Korean J Hematol Vol. 42, No. 4, December, 2007 Original Article 수혈후동종세포에의한면역조절효과 가톨릭대학교의과대학소아과학교실, 1 미생물학교실, 2 내과학교실 김정진ㆍ유효주ㆍ권영주ㆍ정낙균ㆍ조빈ㆍ김태규 1 ㆍ김학기ㆍ한치화 2 ㆍ정대철 Immunomodulation Effect of the Allogeneic Cellular Components after Transfusion Jung Jin Kim, M.D., Hyo Joo Yoo, M.D., Young Joo Kwon, M.D., Nak Gyun Chung, M.D., Bin Cho, M.D., Tae Kyu Kim, M.D. 1, Hack Ki Kim, M.D., Chi Wha Han, M.D. 2 and Dae Chul Jeong, M.D. Departments of Pediatrics, 1 Microbiology and 2 Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea Background: Blood transfusion is important for life saving treatment in many patients with tolerable adverse effects. Some data suggest that transfusions might cause an increased risk for post-operative infections and a higher relapse or mortality rate in cancer patients. We investigated whether immune dysfunction might result after transfusions from the cellular components. Methods: We studied 5-week-old mice BALB/c (H-2 d, donor), C3H/He (H-2 k, recipient), and C57/BL (H-2 b, third party). We obtained irradiated spleen cells (SP) from the BALB/c or C57/BL, and injected them into the C3H/He with intraperitoneal IL-2 administration. After 24 hours, we obtained bone marrow (BM), thymus and SP. We identified mixed lymphocyte proliferation (MLR) by the BrdU method and we used irradiated BALB/c SP, as a stimulator for that trial. For the analysis of immune cells, we analyzed the cell surface markers from each organ. For cytokines, we identified TNF-α, IFN-γ, TGF-β, and IL-10 by ELISA from the supernatant of the MLR. Results: The cell proliferation decreased according to specific H-2 complexes. There were increased CD4+CD25+ cells in the thymus. For the paracrine effects, the B-C3H SP showed ratio-dependent inhibitory effects, although the C-C3H SP inhibited some cell proliferation. There was no difference in the IFN-γ, TNF-α and TGF-β between the control and experimental groups. However, IL-10 was higher in the 1:10 ratio mixture in the control and transfused SP compared to the other groups. Conclusion: The results of this study suggested that the cellular components in transfusions might contribute to the immune regulatory effects by CD4+CD25+ cells after 24 hours. (Korean J Hematol 2007;42:375-381.) Key Words: Transfusion, Immunomodulation, IL-10, CD4+CD25+ cells 서 수혈은다양한내과적, 외과적문제를해결하는중요 접수 :2007 년 7 월 11 일, 수정 :2007 년 10 월 4 일승인 :2007 년 10 월 15 일교신저자 : 정대철, 인천시부평구부평 6 동 665 403-720, 가톨릭대학교의과대학성모자애병원소아과 Tel: 032-510-5687, Fax: 032-503-9724 E-mail: dcjeong@catholic.ac.kr 본연구의일부는가톨릭대학교의과대학성모자애병원임상의학연구실지원에의하여이루어진것임. 