Electronics and Telecommunications Trends 포토닉스기반테라헤르츠무선통신기술동향 Photonics-based Terahertz Wireless Communication 김현수 (H.S. Kim, kimhyunsoo@etri.re.kr) 이의수 (E.S. Lee, euisu@etri.re.kr) 박동우 (D.W. Park, dwpark@etri.re.kr) 이일민 (I.M. Lee, ilminlee@etri.re.kr) 문기원 (K. Moon, kwmoon@etri.re.kr) 최다혜 (D.H. Choi, chio.dh@etri.re.kr) 신준환 (J.H. Shin, jh.shin@etri.re.kr) 김무건 (M.G. Kim, mugeonkim@etri.re.kr) 최경선 (K.S. Choi, miso5383@etri.re.kr) 박경현 (K.H. Park, khp@etri.re.kr) 테라헤르츠창의원천연구실책임연구원테라헤르츠창의원천연구실선임연구원테라헤르츠창의원천연구실선임연구원테라헤르츠창의원천연구실선임연구원 /PL 테라헤르츠창의원천연구실책임연구원테라헤르츠창의원천연구실박사후연구원테라헤르츠창의원천연구실선임연구원테라헤르츠창의원천연구실연구원테라헤르츠창의원천연구실기술실무원테라헤르츠창의원천연구실책임연구원 / 실장 ABSTRACT The bandwidth of wireless communication is expected to grow exponentially due to the expansion of mobile devices and the increase of real-time and realistic multimedia services. Recently, the studies on terahertz band wireless communication have been actively conducted for the next generation communication after 5G wireless communication. The terahertz band, which is the unallocated frequency band, has been applied to the non-contact, non-destructive quality inspection industry such as the terahertz imaging and spectral systems through the development of terahertz generating and detecting components. This article briefly describes recent research trends on terahertz wireless communication technologies and introduces the details of photonics-based terahertz devices and systems that have been focused on the Terahertz Basic Research Section of Electronics and Telecommunication Research Institu te. KEYWORDS Terahertz wireless communication, DML, DWL, UTC-PD, SBD Ⅰ. 서론 1. 테라헤르츠무선통신현황 4 DOI 10 22648 ETRI 2019 J 340308 This work was supported by Ministry of Trade Industry and Energy MOTIE and Ministry of SMEs and Startups MSS of the Korean Government S2524372 Electronics and Telecommunications Research Institute ETRI 19ZR1200 19ZH1700 2019 한국전자통신연구원
76 34 3 2019 6 1 2 IP 2017 122Exabyte 10 18 byte 2022 396Exabyte 2017 2022 IP 26 3 10 100Gbps 4 5G 4G 3 5GHz 28GHz 5 6G 100GHz THz THz 0 1 10THz 1THz 10 12 Hz 6 THz RF RF THz mev 120GHz 300GHz THz IEEE 802 15 THz working group IEEE 802 15 Wireless Personal Area Network WPAN 275 3 000GHz Interest Group IGTHz 2008 Technical Advisory Group TAGTHz 2013 2014 IEEE 802 15 Task Group TG3d TG3e 100Gbps TG3d Task Group 100m kiosk Fixed Wireless Access FWA Massive Internet of Thing IoT 272 325GHz THz 7 Nippon Telegraph and Telephone Cor poration NTT National Institute of Information and Communications Technology NICT Osaka Univer sity Tokyo Institute of Technology TIT THz Fraun hofer HHI Technical University of Denmark DTU Karlsruhe Institute of Technology KIT THz Ministry of Internal Affairs And Communi cations MIC 2014 2014 1 120GHz
