110.fm

Similar documents
16(1)-3(국문)(p.40-45).fm

16(2)-7(p ).fm

10(3)-09.fm

304.fm

12.077~081(A12_이종국).fm

50(1)-09.fm

9(3)-4(p ).fm

10(3)-10.fm

untitled

14.531~539(08-037).fm

416.fm

< DC1A4C3A5B5BFC7E22E666D>

γ

82-01.fm

19(1) 02.fm

49(6)-06.fm

<30332DB9E8B0E6BCAE2E666D>

605.fm

10(3)-12.fm

14.fm

12(3) 10.fm

10(3)-02.fm

07.045~051(D04_신상욱).fm

10.063~070(B04_윤성식).fm

untitled

Pharmacotherapeutics Application of New Pathogenesis on the Drug Treatment of Diabetes Young Seol Kim, M.D. Department of Endocrinology Kyung Hee Univ

82.fm


16(5)-06(58).fm

11(5)-12(09-10)p fm

untitled

15.101~109(174-하천방재).fm

12(2)-04.fm

69-1(p.1-27).fm

(Establishment and Management of Proteomics Core Facility)

8(2)-4(p ).fm

17.393~400(11-033).fm

50(5)-07.fm

012임수진

388 The Korean Journal of Hepatology : Vol. 6. No COMMENT 1. (dysplastic nodule) (adenomatous hyperplasia, AH), (macroregenerative nodule, MR

16(5)-04(61).fm

Can032.hwp

07.051~058(345).fm

DBPIA-NURIMEDIA

10(1)-08.fm

fm

w w l v e p ƒ ü x mw sƒw. ü w v e p p ƒ w ƒ w š (½kz, 2005; ½xy, 2007). ù w l w gv ¾ y w ww.» w v e p p ƒ(½kz, 2008a; ½kz, 2008b) gv w x w x, w mw gv

101.fm

31(3B)-07(7055).fm

50(4)-10.fm

12(4) 10.fm

18211.fm

82-02.fm

93.fm

DBPIA-NURIMEDIA

14(2) 02.fm

<30312DC0CCC7E2B9FC2E666D>

Sheu HM, et al., British J Dermatol 1997; 136: Kao JS, et al., J Invest Dermatol 2003; 120:

01 Buffers & Gel Stain Buffers 3 Gel Stain SilverStar Staining Kit 6

27(5A)-15(5868).fm

황지웅

(2)-02(최경자).fm

<30382EC0C7C7D0B0ADC1C22E687770>

14(4) 09.fm

<312D303128C1B6BAB4BFC1292E666D>

32(4B)-04(7455).fm

Kor. J. Aesthet. Cosmetol., 및 자아존중감과 스트레스와도 밀접한 관계가 있고, 만족 정도 에 따라 전반적인 생활에도 영향을 미치므로 신체는 갈수록 개 인적, 사회적 차원에서 중요해지고 있다(안희진, 2010). 따라서 외모만족도는 개인의 신체는 타


5

23(2) 71.fm

16(5)-03(56).fm

[ 화학 ] 과학고 R&E 결과보고서 나노입자의표면증강을이용한 태양전지의효율증가 연구기간 : ~ 연구책임자 : 김주래 ( 서울과학고물리화학과 ) 지도교사 : 참여학생 : 원승환 ( 서울과학고 2학년 ) 이윤재 ( 서울과학고 2학년 ) 임종

15.fm

04-46(1)-06(조현태).fm

51(2)-06.fm

26(3D)-17.fm

202.fm

hwp

54 한국교육문제연구제 27 권 2 호, I. 1.,,,,,,, (, 1998). 14.2% 16.2% (, ), OECD (, ) % (, )., 2, 3. 3

