분해또한가능할것으로예상된다. 그러나음식물쓰레기퇴비에대한부정적인인식과음식물쓰레기내높은염분함량으로인해많은사용자로부터기피되고있는실정이다. 우리나라대부분농가들이가축분퇴비를선호하는경향을보이고있다 (Lee et al., 2015). 그러나축분퇴비의경우 CH 4 가스배출에의한온난화로퇴비화과정에서사회적비용이추가적으로발생되는문제가있다 (Lee et al., 2005). 또한가축분퇴비연용시발생되는영양공급불균형은생육장해의원인으로지적되고있다 (Kim et al., 2012). 선행연구에의하면음식물쓰레기퇴비시용시수확량, 생육상태등에서가축분퇴비에비해큰차이를보이지않았으며, 작물의종류에따라수확량과과육상태에서선택적으로가축분퇴비에준하는생육을보이는것으로나타났다 (Kwon et al., 2009). 이에본연구는음식물쓰레기에미생물제제를첨가하여퇴비화진행및퇴비로서의가치를규명하고, 작물생육조사를통해가축분퇴비와비교하여음식물쓰레기퇴비의효능을평가하고자한다. Materials and Methods 공시시료 ( 음식물퇴비 ) 제조 음식물퇴비배합은환경부고시 (ME, No. 2012-203. 2012) 기준에준하여음식
598 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 4, 2018 물찌꺼기 2.0 kg을제조하였으며 (Table 2), 제조된퇴비의 C/N율과함수율을조절하기위해음식물찌꺼기에톱밥과어분을각각 857, 100 g을첨가후제조하였다. 음식물쓰레기퇴비의경우음식물쓰레기분해우수균주미생물제제처리구 (Microorganism Treated Food waste compost, MFWC) 와미생물제제가처리되지않은대조구 (Food Waste Compost, FWC) 를제조하였고, 미생물제제의경우미색의분말형태인대두박과미강분말에음식물쓰레기우수분해균주 6종 (Table 3) 을고상발효한후질량대비 2% 인 40 g을처리하였다. 가축분 (Livestock Compost) 은주성분이계분 15%, 우분 20%, 돈분 10% 의가축분혼합퇴비를사용하였다 (Table 4). 음식물퇴비제조를위한퇴비화공정의 Table 1. Physico-chemical properties of the soil used. ph EC O.M Av.P 2 O 5 CEC Exch. cation (cmol + kg -1 ) (1:5 H 2 O) ds m -1 g kg -1 mg kg -1 cmol+ kg -1 Ca K Mg Na 5.69 0.2 40.99 283.44 14.50 3.64 0.72 0.91 0.12 Optimum range 6.0-7.0 2.00 25-35 350-500 - 5.0-6.0 0.70-0.80 1.5-2.0 - Table 2. Composition of food waste suggested by Ministry of Environment. Composition Total Weight (g) Materials Weight (g) Crops 320 Rice 320 Cabbage 160 Vegetables 1,000 Potato 400 Onion 400 Radish 40 Fruits 280 Apple 140 Orange 140 Meats 400 Pork 100 Fish 300 Table 3. 6 strains of bacteria used for food waste composting. No. Bacteria species Colony forming unit (CFU) 1 Klebsiella quasipnemoniae subsp. 7.2E+ 05 2 Bacillus amyloliquefaciens 6.2E+ 05 3 Lysinibacillus macroides 7.2E+ 05 4 Acientobacrer lwoffii 5.5E+ 05 5 Lysinibacillus fusiformis 4.3E+ 05 6 Paenibacillus polymyxa 7.2E+ 05 Table 4. Composition of livestock compost. Composition Livestock Compost Fowl Pig Cow Sawdust Mushroo m medium Coffee bean % Castor Distillers dried grains Bone meal Limestone 15 20 15 10 14 10 5 5 2 3 1 EM
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 599 경우간이소형퇴비화장치를제조하여사용하였다 (Fig. 1). 용기는보온성이뛰어난단열구조로내부용적이 20.0L 인사각형태를사용하였으며, 용기의밀폐를위해덮개를설치하였다. 퇴비화과정중발생되는가스를포집하기위해상단부에배출구를설치후 CO 2 Analyzer (LI-6252, USA) 를연결하여발생되는 CO 2 량을측정하였고 recorder에기록하였다. 온도의경우용기내부에온도센서를설치하여 1일 6회 2시간간격으로측정하였으며, 온도변화확인은온도감소추세가보이는 13일차까지진행하였다. 또한호기성퇴비화환경조성을위해용기하부에튜브를설치하여산소를 0.4 L min -1 으로주입하였으며, 뒤집기의경우 3일간격으로 3, 6, 9, 12일순으로실시하였다. 