77 116 134GHz 8 ETRI 2012 5 THz 2016 2 100 2022 1 500 30 3 THz 2028 6 9 9 2. 테라헤르츠무선통신기술개요 1 THz THz THz THz RTD Resonant Tun neling Diode High Electron Mobility Transistor HEMT Monolithic Microwave Integrated Circuits MMIC Si CMOS 1 THz THz 1 Photonics electronics THz Main component Advantage Output Power Modulation speed Modulation format Freq tunability Convergence between optical fiber wireless Photonics Photomixer UTC PD seamless Chip RTD Simple 2D array Electronics MMIC Integrated chip High Pout 1 mw 400 µw 10 mw 50 Gbps 30 Gbps 20 Gbps ASK FDM QPSK QAM Wide 1 THz ASK FDM Narrow 70 GHz ASK FDM QPSK QAM Narrow 30 GHz seamless O E O E 1 THz 출처 Reproduced from T. Nagatsuma et al., Terahertz wireless communications based on photonics technologies, Optics Express, vol. 21, no. 20, 2013. https://doi.org/10.1364/ OE.21.023736 주 1) 동작주파수 ; *300 GHz[10], ** 530 GHz[11], *** 300GHz[12] 주 2) UTC-PD, Uni-Traveling Carrier photodiode; MMIC, Monolithic Microwave Integrated Circuits; ASK, Amplitude Shift Keying; FDM, Frequency Division Multiplexing; QPSK, Quadriphase Shift Key; QAM, Quadrature Amplitude Modulation; O-E, Optical-Electrical
78 34 3 2019 6 Optical Electrical O E 1THz Amplitude Shift Keying ASK Wavelength Division Multiplexing WDM RTD RTD THz 2D THz THz O E MMIC Si CMOS THz THz THz THz 300GHz 10mW 10 THz E O THz THz 100m 4 13 THz SBD Schottky Barrier Diode Envelope Detector Direct Detec tion THz Coherent Detection 2 a b 2 THz a Direct detection and b Coherent detection 출처 Reproduced from T. Nagatsuma et al., Terahertz wireless communications based on photonics technologies, Optics Express, vol. 21, no. 20, 2013. https://doi.org/10.1364/ OE.21.023736 ASK THz LO Local Oscillator Digital Signal Processor DSP
79 3 출처 Reproduced from T. Nagatsuma et al., Terahertz wireless communications based on photonics technologies, Optics Express, vol. 21, no. 20, 2013. https://doi.org/10.1364/ OE.21.023736 4 SOA DML 출처 Reprinted from E.S. Lee et al., SOA Integrated Dual Mode Laser and PIN Photodiode for Compact CW Terahertz System, ETRI J, vol. 38, no. 4, Aug. 2016, pp. 665-674. THz 3 TLD Tunable Laser Diode THz THz fthz 2 1 TLD THz 1THz Ⅱ. 포토닉스기반 THz 무선통신기술 1. THz 무선통신용부품기술가. 반도체레이저기반비팅광원 5 SOA DML 출처 Reprinted from E.S. Lee et al., SOA Integrated Dual Mode Laser and PIN Photodiode for Compact CW Terahertz System, ETRI J, vol. 38, no. 4, Aug. 2016, pp. 665-674. DML Dual mode laser DWL Dual wavelength laser SOA Semiconductor optical amplifier µ heater 4 SOA DML
80 34 3 2019 6 6 SOA DML 출처 Reprinted from E.S. Lee et al., SOA Integrated Dual Mode Laser and PIN Photodiode for Compact CW Terahertz System, ETRI J, vol. 38, no. 4, Aug. 2016, pp. 665-674. 286 1 310GHz 1THz SOA DWL 89 618GHz DML 60mW 14 THz SOA DML SOA DWL 50dB 5 6 나. 포토다이오드기반포토믹서 3dB Absorber i pin PD 1 10 100GHz Uni Traveling Carrier photodiode UTC PD p Dielectric Relaxation Time UTC PD Drift Velocity Diffusion Velocity Graded Doping Electric Potential UTC PD 7
81 7 UTC PD 출처박경현외, 튜너블테라헤르츠트랜시버기술개발, ETRI 과제보고서, 2018. Trade off Active A Taper Active B Responsivity 0 25 Active A 5 7 35µm 2 Active B 21 6µm 2 38 200 300GHz 30 40 Taper Active B UTC PD 8 Y UTC PD UTC PD UTC PD 220GHz 1 7 300GHz 1 3 300GHz UTC PD 38µW UTC PD 50µW UTC PD 15 8 Y UTC PD 출처박경현외, 튜너블테라헤르츠트랜시버기술개발, ETRI 과제보고서, 2018. 다. 쇼트키배리어다이오드 (SBD) 검출소자 SBD SBD SBD SBD 9 SBD 출처 Reprinted from D. W. Park et al., Influences of ohmic layer and Schottky metal on the THz characteristics of InGaAs Schottky barrier diode, Photonics West., 2019, pp. 10917-10967.
