Journal of the Korea Academia-Industrial cooperation Society Vol. 20, No. 3 pp. 470-475, 2019 https://doi.org/10.5762/kais.2019.20.3.470 ISSN 1975-4701 / eissn 2288-4688 김완석, 김재혁 * 원광대학교전기공학과 Control of 30kW Grid-Connected PCS for Wave Power Generation Wan-Seok Kim, Jae-Hyuck Kim * Department of Electrical Engineering, Wonkwang University 요약본논문에서는진동수주형 (OWC: Oscillating Water Column) 파력발전시스템을위한 30kW 급계통연계형 PCS(Power Conversion System) 을다룬다. 해양에너지중파력발전은삼면이바다인반도의특성을지닌한국에적용하기적합하고연안재해시파력발전기가방파제역할을하여피해를감소시킬수있고, 다른해상발전과개발대상적지가일치하므로통합하여효율을증대시킬수있다. 파력발전방식은작동원리에따라가동물체형과진동수주형, 월파형등여러형태로구분하며, 설치형태에따라고정식과부유식으로구분된다. 본논문에서는구조적으로안정되고터빈과발전기의유지보수가비교적쉬운진동수주형을채택하여, 파력발전용 30kW 계통연계형 PCS 토폴로지및모델을제안하고계통에안정적으로전압을공급할수있는 DC link 전압제어등계통연계시필요한제어방법에대해설명하였다. 또한이를검증하기위해시뮬레이션을수행하였다. Abstract This paper deals with a 30kW grid-connected PCS (Power Conversion System) for an Oscillating Water Column (OWC) wave-power generation system. Wave power generation in marine energy is suitable for Korea with the characteristics of a peninsula with three sides facing the sea. In the case of coastal disasters, wave generators can act as a breakwater to reduce damage, and can be integrated with other marine power generation systems to increase efficiency. Wave power generation systems are classified into various types, such as oscillating bodies, OWC, and overtopping according to the operation principle, and they can also be classified into two types according to the installation method: a fixed structure and floating structure. This paper proposes a 30kW grid-connected PCS topology and model for OWC wave power generation that is structurally stable with a turbine and generator that are relatively easy to maintain, and then provide a control method required for grid connection, including DC link voltage control. Simulation verification was performed to verify the proposed PCS. Keywords : Wave Power Generation, OWC, Grid-Connected, Back-To-Back Converter, Inverter 1. 서론화석연료의유한성과이산화탄소배출에따른심각한환경문제로인해신재생에너지의관심이높아지고있다. 신재생에너지의한부문인해양에너지, 그중에서도파력발전은우리나라지형특성상 3면이바다이므로쉽 게파랑에너지를얻을수있고, 도서지역에설치시독립적인발전이가능하므로효율을증대시킬수있어세계여러나라에서연구가활발히진행되고있다 [1]. 파력발전방식은작동원리에따라가동물체형, 진동수주형, 월파형으로구분한다. 그중진동수주형파력발전은파랑에너지를공기의흐름으로변환하고, 발생된 본연구는 2019학년도원광대학교의교비지원에의해수행됨. * Corresponding Author : Jae-Hyuck Kim(Wonkwang Univ.) Tel: +82-63-850-6733 email: jaehkim@wku.ac.kr Received December 26, 2018 Revised February 7, 2019 Accepted March 8, 2019 Published March 31, 2019 470