퇴비이화학분석부숙과정중이화학변화분석의경우온도감소추세를보이는구간에서 3회분취하여실시하였으며, 퇴비의이화학변화를확인하기위해 EC, C/N비, 유기물함량, T-C, T-N을측정하였다. EC의경우 1:5법을사용하였고, T-C와 T-N의경우원소분석기 (EA 3000, Italy) 를사용하였다. 최종적으로제조된음식물퇴비 2종 (MFWC, FWC) 과가축분퇴비 (LC) 1종을대상으로농촌진흥청비료품질검사방법및시료채취기준 (RDA, 2016) 에준하여유기물대질소비, 염분, 수분함량, 부숙도, 염산불용해물, 유해중금속 8 종 (As, Cd, Hg, Pb, Cr, Cu, Ni, Zn) 을측정하여비료공정규격적합도를측정하였다. 공시토양및작물공시토양은강원도춘천시신북읍에위치한강원대학교부속농장밭토양을채취하여체거름 (< 2 mm) 한후사용하였다. 수확후토양의화학적변화를평가하기위해공시토양을토양및식물체분석법 (Korea Forest Research Institute, 2014) 에준하여분석하였다. 공시토양화학성은 ph 5.69, EC 0.2 ds m -1, 유기물 40.99 g kg -1, Av. P 2 O 5 283.44 mg kg -1 으로일반밭토양에준하는수치를보였다 (Table 1). 공시작물은배추 (Chinese cabbage, Brassica rapa var. glabra) 와토마토 (Tomato, Solanum lycopersicum L.) 이며, 서로다른종에대한생육의영향과토양화학성변화를확인하고자하였다. Fig. 1. Schematic diagram of food waste composting reactor.
600 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 4, 2018 포트시험작물의경우본엽이 3-5매정도되는배추와토마토모종을 1/5000 a 사이즈의와그너포트에정식하였으며, 반복수는 3반복으로진행하였다. 각처리구는퇴비표준시비량기준으로처리하였으며 LC, LC+NPK, FWC, FWC+NPK 순으로토마토의경우 20,000 kg ha -1, 배추 15,000 kg ha -1 로처리해공시토양과퇴비를적절히혼합하였다. NPK 처리구의처리함량은표준시비량시비하였으며, 토마토의경우 N-P 2 O 5 -K 2 O 성분량으로 190-80-160 kg ha -1, 배추의경우 320-70-190 kg ha -1 처리하였다 (NIAS, 2017). 작물생육조사생육조사의경우농촌진흥청의연구조사분석기준 (RDA, 2012) 에준하여재배중주차별엽장, 엽폭, 엽색도를측정하였으며, 4 주재배후배추와토마토의엽장및엽폭의길이, 엽색도를측정하였다. 최종수확후조사항목은생중량및건중량, 뿌리길이, 줄기길이등을측정하였다. 엽색도의경우엽색도측정기 (SPAD-502. Korea) 로엽색도를측정하여작물생육조사를실시하였다. 처리구별토양화학분석정식전토양과최종수확후의토양의화학적특성변화를확인하였으며, 분석법의경우경기도농업기술원토양및퇴비분석법 (Agricultural Technology Institute, 2015) 에준하여 ph 와 EC는 1:5법으로토양용액을추출하여측정하였다. 유기물은 Walkley-Black method를사용하여 610 nm에서흡광도를측정하였으며, 유효인산은몰리브덴청법을사용하여 660 nm에서비색정량하였다. 유기물및유효인산측정은 UV-vis spectrometer (UV-2401PC. Japan) 을사용하였고, 치환성양이온의경우 1N NH 4 OAc (ph 7.0) 의용액으로추출하여 AAS (PinAAcle 900T, USA) 및 ICP (ICP series-6000, USA) 를이용하여분석하였다. 통계검정통계처리시모든처리구는 3반복으로진행하였고, 반복간평균값과표준편차값을 SAS 9.5 프로그램을통해분산분석 (ANOVA) 을실시하였으며, Duncan 검정을통해유의수준 P< 0.05 수준에서통계적검정을수행하였다. Results and Discussion 공시시료 ( 음식물퇴비 ) 퇴비화온도및 CO 2 발생량변화퇴비의온도와 CO 2 발생량의변화는퇴비화과정을확인할수있는중요한지표중하나이다 (Bae et al., 2000). 2일차부터 MFWC는미처리구 (FWC) 에비해평균 2 C 높게차이나면서 58 C 이상의고온을유지하였다 (Fig. 2). MFWC가더높은온도와장시간고온을유지한점은미생물제제처리로인한미생물증식이촉진됨에따라미생물의유기물분해가활발해져발생한산화열이고온을유지시킨것으로사료된다 (Phae et al., 1999). 또한두처리구모두 2 일차에서최고온도를보였으며, MFWC의경우최고온도 60 C, FWC의경우최고온도 57 C를기록하여 FWC 보다높은수치를보였다. 두처리구의온도변화는 30-60 C 사이에서퇴비화가이루어졌으며, 일반퇴비화온도인 30-60 C 범위에서이루어져분해미생물이생존하는데적정온도를유지한것으로판단된다 (Park et al., 2017). 이산화탄소발생량의경우온도가상승과함께증가하였으며, 2일차에서 MFWC 23%, FWC 21% 의수치를보였다 (Fig. 3). 전반적으로 MFWC가 FWC보다이산화탄소발생량이다소높았는데이는미생물처리로인해호흡이활발하게이루어진것에기인한것으로사료된다. 이산화탄소발생량최대치이후발생량의수치는점차감소하였으며이는유기물이소모되어미생물이이용가능한기질이부족해진것으로판단된다 (Kim et al., 2000). 또한 5일차에서온도와이산화탄소발생량이동시에증가하는경향을확