론 375 한보조적치료방법이다. 수혈을통하여많은환자의생명을구할수있으나여러가지부작용이나합병증이발생한다. 1) 수혈후에는인간백혈구항원 (human leukocyte antigen, HLA) 에대한동종항체 (alloantibo- Correspondence to:dae Chul Jeong, M.D. Department of Pediatrics, Our Lady of Mercy Hospital, College of Medicine, The Catholic University of Korea 665, Bupyeong 6-dong, Bupyeong-gu, Incheon 403-720, Korea Tel: +82-32-510-5687, Fax: +82-32-503-9724 E-mail: dcjeong@catholic.ac.kr
376 Korean J Hematol Vol. 42, No. 4, December, 2007 dies) 유도에의한동종면역 (alloimmunization) 이나 T 세포활성화에의한면역관용 (immune tolerance) 과같이두가지의서로다른면역반응이일어날수있다. 1-3) 동종수혈 (allogeneic transfusion) 후에는발열성비용혈수혈반응 (febrile nonhemolytic transfusion reaction), 수혈로인한이식편대숙주병 (transfusion associated graft versus host disease), 감염원 (infectious agents) 의전달등의부작용이있으며, 또한면역억제도흔하게올수있다. 2-5) 임상적으로수술과정에수혈을받은경우수술후감염의빈도가높고, 종양환자들이수혈을받았을경우종양의재발과사망률이높다. 6-8) 이와반면에장기이식에있어이식전에공혈자특이수혈 (donor specific transfusion) 을시행했을때이식된장기가장기간생존하는임상결과는수혈로인하여면역관용이이루어지는사실을뒷받침한다. 9-11) 수혈효과 (transfusion effect) 라고불리는이러한현상은수혈후여러기전에의해유도되는면역억제효과에의한것으로이과정에는백혈구와다양한수용성물질이작용하는것으로알려져있다. 1,2,5) 이와같은생체내에서의동종항원에대한면역관용 (immune tolerance) 은혈액제제내에존재하는다양한체액성분및세포성분에의해아포토시스 (apoptosis), 아너지 (anergy), 자연살해세포 (NK cell) 기능억제, Th2 세포의분극 (polarization), 미세키메리즘 (microchimerism) 등의기전을통하여이루어진다. 9) 그기전은저장되었던혈액에서많은양의죽은세포와혈장성분으로인하여 IL-4, IL-5, IL-10과같은시토카인이활성화되어세포성면역보다는체액성면역으로면역억제현상이일어난다. 5,12) 또한공혈자와수혈자가인간백혈구항원인 HLA-DR이동일한경우면역억제 T 세포가활성화되어면역관용이유도된다. 2,12) 그러나수혈과면역억제에대한정확한기전이나자료에대하여는알려진것이없다. 이에저자는주조직적합항원이불일치하는마우스를이용하여혈장성분을제거한면역세포를수혈하여발생하는면역조절을관찰하였다. 수혈로인하여공혈자특이항원에대한면역반응이일어나는지를확인하고, 수혈후발생한면역반응에관여하는수혈자면역세포의변화와이에관련된시토카인의변화를알아보았다. 대상및방법 1. 실험동물 5주된수컷 BALB/c (H-2 d, 공혈자 ) 마우스와암컷 C3H/He (H-2 k, 수혈자 ) 마우스, C57/BL (H-2 b, third party) 마우스를이용하였다. 모든마우스는 Jackson Laboratory (Ann Harbor, MA, USA) 에서구입하여사용하였다. 특정병원체가없는마우스를무균사육기에서멸균된사료와물을사용하여실험에들어가기전 1주의적응기간을거쳐실험에이용하였다. 2. 수혈처치와비장세포의분리경추탈골시켜즉사시킨 BALB/c 마우스의비장세포 (spleen cell, SP) 를얻어 2,500cGy 방사선을조사한후이를 C3H/He 마우스의꼬리정맥을통해주입하면서 5,000IU의 Interleukin-2 (IL-2, R&D system, Minneapolis, MN) 를복강내주사하였고 (B-C3H), 같은방법으로 C57/BL 마우스의비장세포를얻어방사선조사후 C3H/He 마우스의꼬리정맥을통해주사하면서동일한방법으로 IL-2를복강내주사하였다 (C-C3H). 