공기의흐름중에터빈을위치시켜전기를얻는파력발전방식이다 [2][3]. 본논문에서는장치자체의신뢰도가매우우수하고, 안전성및유지보수편이성면에서도탁월한진동수주형으로채택하여 30kW급 3상진동수주형파력발전시스템모델을제안하고제안된모델을기반으로통합시뮬레이션을진행하여발전기측과계통측의출력의변화에대하여설명하고자한다. 2. 본론 2.1 계통연계형파력발전시스템파랑의에너지는순시적으로변동되므로분산전원시스템과계통과의연계필요성이증대된다. 진동수주형파력발전시스템의시뮬레이션을위한모델은개발중인 3상계통연계형파력발전용인버터의시스템을고려한제어회로로시뮬레이션모델링하여시뮬레이션을수행하였다. Fig. 1은파랑에너지가수직운동을하여터빈을회전시키는모형을나타내었고, Fig. 2는계통연계파력시스템을보여준다. 계통의최대선간전압이상을충전하여계통에안정적인전압과전류를보내는것을목적으로한다. 발전기측제어방식은최적출력을내는발전기속도지령과발전기의실제속도의오차는 PI제어기를거쳐발전기측컨버터의 d축전류지령을만든다. 발전기전류의 d축전류는자속축에맞춰져있으므로 q축전류를 0으로, d축전류를지령치에맞도록제어하여발전기가최대토크를내도록제어하게된다. d-q축좌표변환 (d-q reference frame) 에의해유효전력및무효전력출력을정의할수있으며, 발전기측전압방정식은다음과같이정의된다. (1.1) (1.2) 시뮬레이션을동작하기위한영구자석발전기의입력토크수식은다음과같이나타낼수있다. (1.3) Fig. 3 은발전기와컨버터제어모델을나타내었다. Fig. 1. Oscillating water column model Fig. 3. 3-phase generator and rectifier control model Fig. 2. Diagram of grid-connected wave power generation system 2.2 발전기측제어발전기측 MSC(Machine Side Converter) 제어의목적은부스트컨버터를사용하여 DC Link 커패시터에 2.3 계통측제어계통측 GSC(Grid Side Converter) 제어는 back-to-back 컨버터의 DC link 전압을제어하고계통으로의무효전력제어하는것을목적으로한다. 계통측의인버터제어방법은 q축루프는무효전력 471
한국산학기술학회논문지제 20 권제 3 호, 2019 주입을제어하는데사용되며 d축루프는 DC Link 전압을제어함으로써 DC Link 전압을안정적으로유지시킬수있다 [4]. 인버터의출력상전압은계통전압과동일한 220V로출력과동시에위상을계통전압과동기화시켜역률을 1에가깝게만들어야한다. 따라서위상을추종하기위해서동기위상각계산 (Phase Locked Loop) 하여역률을개선시킨다. PLL은위상을자동으로조정하는피드백제어시스템으로계통의 3상전압정보를받아 d-q변환한뒤 PI제어기를사용하여위상각을보정한다. Fig. 4는 3상 PLL의구조를나타내었다 [5][6]. Fig. 4. Three phase PLL structure 계통의각상의출력전압을 d-q 고정좌표계로변환하면다음과같다. (2.1) (2.2) 고정좌표계를회전좌표계로변환하면다음과같다. (2.3) 나타낼수있다. (2.7) 여기서, 는계통라인의저항및인덕턴스를나타내고계통전압에대해 d-q변환하여 PWM 제어에입력되는전압지령치는다음과같다. (2.8) (2.9) 인버터에인가되는 PWM 은공간벡터전압변조 (SVPWM) 방식을사용하였다. SVPWM의장점으로는 dq 변환을사용하여계통연계시제어알고리즘이간단해지고, 출력가능한상전압의최댓값이 이므로 SPWM보다 15.5% 가크다. SVPWM의단점으로전압벡터의위치와삼각함수계산등연산시간이오래걸린다는단점이있지만본논문에서는오프셋 (offset) 전압을이용한변조기법을사용하여연산과정을단순히하였다. 오프셋전압을다음식과같이극전압지령을생성하여삼각파비교 PWM 기법으로간단히구현할수있다. (2.10) 인버터의 8개출력전압벡터를복소수공간상에서표현하면 Fig. 5와같다. (2.4) 여기서위상각 () 은변환된회전좌표계 q축전압을 0으로제어하기위해 PI제어기의출력을계통의각속도를더해적분하면다음과같이위상각 ( ) 을얻는다. 따라서 P제어기의정상상태를보면위상의오차가없음을확인수있다 [7]. (2.5) (2.6) 계통측의인버터출력상전압방정식은다음과같이 Fig. 5. Inverter output voltage expressed as a space vector 472
2.4 시뮬레이션결과계통연계형파력발전시스템의모델링을검증하기위해 PSIM 시뮬레이션을이용하여수행하였으며 Table 1 은시뮬레이션에사용된시스템파라미터를표기하였다. Table 1. System parameter Fig. 6. The effective time of each phase pole voltage Fig. 6은각상극전압의유효인가시간을나타낸그림으로지령전압과삼각파비교하여스위칭시간을결정하게된다. 스위칭소자의게이팅인가시간은다음과같다 [8][9]. (2.11) Parameter Value Unit DC link capacitor 5500 uf PWM switching frequency 5 khz Grid voltage 220 V Grid frequency 60 Hz inverter side inductance( ) 83 uh Grid side capacitor( ) 13 uf Grid side inductance( ) 42 uh Damping resistance( ) 0.21 Ω (2.12) d-q축좌표변환 (d-q reference frame) 에의해유효전력및무효전력출력은다음과같이정의할수있다. (2.13) (2.14) Fig. 7는 DC link, 2-Level Inverter, LCL Filter, Grid 로이루진파력발전용전력변환시스템의계통측제어모델이다. Fig. 8. Generator output power(top), Generator speed control(bottom) Fig. 8은발전기의출력과발전기가속도제어에의해속도가지령치에수렴하는것을확인할수있다. Fig. 7. Grid-connected inverter control model Fig. 9. Generator output voltage(top), Generator output current(bottom) 473