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 601 Fig. 2. Temperature change during composting. Fig. 3. CO 2 change during composting. 인할수있었으며, 이는 3일차에첫번째뒤집기를통해퇴비화과정중미처분해되지않았던탄소원들이분해되어이산화탄소발생량및온도가증가한것으로사료된다 (Seo et al., 1999). 공시시료 ( 음식물퇴비 ) 부숙시이화학변화음식물쓰레기의경우환경부고시에준하여제조함에따라민간에서배출되는음식물쓰레기에비하여유기물함량이 12.4 % 로매우낮았으며, 이를조절하기위해톱밥과어분을혼합하였다 (Table 5). 이를통해퇴비화초기유기물함량을 FWC 36.00%, MFWC 35.71% 로조절하였다. 음식물퇴비화 3 일차에서유기물함량은 FWC 44.81%, MFWC 41.75% 로 0일차대비상승하였고, 7 일차의경우 FWC 34.08%, MFWC 36.77% 로나타나비료공정규격에준하는함량을보였다. C/N비의경우초기 FWC 29.82, MFWC 26.89를보였고, 3 일차에서는 FWC 34.29, MFWC 20.28로 FWC가기준치이상을보였다. 7 일차에서 FWC 15.57, MFWC 14.61로기준치 30 이하의값을나타냈다 (Table 6). 일반적으로퇴비화과정중에탄소의경우미생물의활동으로인해 CO 2 와 CH 4 의형태로발생되어탄소비율이낮아지며 (Hwang et al., 1999), 질소는부식물질로재합성되거나미생물의영양원으로고정되어증가한것으로확인된다 (Ryu et al., 2010).
602 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 4, 2018 공시시료 ( 음식물퇴비 ) 및가축분퇴비비교및이화학분석부숙이종료된음식물퇴비와가축분퇴비 (LC) 의이화학분석결과, 3 종의퇴비모두기준치에적합하였고, 유기물함량의경우 LC 43.51%, FWC 46.85%, MFWC 53.63% 로미생물제제 + 음식물쓰레기퇴비 (MFWC) 가가축분에비하여유기물함량이높게나타났다 (Table 7). 이는미생물제제처리로퇴비원료내의유기물이부식성유기물로전환된것으로판단되며, 미생물제제의분해효능에대한연구가필요할것으로사료된다. 유해중금속 8종의경우기준치에비해모두낮은수치를보였으 Table 5. Physicochemical properties of food waste, sawdust, and fish cake used in this experiment. Materials EC C/N ratio Organic matters Moisture ds m -1 % Food waste 2.23 10.95 12.4 84.2 Sawdust 0.92 568.49 80.8 12.8 Fish cake 47.67 11.78 80.2 6.4 Table 6. Chemical properties of food wastes for 7 days ( 0-7day). EC Day 0 Day 3 Day 7 C/N ratio Organic matters T-C T-N EC C/N ratio Organic matters T-C T-N EC C/N ratio Organic matters T-C T-N ds m -1 % ds m -1 % ds m -1 % Foodwaste 3.86 29.82 36.00 20.88 0.70 3.56 34.29 44.81 26.00 0.76 3.12 15.57 34.08 19.77 1.27 Microorganism Treated Foodwaste 3.60 26.89 35.71 20.71 0.77 3.23 20.28 41.75 24.22 1.2 2.91 14.61 36.77 21.33 1.46 Table 7. Chemical properties of composts used. Composts OM Water OM/N ratio NaCl HIS % % Standard 30< 55> 45> 2.0> 26> LC 43.51 40.46 31.08 0.79 5.18 FWC 46.85 35.5 38.08 0.31 7.75 MFWC 53.63 36.10 38.86 0.22 7.50 HIS: HCl Insoluble Substance. Table 8. Concentration of heavy metals in various composts. Composts AS Cd Hg Pb Cr Cu Ni Zn mg kg -1 Standard < 45 < 5 < 2 < 130 < 200 < 360 < 45 < 900 LC ND ND ND ND 29.71 94.92 12.53 272.52 FWC ND 0.10 ND 0.76 0.43 3.71 0.22 24.99 MFWC ND 0.09 ND 0.71 0.37 2.39 0.26 25.45 ND: Not Detected.