대조군은수혈처치를받지않은 C3H/He 마우스를이용하였다. B-C3H, C-C3H, 대조군인 C3H/He 마우스모두에서세포주입후 24시간이경과한다음경추탈골로즉사시켜비장세포 (SP) 를얻었다. 3. 혼합림프구반응 BALB/c SP에 2,500cGy의방사선을조사하여자극세포 (stimulator) 로사용하였고, C3H/He SP, B-C3H SP, C-C3H SP를각각반응세포 (responder) 로이용하였다. 반응세포를자극세포와함께 1:1, 1:5, 1:10로혼합한후 triplicate 상태에서 72시간, 37 o C로 CO 2 배양기에서배양하였고, 72시간후 Bromo-deoxy-uridine을첨가하여 12 18시간배양하였다. 혼합림프구반응은 Roche사의 BrdU 방법 (Roche Diagnostics GmbH, Mannheim, Germany) 을이용하여 ELISA 흡광도에따른세포증식정도를확인하였다. 세포증식은다음과같은공식을이용하여세포자극지수 (stimulation index) 를확인하였다. ( 실험군의흡광도 대조군의흡광도 ) 세포자극지수 (%)= 100 대조군의흡광도
김정진외 : Immunomodulation after Transfusion 377 또한, 수혈처치를받은마우스 SP의 C3H/He SP에대한세포자극정도를확인하기위해수혈처치를받은마우스의 SP와 C3H/He 마우스의 SP를 1:1, 1:10의비율로혼합하여자극세포에대하여 72시간배양한다음 BrdU 방법으로세포증식을확인하였다. 4. 유세포분석수혈처치를받은수혈자마우스의면역세포를분석하기위해서수혈후 24시간에수혈자마우스로부터골수, 흉선, 비장을제거하여각각에분포하는 T 세포 (CD3, CD4, CD8), B 세포 (B220), 대식세포 (Mac-3), 자연살해세포 (NK1.1) 를 Fluorescein isothiocyanate (FITC) 와 Phycoerythrin (PE) 로염색하여분석하였으며, 각장기에서의 CD3+CD4+CD25+ 세포의분포를확인하였다. 모든항체는각각에해당되는 isotype control antibody를이용하였고 BD Pharmingen (Becton Dickinson, Mountain View, CA) 으로부터구입하여사용하였다. 5 10 5 세포를각항체에염색한후 4 o C에서암실에서 30분간반응시킨후 0.1% bovine serum albumin과 0.02% sodium azide가함유된 PBS로 2차례세척하고분석할때까지 500μL의 1% paraformaldehyde을혼합하여고정시켜 4 o C에서보관하였다. 유세포분석은 EPIC- XII (Beckman Coulter Co., Miami, FL) 를이용하여분석하였다. 결과 1. IL-2와공혈자마우스의비장세포를수혈처치한후혼합림프구반응동종수혈시세포성분에의해림프구증식이억제되는지를알아보기위해 2,500cGy의방사선을조사한 BALB/c SP를자극세포 (stimulator) 로 C3H/He SP ( 대조군 ), B-C3H SP, C-C3H SP의세포증식정도를확인하였다. 수혈후 24시간뒤에대조군에비하여세포증식이유의하게억제되었고억제효과는자극세포와반응세포비율이 1:1일때가장현저하게나타났다 ( 자극세포에대한반응세포의비율 1:1, 26.7±9.7%; 5:1, 19.3±6.7%; 10:1, 9.3±6.2%, P<0.01). C-C3H에서도일부증식억제가있었으나 ( 자극세포에대한반응세포의비율 1:1, 3.1±2.2%; 5:1, 2.5 ±10.6%; 10:1, 8.5±5.9%) 자극세포와반응세포의비율에따라차이가없었다. 그러나세포증식이 B- C3H에서더욱현저하게감소되어 (P<0.01), H-2 complex에대해더특이적이었고세포증식억제는공혈자항원에대해특이성이있었다 (Fig. 1). 5. 시토카인측정 72시간배양한혼합림프구반응실험에서얻은상청액을 80 o C에보관하였다. 면역반응을증진시키는 TNF-α, IFN-γ, 강력한면역억제작용을보이는 TGFβ, 면역조절작용을나타내는 IL-10을 ELISA 방법으로 triplicate하여시토카인의양을측정하였으며각각의최저값한계는 TNF-α가 5.1pg/mL, IFN-γ이 2 pg/ml, TGF-β이 1.7pg/mL, IL-10이 4pg/mL이었다. 모든시토카인 ELISA kit는 R&D system에서구입하였다. 6. 통계분석세포증식도는모든실험을 3배수로시행한평균값에대하여 one-way ANOVA (analysis of variance) 으로통계분석하였고, 각각의비율에따른차이는 Student t test로분석하였다. 