93-09.fm

84-01.fm

4.fm

27(5A)-07(5806).fm

( )Jkstro011.hwp

41(6)-09(김창일).fm

21(1)-5(10-57)p fm

25(6)-21(김유곤).fm

201.fm

01.01~08(유왕진).fm

139~144 ¿À°ø¾àħ

fm

< D B4D9C3CAC1A120BCD2C7C1C6AEC4DCC5C3C6AEB7BBC1EEC0C720B3EBBEC8C0C720BDC3B7C2BAB8C1A4BFA120B4EBC7D120C0AFBFEBBCBA20C6F2B0A E687770>

fm

Microsoft Word - KSR2012A038.doc

한국전지학회 춘계학술대회 Contents 기조강연 LI GU 06 초강연 김동욱 09 안재평 10 정창훈 11 이규태 12 문준영 13 한병찬 14 최원창 15 박철호 16 안동준 17 최남순 18 김일태 19 포스터 강준섭 23 윤영준 24 도수정 25 강준희 26

untitled

Microsoft Word doc

untitled

3.fm

18(3)-10(33).fm

Transcription:

Lab. Anim. Res. 2010: 26(1), 69-74 Proteomic Analysis of Hepatic Ischemia and Reperfusion Injury in Mice Eun-Hae Cho, Jin-Hee Sung and Phil-Ok Koh* Department of Anatomy, College of Veterinary Medicine, Research Insituite of Life Sciences, Gyeongsang National University, Jinju, Korea Hepatic ischemia/reperfusion (I/R) injury is an inevitable consequence during liver surgery. I/R injury induces serious hepatic dysfunction and failure. In this study, we identified proteins that were differentially expressed between sham and I/R injured livers. Animals were subjected to hepatic ischemia for 1 hr and were sacrificed at 3hr after reperfusion. Serum ALT and AST levels were significantly increased in I/R-operated animals compared to those of sham-operated animals. Ischemic hepatic lobes of I/R-operated animals showed the hepatic lesion with unclear condensation and sinusoidal congestion. Proteins from hepatic tissue were separated using two dimensional gel electrophosresis. Protein spots with a greater than 2.5-fold change in intensity were identified by mass spectrometry. Among these proteins, glutaredoxin-3, peroxiredoxin-3, glyoxalase I, spermidine synthase, dynamin-1-like protein, annexin A4, eukaryotic initiation factor 3, eukaryotic initiation factor 4A-I, 26S proteasome, proteasome alpha 1, and proteasome beta 4 levels were significantly decreased in I/R-operated animals compared to those of sham-operated animals. These proteins are related to protein synthesis, cellular growth and stabilization, anti-oxidant action. Moreover, Western blot analysis confirmed that dynamin-1-like protein levels were decreased in I/R-operated animals. Our results suggest that hepatic I/R induces the hepatic cells damage by regulation of several proteins. Key words: Ischemia, liver, reperfusion (Received 17 November 2009; Revised version received 8 March 2010; Accepted 17 March 2010) xx w s» w š., xx w» y y w w e. xx x œ w w, g, ATP š, H +, Na +, Ca w y w s 2+ k (Rhodes and DePalma, 1980). w, xx z w w, w»» ù (Eum et al., 2007; Kuboki et al., 2007).» z 3Ê6 k s x œ reactive oxygen species (ROS)ƒ w s x üv *Corresponding author: Phil-Ok Koh, Department of Anatomy, College of Veterinary Medicine, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701, Korea Tel: +82-55-751-5809 Fax: +82-55-751-5803 E-mail: pokoh@gnu.ac.kr s š (Jaeschke, 2003). w,» z 18~24 tumor necrosis factor-α, interleukin-1, platelet-activating factor w w y x (neutrophil) x p w, s s x x ùkü (Jaeschke, 2006). xx y j» w s y w y ƒ v w. w x x w s x w w w š ƒ ù w w. z» y wš w. lò x f ICR (35-40 g, 40 ) k g(», ) l w w. x 69