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 603 나 LC의경우 Cr, Cu, Ni, Zn 등이다소높게검출되었다 (Table 8). 이는동물사육시사료효율촉진, 질병예방을통해 Cu, Zn 등의중금속이함유된영양제가필수적으로사용되기때문에나타난결과로보여진다 (Kang et al., 2010). 퇴비시용에따른작물생육평가공시작물인토마토와배추의생육조사는수확전 4 주간의생육측정및최종수확후의엽장, 엽폭, 생중량, 건중량, 줄기길이, 뿌리길이, 엽색도등을측정하였다. 배추의경우, 생육단계에서 2 주차까지무처리구와비교시큰차이를보이지않았으나, 3 주차부터차이를보이기시작하면서최종적으로 4 주차에서 Control < FWC < LC 순으로차이를보였다 (Table 9). LC + NPK 처리구와 MFWC + NPK 처리구가수확후가장높은엽폭수치 (17.6, 16.5 cm) 를나타냈었고, 이어 FWC + NPK의엽폭 (15.0 cm) 이다음순으로높은수치를보였으며, 다른처리구에비해통계적으로매우유의하게높은값을나타냈다. 또한 LC + NPK (12.5 cm) 와 MFWC +NPK (12.4 cm) 가최종수확후뿌리길이에있어서도가장높은수치를나타내었고, 다른처리구에비해높은값을보였다 (Table 11). 최종수확후토마토의경우도비슷한경향을나타냈는데엽장, 줄기길이, 총길이, 생중량, 엽록소함량이 LC + NPK (14.5, 94.9, 112.6 cm, 139.3 g, 48.2 O.D) 와 MFWC + NPK처리구 (14.3, 93.8, 111.7 cm, 143.2 g, Table 9. Chinese cabbage growth with different compost treatments for 4 weeks. Treatments 1 Weeks 2 Weeks 3 Weeks 4 Weeks width Chlorophyll width Chlorophyll width Chlorophyll width Chlorophyll Cm O.D(SPAD) cm O.D(SPAD) cm O.D(SPAD) cm O.D(SPAD) Control 9.4 5.0 28.2 19.5 10.2 31.4 21.3 11.8 28.2 24.4 11.7 22.0 LC 8.3 5.1 31.0 20.5 11.1 33.3 26.8 13.8 31.2 27.7 14.7 31.0 LC+NPK 9.1 4.7 31.0 19.1 10.9 33.6 29.3 16.7 34.1 30.8 17.6 36.9 FWC 10.0 6.5 33.0 19.2 10.8 32.9 24.1 12.4 32.4 26.4 13.6 35.4 FWC + NPK 8.2 5.6 39.3 19.9 10.4 35.6 26.7 14.5 33.2 28.6 15.2 34.4 MFWC 11.7 7.5 33.9 20.7 11.0 34.8 25.3 12.8 33.8 27.2 13.6 34.6 MFWC + NPK 9.2 6.1 38.3 21.1 11.2 34.4 27.6 15.1 33.6 29.3 16.3 37.4 LC, Livestock compost; FWC, Food waste compost; MFWC; Microorganisms food waste compost. Table 10. Tomato growth with different compost treatments for 4 weeks. Treatments 1 Weeks 2 Weeks 3 Weeks 4 Weeks width Chlorophyll width Chlorophyll width Chlorophyll width Chlorophyll cm O.D(SPAD) cm O.D(SPAD) cm O.D(SPAD) cm O.D(SPAD) Control 6.8 4.1 44.9 9.6 5.9 41.9 11.5 6.0 38.6 11.9 5.9 39.6 LC 6.8 4.0 48.2 10.3 5.4 43.9 13.5 6.5 48.8 13.7 6.9 48.2 LC+NPK 6.8 4.1 46.3 10.3 5.7 44.1 13.9 6.7 47.8 14.5 7.7 49.5 FWC 6.5 3.4 40.7 9.3 5.5 43.7 12.9 6.4 45.1 13.6 6.3 45.6 FWC + NPK 6.1 3.6 38.1 10.2 5.8 43.6 13.2 6.7 46.7 14.1 6.9 47.3 MFWC 6.4 3.6 37.8 10.2 5.2 42.6 12.6 6.2 47.5 13.5 6.3 46.1 MFWC + NPK 6.2 3.1 39.2 11.2 5.6 45.9 13.6 6.4 46.9 14.2 7.1 44.2 LC, Livestock compost; FWC, Food waste compost; MFWC; Microorganisms food waste compost.