또한, CD4+CD25+ 세포와시토카인도 one-way ANOVA로통계처리하였으며, P값이 0.05 이하인경우통계적유의성으로인정하였다. Fig. 1. The comparison of stimulation index between B-C3H and C-C3H against control (n=6). The cell proliferation was shown markedly decreased state in B-C3H among other groups when stimulator (S) versus responder (R) ratio was 1:1 (*P<0.01). There are shown more diminished proliferation of B-C3H than that of C-C3H ( P <0.01). Control means cell proliferation in untrasfused C3H spleen (SP) and irradiated BALB/c SP. B-C3H, C3H/He SP received with irradiated BLAB/c SP; C-C3H, C3H/He SP received with irradiated C57/BL SP.
378 Korean J Hematol Vol. 42, No. 4, December, 2007 2. 동종수혈후면역세포의변화수혈받은수혈자마우스의면역세포를분석하기위해서수혈후 24시간에수혈자마우스에서골수, 흉선, 비장을제거하여각장기에분포하는 T 세포 (CD3, CD4, CD8), B 세포 (B220), 대식세포 (Mac-3), 자연살해세포 (NK1.1) 를 FITC와 PE로염색하여분석한결과골수, 흉선, 비장모두에서면역세포인 T세포, B세포, 대식세포및자연살해세포의분포는대조군과유의한차이가없었다. 각장기에서 CD3+CD4+CD25+ T 세포는대조군과 B-C3H, C-C3H의골수나비장에서차이가없었으나, 흉선에서 B-C3H의 CD3+CD4+CD25+ 세포가대조군과 C-C3H에비하여현저하게증가하였다 (33.8±16.4% vs. 17.5±11.0%, 17.7±2.2%, P<0.05) (Table 1). 였을경우혼합하지않은경우보다세포증식이억제되었으나통계적으로유의하지않았다. 그러나 C-C3H SP를대조군 SP와혼합한경우보다유의하게감소되어 (P<0.05), B-C3H SP에서 C-C3H SP보다유의하게세포증식이억제되었다. 또한, 수혈처치를받은 SP와대조군 SP를같이혼합한경우모든군에서혼합하지않은경우에비하여혼합비율에관계없이유의하게세포증식이억제되었다 (P<0.05) (Fig. 2). 4. 시토카인분석 IL-10의측정값에서대조군과 B-C3H SP의혼합배양액중에서 1:10의비율인경우 (31.0±2.9pg/mL) 가대조군 (10.6±0.5pg/mL), B-C3H (11.0±1.0pg/mL), C- 3. 수혈처치한비장세포와대조군비장세포의혼합을통한세포증식정도의비교수혈처치한비장세포가가지고있는주변분비효과 (paracrine effet) 에따른대조군비장세포의세포증식의효과를알아보았다. B-C3H SP나 C-C3H SP와함께대조군 SP를혼합하였을경우모두세포증식은억제되었다. 그러나대조군 SP와 B-C3H SP를 1:1로혼합하 Table 1. The percentage of CD3+CD4+CD25+ cells in each organ (n=6) Bone marrow Spleen Thymus Control 9.0±5.2 16.0±9.8 17.5±11.0 B-C3H 9.9±3.3 15.8±9.6 33.8±16.4* C-C3H 8.4±4.1 11.0±9.0 17.7±2.2 *P<0.05. Control, C3H/He; B-C3H, C3H/He received with irradiated BALB/c spleen cells (SP); C-C3H, C3H/He received with irradiated C57/BL SP. Fig. 2. The comparison with stimulation index for mixture of untransfused spleen cells (SP) and transfused SP (n=5) according to ratio. There were shown more profound inhibition in mixture (control SP+treated SP) than no mixture. Also, the inhibition was partially dependent on H-2 complex, but not different in high ratio (*, P<0.05). B-C3H, C3H/He received with irradiated BALB/c SP; C-C3H, C3H/ He received with irradiated C57/BL SP; N, control SP; T, treated