70 Eun-Hae Cho et al. 23±2 o C, 50±5%ƒ y w š, x šx œ w. x w x l x z(institutional Animal Care and Use Committee, IACUC), x w x ³ w. ekl xx Abe et al., (2009) w ww. x pentobarbital sodium (50 mg/kg) w w., w w gš, x (portal vein) (hepatic artery) ƒ wì w (left liver lobe) x œ w xx w. xx w» w. xx w 1 z x t (reperfusion) ww š, 3 z x w. xx w š 1 (laparotomy) w. x» w, w heating pad w 36~37 o C g. en t ALT (aspartate aminotransferase), AST (alanine aminotransferase) e d w. z 3 xw heparin ¼ z 15,000 rpm 2 w x w š, Vet test 8008 (IDEXX-GmbH, Woerrstadt, Germany) w x ü AST ALT e d w. e j xx x 4% neutral buffered paraformaldehyde š w. š w š w z 70, 80, 90, 95, 100% ethanol, xylene w k n y š, paraffin embedding center (Leica, Wetzlar, Germany) s w. q v 4µm š, xylene, 100, 95, 90, 80, 70% ethanol kq v w e z hematoxylin eosin w š, permount w w z, Ÿwx (Leica, Wetzlar, Germany) w. º lysis buffer (8 M urea, 4% CHAPS, 0.2% Bio-Lyte ampholytes, 40 mm Tris-HCl)» ³ y(homogenization)w z» w. z e 10% TCA w q» wš w e Tris HCl (ph 7.6) z 1 g. e sample buffer (8 M urea, 4% CHAPS, 0.2% biolate, 40 mm Tris-HCl, 1% (v/v) pharmalytes, 100 mm DTT) wš, w d. Bradford (Bio-Rad, Hercules, CA, USA) d w. Ò Isoelectric focusing (IEF) w sample buffer (8 M urea, 2% CHAPS, 20 mm DTT, 0.5% IPG buffer, bromophenol blue) w š, 17 cm linear strip (ph 4-7 gradient, Bio-Rad) Protean isoelectric focusing cell (Bio-Rad) w focusing w. w 13 ww š, focusing 250 V 15, 10,000 V 3, 10,000 V 50,000 V¾ ww. Focusing óù strip 1% DTT sww equilibration buffer (6 M urea, 30% glycerol, 2% SDS, 50 mm Tris-HCl, bromophenol blue) 10, 2.5% iodoacetamide sww equilibration buffer 10 k z 7.5-17.5% gradient gel w» w. 4JMWFS º Ò» óù polyacrylamide gel š (12% acetic acid, 50% methanol) 90 š w z 50% ethanol 20 w š, 0.02% sodium thiosulfate 1 k z wš, silver nitrate (0.2% silver nitrate, 0.75 ml/l formaldehyde) 20 k z x (0.2% sodium carbonate, 0.5 ml/l formaldehyde) 3 w z 1% acetic acid g. gel image PDQuest software (Bio rad) w x x w. PDQuest mw k spot reduction (10 mm DTT, 0.1 M NH 4 HCO 3 ) 56 o C 45, alkylation (55 mm iodoacetamide, 0.1 M NH 4 HCO 3 ) 30 g. gel ƒ digestion buffer w gš, digestion w z d w rp z w z Voyager-DETM STR biospectrometry workstation (Applied Biosystem, Forster city, CA, USA)