604 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 4, 2018 49.5 O.D) 에서각각가장높은값을보였으며, 이어서 FWC + NPK (13.7, 92.3, 108.9 cm, 129.0 g, 48.4 O.D) 순인것으로나타났으며, 통계적으로다른처리구에비해유의한차이를보였다 (Table 10, 12). Yoon et al. (2007) 에의하면부산물퇴비가보유하고있는높은유기물함량은토양내양이온치환용량증대, 양분공급, 미생물활성화촉진등토양개량효과를증진한다는연구결과가있으며 (Yoon et al., 2007), 본연구에서도같은경향을확인할수있었다. 토양의이화학성변화서로다른종류의퇴비의시용에따른수확후토양의이화학성변화를확인하기위해토양화학분석법을통하여수확후 ph, EC, OM, Av. P 2 O 5, 양이온 (Ca 2+, Mg 2+, K +, Na + ) 의이화학적특성변화를확인하였다. 배추와토마토재배토양의 ph는 LC의처리구가각각 7.00, 7.27로가장높은수치를보였으며, 무처리구대비다소높은 ph값을보였다. Kim et al. (1999) 의연구에서는가축분 ( 우분 ) 이가지고있는높은질소함량으로인해 ph가증가되는경향을본연구에서확인하였으며 (Kim et al., 1999), 특히토마토의경우뿌리에서수소이온과동시에흡수되는질산태질소를선호하는경향이있어 ph가증가된것으로사료된다 (Kang et al., 2010). EC의경우정식전토양에비해전체적으로상승하였으며, Hwang 등에의하면돈분, 우분, 계분부숙퇴비를처리시토양내의 EC함 Table 11. Chinese cabbage growth with different treatments of compost. Treatments width Fruit Root Total Fresh weight Dry weight Chlorophyll cm g O.D(SPAD) Control 24.4±0.78 f 11.7±0.67 d 27.9±1.13 c 11.1±1.73 b 39.0±1.56 d 104.5±10.76 f 9.6±1.82 d 22.0±0.82 e LC 27.7±0.56 cd 14.7±0.54 bc 29.10±0.70 c 12.10±2.12 ab 41.2±2.33 bcd 150.1±12.58 cd 13.4±1.19 c 31.0±0.31 d LC+NPK 30.8±0.21 a 17.6±0.43 a 33.8±1.60 a 12.5±2.04 a 46.3±3.43 a 217.5±11.63 a 15.0±0.88 bc 36.9±0.94 ab FWC 26.4±0.48 e 13.6±0.52 c 28.7±0.12 c 11.2±0.29 ab 39.9±0.16 cd 158.5±4.24 e 14.6±0.39 bc 33.5±0.66 c FWC + NPK 28.6±0.36 bc 15.0±0.62 b 31.0±0.48 b 12.3±0.41 ab 43.3±0.68 abc 211.5±2.02 bc 17.9±0.57 a 35.0±0.57 bc MFWC 27.2±0.57 de 14.4±0.59 bc 28.9±0.51 c 11.3±0.16 ab 40.8±0.57 bcd 178.1±12.10 de 16.1±0.38 ab 36.5±2.13 ab MFWC + NPK 29.3±0.66 b 16.5±0.49 a 32.3±0.39 ab 12.4±0.16 a 44.7±0.57 ab 212.7±11.14 ab 16.1±0.60 ab 38.1±0.24 a The different letters are significantly (P < 0.05) different according to Duncan s multiple test. Table 12. Tomato growth with different treatments of compost. Treatments width Shoot Root Total Fresh weight Dry weight Chlorophyll Cm g O.D(SPAD) Control 11.5±0.59 c 5.9±0.17 d 75.8±4.69 c 16.3±2.19 f 92.0±2.90 c 83.9±14.71 c 14.8±1.15 b 39.6±5.01 b LC 13.7±0.41 a 6.9±0.91 abc 90.1±4.00 ab 18.2±2.75 d 108.3±2.21 a 121.4±9.89 ab 20.0±2.32 a 48.2±2.22 a LC+NPK 14.5±0.41 a 7.7±0.59 a 94.9±1.92 a 17.7±1.96 a 112.6±2.71 a 139.3±21.60 a 18.4±3.06 a 49.5±1.39 a FWC 11.9±0.21 ab 6.3±0.22 cd 75.8±1.01 c 16.4±0.34 ef 92.2±0.99 c 109.9±2.63 b 19.6±0.59 a 40.4±0.46 b FWC + NPK 13.7±0.12 a 6.8±0.12 abcd 92.3±1.20 a 16.6±0.41 c 108.9±1.19 a 129.0±0.99 ab 18.6±0.34 a 48.4±0.40 a MFWC 12.7±0.16 b 6.5±0.28 bcd 84.8±1.87 b 15.1±0.61 e 99.9±2.36 b 115.9±3.37 ab 19.9±0.58 a 45.5±0.45 a MFWC + NPK 14.3±0.41 a 7.5±0.29 ab 93.8±0.43 a 17.9±0.86 b 111.7±0.75 a 143.2±12.88 a 19.1±0.80 a 49.5±0.17 a The different letters are significantly (P < 0.05) different according to Duncan s multiple test.