SP. Table 2. The level of cytokines in supernatant of cell proliferation IL-10 (pg/ml) TGF-β (pg/ml) TNF-α (pg/ml) IFN-γ (pg/ml) Control 10.6±0.5 994.8±43.9 11.5±1.2 6.3±0.6 B-C3H 11.0±1.0 981.3±36.2 11.6±1.3 6.2±0.4 C-C3H 10.1±1.2 965.6±41.2 12.3±0.8 6.6±0.3 Mix (1:1) 10.8±0.2 1,146.3±59.8 10.4±0.5 7.3±0.9 Mix (1:10) 31.0±2.9* 1,152.6±70.9 10.4±1.4 6.6±1.0 *P=0.013. B-C3H, C3H/He spleen (SP) received with irradiated BALB/c SP; C-C3H, C3H/He SP received with irradiated C57/BL SP; Mix, control SP plus B-C3H SP. The parenthesis of mix means the ratio of control SP and B-C3H SP.
김정진외 : Immunomodulation after Transfusion 379 C3H (10.1±1.2 pg/ml) 에비하여유의하게증가되었고, 1:1 비율로대조군과 B-C3H SP가혼합된경우 (10.8±0.2pg/mL) 와비교하여도 IL-10의측정값이높았다 (P=0.013). TGF-β, TNF-α, IFN-γ는모든군에서차이가없었다 (Table 2). 고 동종수혈요법은지금까지빈혈과실혈및수술시불가피한출혈에대한보존적치료방법으로인식하고있다. 그러나동종혈액 (allogenic blood) 제제는수혈자를세포성또는체액성동종항원 (alloantigens) 들에노출시킴으로써동종면역반응 (alloimmunization) 이나수혈연관성면역조절 (transfusion associated immunomodulation, TRIM) 이라고알려진면역관용등의다양한면역반응을유발한다. 5,12,13) 본연구에서는수혈시체액성분을제거한세포성분만을투여함으로써일어날수있는면역반응을확인하였다. 임상에서수혈을위해보관된혈액제제는수일간보관하면서백혈구가대부분아포토시스되기때문에실제로아포토시스된백혈구가수혈자에게수혈된다. 14) IL-2는면역반응에서흔히림프구증식에관여하지만면역억제또는조절세포의증식에도관여한다. 마우스동종조혈모세포이식에서 IL-2 단독으로미리수혈자에게단기간투여하면오히려면역반응이감소되어이식편대숙주반응이감소하지만, 15) 수혈과같은조작이있을경우에는면역반응이증가한다. 본연구에서 IL-2와함께방사선을조사한비장세포의수혈은면역억제기능이확인되었다. 주입되는세포에투여된방사선조사량이늘어남에따라면역억제가현저히나타나는데 16) 이는주입되는세포가아포토시스된결과라고할수있다. 또한아포토시스된세포를주입하면주입된세포의항원성을가진항CD4+ 세포의생성과함께지속적인미성숙상태의수지상세포로유지되어면역억제효과가나타난다. 17) 방사선조사를받은 SP를 IL-2와함께투여한후골수, 비장및흉선에서면역세포의변화중가장뚜렷한것은 CD4+CD25+ T세포의현저한증가였으며, 특히, 흉선에서가장많이증가되었다. 장기이식전에공혈자특이수혈 (donor specific transfusion) 로써 CD4+CD25+ T세포가유도되고이런세포들이흉선에서많이분포한다는결과와같다. 10,11) 또한, IL-2의투여에대하여 CD4+CD25+ T세포의증식이 IL-2에의해더욱현저하게나타날수있기때문에이전의논문들과동일한결 찰 과라고할수있다. 18) 그리고 IL-2가 CD4+CD25+ T세포의기능을조절하는 FoxP3의활성화에중요한역할을하기때문에중요한시토카인이라고할수있으며 19) 임상에서수혈을받는상황에서많은경우가수술이나감염등, 인체의면역반응을일으키는경우가많으므로 IL-2를동시투여함으로써임상과유사한환경을만들고자하였다. 한편, 공혈자림프구수혈 (donor lymphocyte transfusion) 을시행하면이중음성조절세포 (double negative regulatory cell) 가유도된다. 4,20) 본연구에서 double negative T세포가확인되지않았는데 Margenthaler 등 4) 이나 Young 등 20) 은세포를주입한다음 1주일이후에나타나는결과를보고하였기때문에이번결과와실험방법적인차이에의한것으로생각한다. 조절 T세포의주변분비효과 (paracrine effect) 를알아보기위해수혈처치받지않은세포와처치받은세포를혼합하여자극세포 (BALB/c, H-2 d ) 에대한세포증식지수를확인하였다. C3H/He의 SP와 B-C3H SP나 C-C3H SP 모두에서혼합하였을경우보다유의하게세포증식이억제되었는데이러한결과는항원에자극받은세포 (B-C3H 혹은 C-C3H) 에서 C3H/He SP에대한면역억제와관계된현상을유도하였다고할수있다. 