82 34 3 2019 6 InGaAs SBD 15 9 SBD SBD R s C tot SBD Schottky barrier height InP In0 53Ga0 47As Ohmic layer 1 10 19 cm 3 Schottky layer Schottky barrier 2 10 17 cm 3 Schottky metal Schottky layer SiO2 Schottky finger 10 SBD planar channel type SBD 7 10 SBD 11 SBD SBD 1THz 220 330GHz WR3 4 waveguide SBD 180 80µm 2 SBD Quartz flip chip bonding Die bonding 10 Channel type SBD 출처 Reprinted from D. W. Park et al., Influences of ohmic layer and Schottky metal on the THz characteristics of InGaAs Schottky barrier diode, Photonics West., 2019, pp. 10917-10967. 11 SBD 출처 Reprinted from D. W. Park et al., Influences of ohmic layer and Schottky metal on the THz characteristics of InGaAs Schottky barrier diode, Photonics West., 2019, pp. 10917-10967.
83 12 SBD 출처 Reprinted from D. W. Park et al., Influences of ohmic layer and Schottky metal on the THz characteristics of InGaAs Schottky barrier diode, Photonics West., 2019, pp. 10917-10967. 4 7 SBD Noise Equivalent Power NEP 12 NEP Noise Spectral Density Responsivity WR3 4 SBD 300 320GHz 1 200V W noise spectral density 12nV rthz 10pW rthz NEP 16 SBD 100Gbps SBD 2. 포토닉스기반 THz 무선통신실험결과 ETRI THz THz 13 270 GHz 출처 Reprinted from H.-S. Kim et al., Terahertz wireless communication using 1.3 µm photonic-based modules, Photonics West., 2018, pp. 10531-10545. 7Gbps 13 THz 1 3µm DWL 270GHz DWL Lithium Niobate Mach Zehnder Modula tor LN MZM Pseudo random Bi nary Sequence PRBS SOA 15nm bandpass filter Amplified Spontaneous Emission ASE UTC PD THz Si lens horn SBD THz SBD Digital Communication Analyzer DCA Bit Error Rate Tester BERT Eye pattern Bit error rate BER UTC PD SBD High Density Polyethylene HDPE lens 40
84 34 3 2019 6 2030 6G 용어해설 14 270GHz THz BER eye pattern 출처 Reprinted from H.-S. Kim et al., Terahertz wireless communication using 1.3 µm photonic-based modules, Photonics West., 2018, pp. 10531-10545. cm 14 270GHz BER Eye pattern 14 5Gbps Eye pattern Error Free Operation 17 Terahertz(THZ) 파 0.1~10THz(1THz = 10 12 Hz) 의주파수를갖는전자기파. 스펙트럼상에서적외선과마이크로파사이에위치하며, 비금속및비분극성유전체를잘투과하는특징을가짐포토믹서 (Photomixer) 광전도성물질상에안테나를형성한구조를갖는반도체소자로, 입사광에의해생성된전자-정공쌍을전류로변환, 자유공간에입사광의저주파 envelope의시간변화에비례하는전자기파를방출하여, 광을테라헤르츠파로변환함광비팅신호 (Optical Beating Signal) 두개의서로다른파장을갖는레이저를중첩시킴으로써생성되는진동하는세기를갖는광신호쇼트키배리어다이오드 (Schottky Barrier Diode) 정류작용을이용하여테라헤르츠파를검출하는소자로, 별도의분기광을사용하지않고자체적으로테라헤르츠파의세기측정이가능함 Ⅲ. 결론 O E 1Tbps 6G ASE ASK BERT CMOS DCA DML DSP DWL FWA HDPE HEMT IoT Amplified spontaneous emission Amplitude shift keying Bit error rate tester Complementary metal oxide semi conductor Digital communication analyzer Dual mode laser Digital signal processor Dual wavelength laser Fixed wireless access High Density PolyEthylene High Electron Mobility Transistor Internet of thing