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 605 Table 13. Chemical properties of Chinese cabbage soil after harvesting. Treatments ph EC O.M Av. P 2 O 5 Exch. cation (cmol + kg -1 ) (1:5 H 2 O) ds m -1 g kg -1 mg kg -1 Ca K Mg Na Control 5.8±0.19 f 0.3±0.06 b 47.9±1.59 e 280.2±4.54 3.8±0.08 f 0.8±0.01 d 0.5±0.04 e 0.1±0.01 e LC 7.0±0.01 a 0.4±0.06 a 60.2±0.94 b 284.8±13.55 b 3.7±0.16 c 0.8±0.02 b 0.6±0.01 b 0.2±0.01 b LC+NPK 6.8±0.01 ab 0.4±0.04 ab 63.0±3.07 a 304.3±5.88 a 3.8±0.12 a 0.9±0.02 a 0.8±0.01 a 0.2±0.01 a FWC 6.2±0.02 e 0.3±0.02 b 54.1±0.44 d 281.1±0.24 d 3.6±0.17 e 0.8±0.01 cd 0.5±0.02 cd 0.1±0.01 d FWC+NPK 6.6±0.03 c 0.3±0.01 b 60.8±0.74 b 288.9±0.45 b 3.2±0.24 c 0.8±0.02 b 0.6±0.01 b 0.1±0.01 c MFWC 6.3±0.02 d 0.4±0.05 ab 54.8±1.66 c 281.3±1.58 c 3.7±0.08 d 0.8±0.01 bc 0.6±0.01 bc 0.1±0.01 c MFWC + NPK 6.7±0.02 b 0.4±0.01 ab 62.9±0.35 a 298.0±8.00 a 3.3±0.21 b 0.9±0.01 a 0.7±0.03 a 0.2±0.01 a The different letters are significantly (P < 0.05) different according to Duncan s multiple test. Table 14. Chemical properties of Tomato soil after harvesting. Treatments ph EC O.M Av. P 2 O 5 Exch. cation (cmol + kg -1 ) (1:5 H 2 O) ds m -1 g kg -1 mg kg -1 Ca K Mg Na Control 6.3±0.02 e 0.3±0.05 b 51.0±0.23 d 284.3±14.19 a 3.3±0.17 a 0.8±0.01 e 0.6±0.01 f 0.1±0.01 d LC 7.3±0.03 a 0.4±0.01 ab 68.5±2.30 a 294.2±18.70 a 3.3±0.09 a 0.8±0.01 c 0.7±0.01 e 0.1±0.01 b LC+NPK 7.2±0.01 ab 0.5±0.07 a 72.9±3.05 ab 304.3±12.63 a 3.4±0.17 a 0.9±0.01 a 0.8±0.01 a 0.2±0.01 a FWC 7.1±0.01 d 0.3±0.02 b 55.2±0.28 c 284.6±0.62 a 3.6±0.19 a 0.8±0.01 d 0.6±0.01 e 0.1±0.01 c FWC+NPK 7.2±0.02 bc 0.4±0.02 ab 67.8±1.22 bc 298.2±1.94 a 3.4±0.09 a 0.8±0.01 bc 0.7±0.01 c 0.1±0.01 b Microorganism FWC Microorganism FWC + NPK 7.1±0.02 cd 0.3±0.05 b 56.3±0.64 bc 286.1±1.28 a 3.4±0.22 a 0.8±0.02 d 0.7±0.01 d 0.1±0.01 bc 7.2±0.01 b 0.4±0.05 a 70.2±0.40 ab 303.8±3.23 a 3.7±0.21 a 0.8±0.01 b 0.8±0.01 b 0.2±0.01 a The different letters are significantly (P < 0.05) different according to Duncan s multiple test. 량이증가된다는연구결과가보고되었다 (Hwang et al., 2002). 또한음식물퇴비처리시퇴비가보유하고있는염류함량으로인해무처리구대비조금더높은 EC 값을보인것으로판단된다. 유기물의경우대조구에비해전체적으로증가하는것을확인하였으며, 이는퇴비시용시각각의퇴비의함유된유기물의증가로보여진다 (Suh and Yeon, 1998). 유효인산의경우무처리구에비해소량증가하는경향을보였고, 화학비료처리구의경우퇴비처리구와비슷한수준의값을보였다. 양이온은 Ca을제외한나머지이온들 (K, Mg, Na) 에서증가하는경향을보였다 (Table 13, 14). Conclusions 미생물제제가처리된음식물쓰레기퇴비의퇴비로써가치를평가하고작물생육조사를통해가축분퇴비와작물생육과토양의화학적특성의변화를비교분석하고자본연구를수행하였다. 배추의경우가축분 + 화학비료 (N, P, K) 처리구와미생물제제처리음식물퇴비 + 화학비료처리구가가장높은엽폭수치를나타내었고, 이어음식물퇴비 + 화학비료처리구의엽폭이다음순으로높은수치를나타냈으며, 다른처리구에비해통계적으로유의한차이를나