특히 C3H/He SP와처치받은 SP의비율이동등한비율로혼합되었을경우에는 B-C3H가 C-C3H보다유의하게세포증식이억제된결과로서 H-2에특이적으로작용하였다고할수있다. 이는수혈을통하여항원특이성을보이는다른보고들과일치하는결과라고할수있다. 4,10) 그렇지만 C-C3H SP에서도어느정도세포증식이억제되었는데이러한결과는 Wallgren 등 21) 의보고와유사하다고할수있고, 그기전은 C-C3H SP에서비특이적으로분비되는시토카인에의해서면역억제반응이나타날수있다고생각한다. 22) 수혈처치를받은세포들이 C3H/He 세포에대하여주변분비효과를나타낼수있는현상을설명하기위해서강력한면역억제효과를보이는 TGF-β와세포손상에관여하는 TNF-α, Th1의대표적인시토카인인 IFNγ 및면역조절에흔히관여하는 IL-10을세포증식을위해배양하였던배양액에서각각의분비정도를확인하였다. IFN-γ는모든실험군에서차이가없어세포매개성면역반응 (cell-mediated immune response) 이수혈이후관여하지않는다는것을시사하고있다. 또한, TNF-α, TGF-β가모든실험군과대조군에서도유의한차이는없었다. 특히 TGF-β는수혈시아포토시스된세포가주입되면서대식세포에서섭취되어분비하
380 Korean J Hematol Vol. 42, No. 4, December, 2007 게되고이러한이유로면역억제가나타난다고하였으나 23) 본연구와차이가있었다. 그러나대조군과수혈처치받은 SP와혼합하여세포증식을확인하였던경우에서처치받은 SP가 1:10으로많은경우에현저하게 IL-10의분비가증가된것을알수있었다. IL-10은가장대표적인면역조절시토카인으로서수혈처치후에증가된 CD4+CD25+ 세포에서분비되었다고생각한다. 다른혼합에비하여처치받은세포가많았을경우현저하게증가되었기때문에다량의 CD4+CD25+ 세포가작용하였다고생각한다. CD4+CD25+ T세포는 IL-10 의분비와 CTLA-4를통한세포-세포의접촉으로면역억제기능을나타낸다. 24) 따라서수혈처치받은세포들이다량으로존재할경우 IL-10을통하여 CD4+ CD25+ 세포가면역억제기능을갖는다고생각한다. 25) 모든수혈처치받은비장이나흉선에서대조군에비하여현저하게 CD4+CD25+ T세포가증가하였기때문에다른혼합이나 B-C3H 혹은 C-C3H에서는 IL-10이증가되지않았다는결과로서세포의접촉을이용한면역억제기전이작용하였다고생각하며앞으로의연구에서수혈처치받은비장세포나흉선세포에서의 CTLA-4의발현을검증하여야할것으로생각한다. 결론적으로수혈할때주입되는아포토시스된세포들은수혈이후에수혈자의 CD4+CD25+ T세포가증식되어면역억제반응이나타나며면역억제는 IL-10 에의해서주변분비효과 (paracrine effect) 를통하여더욱현저하게나타날수있다. 따라서수혈혈액내에존재하는백혈구를제거함으로써수혈후발생하는면역억제능력을조절할필요가있다. 세포성분을수혈함으로써발생하는 CD4+CD25+ T세포의다른면역억제기전에대하여는계속연구가필요할것으로생각한다. 요 배경 : 수혈은많은사람의생명을구하는보조적치료방법이나다양한부작용이나타날수있다. 수혈로인해수술후감염발생률이증가하고종양환자의재발률이나사망률이증가한다는보고가있으나수혈후면역억제에대한정확한기전이나자료에대하여는알려져있지않다. 이에저자는수혈후세포성분에의해면역억제가유도되는지를알아보고자본연구를시행하였다. 방법 : 5주된 BALB/c (H-2 d, donor), C3H/He (H-2 k, recipient), and C57/BL (H-2 b, third party) 마우스를실 약 험에사용하였다. BALB/c 마우스 (H-2 d, 공혈자 ) 와 C57/ BL (H-2 b, third party) 마우스의비장세포 (spleen cell, SP) 를얻어 2,500cGy 방사선을조사한후이를 C3H/ He (H-2 k, 수혈자 ) 마우스의꼬리정맥을통해주입하면서 Interleukin-2 (IL-2, R&D system, Minneapolis, MN) 를함께복강내주사하였다. 24시간뒤에골수, 흉선, 비장 (SP) 에서세포를얻었다. 방사선조사를한 BALB/ c SP를자극세포 (stimulator) 로사용하여 BrdU 방법으로혼합림프구반응을시행하였다. 면역세포를분석하기위해서각장기에서얻은세포의표면표식자 (surface marker) 를분석하였다. 면역반응에관여하는시토카인을확인하기위해혼합림프구반응실험에서얻어진상청액에서 ELISA 방법으로 TNF-α, IFN-γ, TGF-β, IL-10을측정하였다. 결과 : 수혈후 24시간뒤에세포증식의현저한감소를보였으며이는 H-2 complex에서더현저하였다. 24 시간뒤에흉선에서 CD3+CD4+CD25+ 세포의현저한증가가있었다. 주변분비효과를알아보고자하는실험에서는, C-C3H SP는다소의세포증식억제효과를보여주었으나 B-C3H SP는혼합률에의존적인세포증식억제효과를보였다. 