Proteomic analysis of liver Injury 71 w. MALDI-TOF MS-FIT (http:// prospector.ucsf.edu/ucsfhtml13.4/msfit.htm) ProFound (http://129.85.19.192/profound_bin/webprofound.exe) mw w š, Sequence database SWISS PROT NCBI w. 8FTUFSOCMPU (30 g) 10% SDS-polyacrylamide gel» ww.» z poly-vinylidene fluoride membrane transferw š, membrane 0.1% Tween-20 sw Tris-buffered saline (TBST) w z immunoblotting ww. w anti-dynamin-1-like protein anti-tubulin (diluted 1:1000, Cell Signaling Technology, Beverly, MA, USA) w g. w HRP-conjugated rabbit IgG (1:5000; Cell Signaling Technology) gš ECL Western blot analysis system (Amersham Pharmacia Biotech, Piscataway, NJ, USA) w x y w. x m Student's t-test w P 0.05 m y w. kl n"45 "-5 xx w x y w» w t x ü AST ALT e d w (Figure 1). AST e 168.5±21.5 U/L ùkûš, x 2850.5±185.5 U/L x AST e AST e x ƒw y w. w, ALT e AST w y, ALT e 102±4.5 U/L ùkû š, x ALT e 3250.5±270.5 U/L, x ALT e ALT e x w ƒw y w. kl ne j xx w sƒ x š, s w jš w, s ƒ yw ùkù s ùküš (Figure 2A). ù x s ù, x q š, x xk ùkû, s w š, s ƒ yw Figure 1. Serum ALT and AST levels in sham-operated (sham) and ischemia/reperfusion-operated (I/R) animals. ALT and AST levels were significantly increased in I/R-operated animals. Data (n=5) are represented as mean±sem. *P<0.01. Figure 2. Histopathological photos of the liver in shamoperated (A) and ischemia/reperfusion-operated (B) animals. There is no lesion in the normal liver of sham-operated animals. Ischemic hepatic lobes of I/R-operated animals showed the hepatic lesion with nuclear condensation (arrows) and sinusoidal congestion (open arrows). Hematoxylin and Eosin stain. Scale bar=100 µm. (Figure 2B). kl n mùº 2-DE» mw x x w. 2-DE 1,200 spot ùkû, x x y 42 spot. x 2.5 intensity 11 spot MALDI-TOF mw. glutaredoxin-3, peroxiredoxin-3, glyoxalase I, spermidine synthase, dynamin-1-like protein (DLP-1), annexin A4, eukaryotic initiation factor 3 subunit I, eukaryotic initiation factor 4A-I, 26S proteasome, proteasome alpha 1, proteasome beta 4. x w x (Figure 3, Table 1). Western blot xx x DLP-1 x w x (Figure 4).

72 Eun-Hae Cho et al. Figure 3. Two-dimensional SDS-PAGE analysis of proteins in liver tissue of sham-operated (A) and ischemia/reperfusion-operated (B) animals. Isoelectric focusing was performed at ph 4-7 using IPG strips, followed by second-dimensional separation on 7.5-17.5% gradient SDS gels stained with silver. Squares indicate the protein spots that were differentially expressed between shamand I/R-operated animals. Table 1. List of identified proteins that were significantly differentially expressed in sham- and I/R-operated groups Spot No. Protein name Accession No. Mw (kda) pi Mass matched Coverage (%) Ratio of I-R / Sham 1 Eukaryotic initiation factor 4A P60843 46125 5.32 8/74 25 0.32±0.02* 2 Dynamin-1-like protein Q8K1M6 82606 6.61 13/141 24 0.33±0.01* 3 Glutaredoxin-3 Q9CQM9 37754 5.42 6/114 31 0.32±0.01* 4 Eukaryotic initiation factor 3 Q9QZD9 36438 5.38 9/89 28 0.33±0.02* 5 Spermidine synthase Q64674 33973 5.31 7/85 25 0.32±0.03* 6 Annexin A4 P97429 35967 5.43 7/132 25 0.31±0.02* 7 Proteasome subunit alpha 1 Q9R1P4 29528 6.00 9/145 37 0.30±0.01* 8 26S proteasome Q9CX56 30007 6.03 12/155 45 0.31±0.03* 9 Proteasome subunit beta 4 P99026 29097 5.47 9/116 39 0.32±0.02* 10 Peroxiredoxin-3 P20108 28109 7.15 9/123 26 0.29±0.02* 11 Glyoxalase I Q9CPU0 20796 5.24 11/102 26 0.18±0.02* Ratio is described as spots intensity of I/R-operated to spots intensity of sham-operated. *P<0.05 (vs. sham) x œ œ v w, z» jš y j w e. z 3» y proteomic» k w. ALT AST s mg s ùkü t, ALT AST eƒ x w x ƒw, xx w y w. w, w s œsx, x x, ƒ ùkû, y z» ùkù ew (Jaeschke et al., 1992; Koo et al., 1992; Zwacha et al., 1997). z» glutaredoxin-3, peroxiredoxin-3, glyoxalase I, spermidine synthase, DLP- 1, annexin A4, eukaryotic initiation factor 3, eukaryotic initiation factor 4A-I, 26S proteasome, proteasome alpha 1, proteasome beta 4 x x w. DLP-1 GTPase dynamin family w wù mg w l w. m g xk w ³x w mg» w w w