606 Korean Journal of Soil Science and Fertilizer Vol. 51, No. 4, 2018 타냈다. 또한가축분 + 화학비료를처리한처리구와미생물제제처리음식물퇴비 + 화학비료처리구가최종수확후뿌리길이에있어서도가장높은수치를나타내었고, 다른처리구에비해통계적으로유의한차이를보였다. 최종수확후토마토의경우도비슷한경향을나타냈는데엽장, 줄기길이, 총길이, 엽록소함량이가축분 + 화학비료를처리한처리구와미생물제제처리음식물퇴비 + 화학비료처리구에서각각가장높은값을보였으며, 이어서음식물퇴비 + 화학비료순인것으로나타났으며, 통계적으로다른처리구에비해유의한차이를보였다. 음식물퇴비의경우높은염류함량으로문제가되고있지만본실험에서는 2.0% 보다낮은수치로작물에영향을미치지않았다. 유해중금속 8종또한기준치미만의값을보여주었고, 음식물퇴비처리시무처리구에비해 ph, 유기물함량, 유효인산, 치환성양이온모두유의하게증가하는경향을확인하였다. 위결과를토대로추후퇴비의시비처리량및혼합비에대한연구를지속적으로진행할필요가있는것으로사료된다. Acknowledgement This work was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010848) Rural Development Administration, Republic of Korea and This study was supported by 2016 research grant from KNU (N0. 520160266). References Agricultural technology institute. 2015. Soil and compost analysis. 23-97 Bae, I.S., K. Jung, and D.H. Lee. 2000. Food Waste Composting by Soil Microbial Inoculators. Korea Organic Resource Recycling Association. 8(4):160-167. Han, S.C., U.J. Park, H.S. Lee, J.H. Ahn, and C.K. Lee. 2007. Aerobic composting with foodwastes depending on sodium chloride concentration and types of bulking agent. The 2007 environmental societies joint conference. 941-944. Hwang, K.S., Q.S. Ho, H.D. Kim, and J.H. Kim. 2002. Changes of Electrical Conductivity and Nitrate Nitrogen in Soil Applied with Livestock Manure. Korean J. Environ Agric. 21(3):197-201. Hwang, S.H., C.H. Shin, B.Y. Shin, and M.H. Cho. 1999. A Study on Aerobic Composting of Food Waste with Controlling Temperature by Air Flow Rate. Korea journal of biotechnology and bioengineering. 14(6):621-627. Kang, B.M., H.U. Hwang, J.H. Kim, Y.W. Yang, and Y.J. Kim. 2011. Study on reutilization with aerobic microbes of organic food waste leachates. J. Korea. soc. envir. engi. pp. 54-59. Kang, C.S., A.S. Roh, S.K. Kim, and K.Y. Park. 2011. Effects of the Application of Livestock Manure Compost on Reducing the Chemical Fertilizer Use for the Lettuce Cultivation in Green House. Korean J. Soil Sci. Fert. 44(3):457-464. Kang, J.M., S.B. Cho, S.K. Kim, S.S. Lee, and S.K. Lee. 2010. Contamination Analysis of Heavy Metals in Commercoal Feed for the Production of Safe-Animal Products. Journal of Life Science. 20(5):717-722. Kang, Y.I., J.K. Kwon, K.S. Park, I.H. Yu, S.Y. Lee, M.W. Cho, I.B. Lee, and N.J. Kang. 2010. Changes of Tomato Growth and Soil Chemical Properties as Affected by Soil ph and Nitrogen Fertilizers. Korea Journal of Environmental Agriculture. 29(4):328-335. Kim, J.G., K.B. Lee, S.B. Lee, D.B. Lee, and S.J. Kim. 1999. The effect of long-term application of different organic material sources on chemical properties of upland soil. Korean J. Soil Sci. Fert. 32(3): 239-253.