시토카인 IFN-γ, TNF-α, TGF-β는실험군과대조군에서차이가없었으나, IL- 10이대조군과처치받은비장을 1:10으로혼합한경우에서유의하게증가되었다. 결론 : 수혈후 24시간뒤에혈액내세포성분, 특히 CD4+CD25+ 세포에의해면역조절반응이유도됨을알수있다. 참고문헌 1) Raghavan M, Marik PE. Anemia, allogeneic blood transfusion, and immunomodulation in the critically ill. Chest 2005;127:295-307. 2)Claas FH, Roelen DL, van Rood JJ, Brand A. Modulation of the alloimmune response by blood transfusions. Transfus Clin Biol 2001;8:315-7. 3) Vamvakas EC, Blajchman MA. Deleterious clinical effects of transfusion-associated immunomodulation: fact or fiction? Blood 2001;97:1180-95. 4) Margenthaler JA, Kataoka M, Flye MW. Donor-specific antigen transfusion-mediated skin graft tolerance results from the peripheral deletion of donorreactive CD8+ T cells. Transplantation 2003;75: 2119-27. 5)Roelen DL, van Rood JJ, Brand A, Claas FH. Immunomodulation by blood transfusions. Vox Sang
김정진외 : Immunomodulation after Transfusion 381 2000;78(2 Suppl):273-5. 6) Jensen LS, Kissmeyer-Nielsen P, Wolff B, Qvist N. Randomised comparison of leucocyte-depleted versus buffy-coat-poor blood transfusion and complications after colorectal surgery. Lancet 1996;348:841-5. 7) Taniguchi Y, Okura M. Prognostic significance of perioperative blood transfusion in oral cavity squamous cell carcinoma. Head Neck 2003;25:931-6. 8) Bordin JO, Bardossy L, Blajchman MA. Growth enhancement of established tumors by allogeneic blood transfusion in experimental animals and its amelioration by leukodepletion: the importance of the timing of the leukodepletion. Blood 1994;84:344-8. 9) Marti HP, Henschkowski J, Laux G, et al. Effect of donor-specific transfusions on the outcome of renal allografts in the cyclosporine era. Transpl Int 2006; 19:19-26. 10) Bushell A, Karim M, Kingsley CI, Wood KJ. Pretransplant blood transfusion without additional immunotherapy generates CD25+CD4+ regulatory T cells: a potential explanation for the blood-transfusion effect. Transplantation 2003;76:449-55. 11) Cavinato RA, Casiraghi F, Azzollini N, et al. Pretransplant donor peripheral blood mononuclear cells infusion induces transplantation tolerance by generating regulatory T cell. Transplantation 2005;79: 1034-9. 12) Ortolano GA, Russell R, Capetandes A, Wenz B. Transfusion-associated immunosuppression-heuristic model or clinical concern. Mod Asp Immunobiol 2002;2:159-65. 