Figure 4. Western blot analysis of dynamin-1-like protein (DLP- 1) in liver tissue of sham-operated and ischemia/reperfusionoperated animals. Each lane represents an individual experimental animal. Densitometric analysis is represented as an arbitrary unit (A.U.), normalized by tubulin. Data (n=5) are represented as mean±sem. *P<0.05.. DLP-1 s w s» xk» w w w (Pitts et al., 1999). DLP-1 s xk ƒw y w s w (Pitts et al., 1999). Alzheimer s disease huntington disease nw y mg w l ³x š š(wang et al., 2008; 2009a; 2009b), Alzheimer s disease y s oxidative stress w ƒ reactive oxygen species (ROS) DLP-1 x g xk w (Hom et al., 2007; Wang et al., 2008). w Alzheimer s disease β-amyloid w mg l cytochrome c s ü w apoptosis w, mg density g m g xk ùkü š (Suen et al., 2008). DLP-1 x(over-expression) β-amyloid w mg s j š ý» y g (Wang et al., 2009a). DLP-1 y w. DLP-1 mg w s w š. xx w w x w s y w š, xx n x mg Proteomic analysis of liver Injury 73 ƒ t š š, (cristae) ƒ x w mg ùkü (Pronobesh et al., 2008). v l» m w DLP-1 xš w Western blot mw DLP-1 x w y w. DLP-1ƒ w š, DLP-1 xk g s w. Glyoxalase I glyoxalase system z methylglyoxal lactate yw, methylglyoxal w y (AGEs, advanced glycation endproducts) w w w. glyoxalase I methylglyoxal jš y(glycation) g y ƒ k (Thornalley et al., 2003). w, y (aging process) oxidative stress glyoxalse I y jš y ƒ g s k š (Thornalley et al., 2008). gq xx glyoxalase I y methylglyoxal ƒƒ š š, glyoxalase I overexpression methylglyoxal g s l z ùký x (Kumagai et al., 2008; 2009). xx w s y w š, glyoxalase I x w x y w. glyoxalase I methylglyoxal ƒ w s w. Spermidine spermine sww polyamines s w, spermidine synthase w š (Wu et al., 2007). w, spermidine synthase» w polyamine v kƒ s w š, oxidative stress ù š š (Minton et al., 1990; Chattopadhyay et al., 2003). xx polyamine ww s w e, polyamine n» wš s (cell death) g s yz ù kþ (Zhao et al., 2007). xx s y w š, spermidine synthase x w x y w. spermidine synthase polyamine w s w. xx s glutaredoxin-3, peroxiredoxin-3, glyoxalase I, spermidine synthase, DLP-1, annexin A4, eukaryotic