The Effect of Food Waste Compost on Chinese Cabbage (Brassica rapa var. glabra) and Tomato (Solanum lycopersicum L.) Growth 607 Kim, N.C. and D.H. Kim. 2000. Effect of Salinity Concentration on Aerobic Composting of Food Waste. Jornal of Korea Organic Resource Recycling Association. 8(2):124-129. Kim, Y.K., C.G. Phae, H.K. Choi, S.M. Kim, and E.Y. Hwang. 2005. Physical and chemical analysis of organic wastes for the establishment of total management system. J. Korea Org. Resour. Recycl.Assoc. pp. 128-142. Kim, Y.S., S.K. Ham, and H.J. Lim. 2012. Monitoring of soil chemical properties and pond water quality on golf courses after application of SCB liquid fertilizer. Asian J. Turfgrass Sci. 26(1):44-53. Kwon, S.I., K.H. So, S.G. Hong, G.Y. Kim, K.S. Seong, W.K. Park, K.R. Kim, D.B. Lee, and K.Y. Jung. 2009. The continuous application effect of the food waste composts on the cultivated upland soils and plants. Korea Organic Resource Recycling Association. 17(3):71-81. Lee, C.H., S.J. Park, M.S. Kim, M.S. Kim, S.G. Yun, B.G. Ko, D.B. Lee, S.C. Kim, and T.K. Oh. 2015. Characteristics of compost produced in food waste processing facility. Journal of Agricultural Science. 42(3):177-181. Lee, J.I. and D.S. Lim. 2003. Economical Analysis of Food Waste Resources. J. Korea Soc.Waste Manage. 11(2): 46-52. Lee, K.B., J.G. Kim, Y.K. Shin, D.B. Lee, S.B. Lee, and J.D. Kim. 2005. Effect of livestock compost and soil condition application on greenhouse gases emission in paddy soil. Korean J. Environ Agric. 24(2):117-122. Lee, Y.H. and S.R. Park. 2001. Isolation and characteristics of composting promoting bacteria. Korean J. Soil Sci. Fert. 34(4):394-400. Ministry of Environment. 2017. 5th National Waste Statistics Survey. 11-1480000-001528-13. Ministry of Environment. No. 2012-203. 2012. National institute of agricultural science. 2017. Criteria for the use of fertilizers by crops. 11-1390802-001174-01. Park, P.S., D.Y. Oh, C.J. Cheong, E.S. Jang, and H.W. Song. 2017. Estimation of Characteristics Treatment for Food Waste using Ultra Thermophilic Aerobic Composting Process. J. of Korea Society of Waste Management. 34(2):140-147. Phae, C.G. 2002. Problems and solutions for the operation of food waste composting facilities. J. Korea Org. Resour. Recycl.Assoc. 10(2):25-37. Phae, C.G., H.S. Sim, J.H. Hwang, and K.W. Baek. 1999. Change of Microorganism and Effect of temperature control on Gabage composting. Korea Organic Resource Recycling Association. pp. 64-72. RDA (Rural Development Administration). 2012. Standard methods for agri-cultural experiment. RDA. Korea. RDA (Rural Development Administration). 2016. Establishment and designation of official standard of fertilizers. Notification No. 2016-27 of RDA. Ryu, J.H., J.J. Lee, J.H. Hong, K.W. Chang, and G.S. Lee. 2010. The Study on the Composting by Using Dam Suspended Particle Sawdust and Sewage Sludge. Korea Organic Resource Recycling Association. 18(1):98-103. Seo, M.S., K.H. So, and W.M. Park. 1999. Assays of Maturity and Antifungal Activity against Plant Pathogen during the Animal Manure Composting Process. Korea Journal of Soil Science and Fertilizer. 32(3):285-294. Soil Test and Plant Analysis II. 2014. Korea Forest Research Institute. 11-1400377-000749-01. Suh, J.S. and B.Y. Yeon. 1998. Thermophilic bacillus species as a microbial indicator of the history of compost application. Korean J. Soil Sci. Fert. 31(3):285-290. Yoo, J.H., J.H. Joo, S.G. Kim, and I.H. Jang. 2016. Isolation and characterization of protease producing B. amyloliquefaciens JH-35 from Food Waste. Korean J. Environ Agric. 35(4):294-301. Yun, H.B., Y. Lee, C.Y. Yu, J.E. Yang, Y.B. Lee, and K.S. Lee. 2007. Soil Organic Matter Fractions in Upland Soil under Successive Application of Animal Manure Composts. Korea Journal of Soil Science and Fertilizer. 40(5):400-404.