85 LN MZM Lithium Niobate Mach Zehnder LO MMIC O E PPG PRBS RF RTD SBD SOA THz TLD UTC PD WDM modulator Local oscillator Monolithic microwave integrated circuits Optical Electrical Pulse pattern generator Pseudorandom binary sequence Radio frequency Resonant Tunneling Diode Schottky Barrier Diode Semiconductor optical amplifier Terahertz Tunable laser diode Uni Travelling Carrier PhotoDiode Wavelength division multiplexing [1] T. Nagatsuma et al., Advanced in Terahertz Communications Accelerated by Photonics, Nature Photonics, vol. 10, 2016, pp. 371-379. [2] A. Alexandros-Apostolos et al., Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G, IEEE Commun. Mag., June 2018. [3] Cisco Visual Networking Index; Forecast and Trends, 2017-2022 White paper, 2019. [4] T. Nagatsuma, THz Communication Systems, in Optical Fiber Commun. Conf. (OFC), Los Angeles, CA, USA, Mar. 2017, Tu3B.1. [5] 과학기술정보통신부보도자료, 5 세대 (5G) 이동통신용주파수 경매최종결과, 2018.6.18. [6] M. Tonouchi, Cutting-Edge Terahertz Technology, Nature Photonics, vol. 1, 2007, pp. 97-105. [7] IEEE 802.15.3d-2017 IEEE Standard for High Data Rate Wireless Multi-Media Networks, Amendment 2; 100 Gb/s Wirelesss Switched Point-to-Point Physical Layer, 2017. [8] T. Nagatsuma, Breakings in Photonics 2013: THz Communications Based on Photonics, IEEE Photonics J., vol. 6, 2013, Article no. 0701505. [9] Global Terahertz Technologies Market (Mordor Intelligence), 2017. [10] H. Hamada, 300-GHz band 20-Gbps ASK Transmitter Module Based on InP-HEMT MMICs, IEEE Compound Semicon. Int. Circuit Symp., New Orleans, LA, USA, Oct. 11 14, 2015, pp. 1 4. [11] S. Suzuki et al., High-Power Operation of Terahertz Oscillators with Resonant Tunneling Diodes Using Impedance-Matched Antennas and Array Configuration, IEEE J. Select. Quantum. Electron., vol. 19, 2013, Article no. 8500108. [12] H.-J. Song et al., Uni-Travelling-Carrier Photodiode Module Generating 300 GHz Power Greater than 1mW, IEEE Microwave and Wireless Comp. Lett., vol. 22, no. 7, 2012, pp. 363-365. [13] T. Harter et al., 110-m THz Wireless Transmission at 100 Gbit/s Using a Kramers-Kronig Schottky Barrier Diode Receiver, in European Conf. Opt. Comm. (ECOC)., Roma, Italy, Sept. 2018. [14] H.-S. Kim et al., Tunable Continuous Wave Terahertz Generation Using Monolithic Integrated Dual-Mode DFB Laser, in Adv. Laser Tech. (ALT)., 2017, MB-II-2. [15] E. S. Lee et al., Semiconductor-Based Terahertz Photonics for Industrial Application, J. Lightwave Tech., vol. 36, 2018, pp. 274-283. [16] D. W. Park et al., Influences of Ohmic Layer and Schottky Metal on the THz Characteristics of InGaAs Schottky Barrier Diode, Photonics West., 2019, pp. 10917-10967. [17] H.-S. Kim et al., Terahertz Wireless Communication Using 1.3 µm Photonic-Based Modules, Photonics West., 2018, pp. 10531-10545.