13) Blajchman MA. Transfusion immunomodulation or TRIM: what does it mean clinically? Hematology 2005;10(1 Suppl):208-14. 14) Frabetti F, Musiani D, Marini M, et al. White cell apoptosis in packed red cells. Transfusion 1998;38: 1082-9. 15) Sykes M, Pearson DA, Szot GL. IL-2-induced GVHD protection is not inhibited by cyclosporine and is maximal when IL-2 is given over a 25 h period beginning on the day following bone marrow transplantation. Bone Marrow Transplant 1995;15:395-9. 16) Fast LD. The effect of exposing murine splenocytes to UVB light, psoralen plus UVA light, or γ-irradiation on in vitro and in vivo immune responses. Transfusion 2003;43:576-83. 17) Wang Z, Larregina AT, Shufesky WJ, et al. Use of the inhibitory effect of apoptotic cells on dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am J Transplant 2006;6:1297-311. 18) Godfrey WR, Ge YG, Spoden DJ, et al. In vitro-expanded human CD4+CD25+ T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004;104:453-61. 19) Zorn E, Nelson EA, Mohseni M, et al. IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood 2006;108:1571-9. 20) Young KJ, Yang L, Phillips MJ, Zhang L. Donorlymphocyte infusion induces transplantation tolerance by activating systemic and graft-infiltrating double-negative regulatory T cells. Blood 2002;100: 3408-14. 21) Wallgren AC, Alder J, Andersson B, Karlsson-Parra A, Backer AE. The direct pathway of human T-cell allorecognition is not tolerized by stimulation with allogeneic peripheral blood mononuclear cells irradiated with high-dose ultraviolet B. Scand J Immunol 2006;63:90-6. 22) Dzik S, Mincheff M, Puppo F. Apoptosis, transforming growth factor-β, and the immunosuppressive effect of transfusion. Transfusion 2002;42:1221-3. 23) Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998;101:890-8. 24)Kingsley CI, Karim M, Bushell AR, Wood KJ. CD25+CD4+Regulatory T cells prevent graft rejection: CTLA-4-and IL-10-dependent immunoregulation of alloresponses. J Immunol 2002;168: 1080-6. 25) Santin AD, Bellone S, Palmieri M, et al. Effect of blood transfusion during radiotherapy on the immune function of patient with cancer of the uterine cervix: role of interleukin-10. Int J Radiat Oncol Biol Phys 2002:54: 1345-55.