74 Eun-Hae Cho et al. initiation factor 3, eukaryotic initiation factor 4A-I, 26S proteasome, proteasome alpha 1, proteasome beta 4 x w y w. s, y,, w, w y w, xx w s»., xx w w yƒ š,» w. q 2007 ( ) w w w (KRF-2007-313-E00538). k Abe, Y., Hines, I.N., Zibari, G., Pavlick, K., Gray, L., Kitagawa, Y. and Grisham, M.B. (2009) Mouse model of liver ischemia and reperfusion injury: method for studying reactive oxygen and nitrogen metabolites in vivo. Free Radic. Biol. Med. 46, 1-7. Chattopadhyay, M.K., Tabor, C.W. and Tabor, H. (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA. 100, 2261-2265. Eum, H.A., Cha, Y.N. and Lee, S.M. (2007) Necrosis and apoptosis: Sequence of liver damage following reperfusion after 60min ischemia in rats. Biochem. Biophys. Res. Commun. 358, 500-505. Hom, J.R., Gewandter, J.S., Michael, L., Sheu, S.S. and Yoon, Y. (2007) Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J. Cell Physiol. 212, 498-508. Jaeschke, H., Bautista, A.P., Spolarics, Z. and Spitzer, J.J. (1992) Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. J. Leukoc. Biol. 52, 377-382. Jaeschke, H. (2003) Molecular mechanisms of hepatic ischemiareperfusion injury and preconditioning. Am. J. Physiol. Gastrointest. Liver Physiol. 284, 14-26. Jaeschke, H. (2006) Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cellinjury during hepatic ischemiareperfusion and other acute inflammatory conditions. Am. J. Physiol. Gastrointest. Liver Physiol. 290, 1083-1088. Koo, A., Komatsu, H., Tao, G., Inoue, M., Guth, P.H. and Kaplowitz, N. (1992) Contribution of no-reflow phenomenon to hepatic injury after ischemia-reperfusion: evidence for a role for superoxide anion. Hepatology, 15, 507-514. Kuboki, S., Schuster, R., Blanchard, J., Pritts, T.A., Wong, H.R. and Lentsch, A.B. (2007) Role of heat shock protein 70 in hepatic ischemia-reperfusion injury in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 292, 1141-1149. Kumagai, T., Nangaku, M. and Inagi, R. (2008) Pathophysiological role of the glyoxalase system in renal hypoxic injury. Ann. NY. Acad. Sci. 1126, 265-267. Kumagai, T., Nangaku, M., Kojima, I., Nagai, R., Ingelfinger, J.R., Miyata, T., Fujita, T. and Inagi, R. (2009) Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Renal. Physiol. 296, 912-921. Minton, K.W., Tabor, H. and Tabor, C.W. (1990) Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. USA. 87, 2851-2855. Pitts, K.R., Yoon, Y., Krueger, E.W. and McNiven, M.A. (1999) The dynamin-like protein DLP-1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell. 10, 4403-4417. Pronobesh, C., Dagagi, A.V., Pallab, C. and Kumar, W.A. (2008) Protective role of the calcium channel blocker amlodipine against mitochondrial injury in ischemia and reperfusion injury of rat liver. Acta. Pharm. 58, 421-428. Rhodes, R.S. and DePalma, R.G. (1980) Mitochondrial dysfunction of the liver and hypoglycemia in hemorrhagic shock. Surg. Gynecol. Obstet. 150, 347-352. Suen, D.F., Norris, K.L. and Youle, R.J. (2008) Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577-1590. Thornalley, P.J. (2003) Glyoxalase I-structure, function and a critical role in the enzymatic defence against glycation. Biochem. Soc. Trans. 31, 1343-1348. Thornalley, P.J. (2008) Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems-role in ageing and disease. Drug Metabol. Drug Interact. 23, 125-150. Wang, X., Su, B., Fujioka, H. and Zhu, X. (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am. J. Pathol. 173, 470-482. Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A. and Zhu, X. (2009a) Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J. Neurosci. 29, 9090-9103. Wang, H., Lim, P.J., Karbowski, M. and Monteiro, M.J. (2009b) Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum. Mol. Genet. 18, 737-752. Wu, H., Min, J., Ikeguchi, Y., Zeng, H., Dong, A., Loppnau, P., Pegg, A.E. and Plotnikov, A.N. (2007) Structure and mechanism of spermidine synthases. Biochemistry 46, 8331-8339. Zhao, Y.J., Xu, C.Q., Zhang, W.H., Zhang, L., Bian, S.L., Huang, Q., Sun, H.L., Li, Q.F., Zhang, Y.Q., Tian, Y., Wang, R., Yang, B.F. and Li, W.M. (2007) Role of polyamines in myocardial ischemia/reperfusion injury and their interactions with nitric oxide. Eur. J. Pharmacol. 562, 236-246. Zwacka, R.M., Zhang, Y., Halldorson, J., Schlossberg, H., Dudus, L. and Engelhardt, J.F. (1997) CD4(+) T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J. Clin. Invest. 100, 279-289.