한국산학기술학회논문지제 20 권제 3 호, 2019 Fig. 11는계통측인버터의출력 a상전압과전류를나타내었고, Fig. 12는정상상태구간을확대하여나타내었다. Fig. 10. Generator output voltage zoom in(top), Generator output current zoom in(bottom) Fig. 9는발전기의출력 a상전압과전류를나타내었고, Fig. 10는정상상태구간을확대하여나타내었다. Fig. 13. Grid side DC link voltage control(top), Inverter output power(bottom) 3. 결론 Fig. 11. Inverter output voltage(top), Inverter output current(bottom) 본논문은계통연계운전을위한 3상계통연계형인버터의제어방법을설명하였다. Psim을이용하여 30kW back-to-back 계통연계시스템시뮬레이션을수행하였다. Fig. 11, 13을보면계통측인버터에서 DC link 전압지령에스텝변화를주어변동해도계통전압이흔들리지않는것을확인할수있었다. 따라서, DC link의크기를변화시켜피상전력의조절이가능하다. 제안된파력발전용계통연계형 PCS의효율은발전기의출력이 31.8kW 일때, 계통측전력은 30kW로손실전력은약 1.8kW이다. 입력대비출력효율은 94.34% 가나온것을확인할수있었다. 추후에는정격용량과같은실험을통해제안된모델링검증과인버터품질의효율, 전류 THD 등성능측정이추가적으로수행할필요가있다고생각된다. References Fig. 12. Inverter output voltage zoom in(top), Inverter output current zoom in(bottom) [1] R. Sabzehgar, A Review of Ocean Wave Energy Conversion Systems, IEEE Electrical Power & Energy Conference, Oct. 2009. DOI: http://dx.doi.org/10.1109/epec.2009.5420927 474
[2] Dionisio Ramirez, Emulation of an OWC Ocean Energy Plant With PMSG and Irregular Wave Model, IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, pp1515-1523, Oct. 2015. DOI: http://dx.doi.org/10.1109/tste.2015.2455333 [3] Nicola Delmonte, Review of Oscillating Water Column Converters, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, pp1698-1710, Mar. 2016. DOI: http://dx.doi.org/10.1109/tia.2015.2490629 [4] Fattah Hassanzadeh, Back-to-back Converter Control of Grid-connected Wind Turbine to Mitigate Voltage Drop Caused by Faults IEEE Conferences, pp1-6, Nov. 2017. DOI: http://dx.doi.org/10.1109/naps.2017.8107205 [5] Vikram Kaura Operation of a Phase Locked Loop System Under Distorted Utility Conditions, IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, Jan. 1997. DOI: http://dx.doi.org/10.1109/28.567077 [6] F. A. Ramirez, Development of a Grid-Connected Wind Generation System With a Modified PLL Structure, IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, pp474-481, Jul. 2012. DOI: http://dx.doi.org/10.1109/tste.2012.2190770 [7] Tae-Won Chun, Synchronization Techniques for Single-Phase and Three-Phase Grid Connected Inverters using PLL Algorithm, THE TRANSACTIONS OF KOREAN INSTITUTE OF POWER ELECTRONICS, pp309-316, Aug. 2011. [8] Zitao Wang, A DC Voltage Monitoring and Control Method for Three-Phase Grid-Connected Wind Turbine Inverters, IEEE TRANSACTIONS ON POWER ELECTRONICS, pp1118-1125, May. 2008. DOI: http://dx.doi.org/10.1109/tpel.2008.921174 [9] Qingrong Zeng, Improved Current Controller Based on SVPWM for Three-phase Grid-connected Voltage Source Inverters, IEEE 36th Power Electronics Specialists Conference, pp2912-2917, 2005. DOI: http://dx.doi.org/10.1109/pesc.2005.1582047 김재혁 (Jae-Hyuck Kim) [ 정회원 ] 1998년 11월 2000년 6월 : UL Korea, Engineer 2004년 8월 : Univ. of Wisconsin at Madison ( 공학석사 ) 2010년 5월 : Virginia Tech( 공학박사 ) 2010년 1월 2010년 6월 : Ramu Inc. Senior Engineer 2010년 9월 현재 : 원광대학교전기공학과부교수 < 관심분야 > 전력전자, 전동기설계및제어, 에너지변환 김완석 (Wan-Seok Kim) [ 정회원 ] 2017 년 2 월 : 원광대학교전기공학과졸업 2017 년 3 월 현재 : 원광대학교대학원전기공학과석사과정 2019 년 1 월 현재 : ( 주 ) 현기술연구원 < 관심분야 > 전력전자, 전동기제어 475