Journal of the Korea Institute of Information and Communication Engineering 대형터치스크린의고속감지를위한주파수분할동시센싱기법 장운용 김형원 * Frequency Division Concurrent Sensing Method for High-Speed Detection of Large Touch Screens Un-yong Jang HyungWon Kim * School of Electrical Engineering, Chungbuk National University, Cheongju 362-763, Korea 요약 본논문은대형터치스크린을위한고속터치감지및노이즈제거를위한 FDCS (Frequency division concurrent sensing) 기법을제안한다. 기존의터치스크린감지방식은대부분구동신호를순차적으로인가하고순차적으로센싱신호를분석하기때문에감지속도가터치스크린크기에따라급격히감소하여대형터치스크린에적용하기어려운문제점이있다. 제안된기법은모든드라이브라인에서로다른주파수의신호를동시에인가하고각센스라인의신호를주파수영역에서분석하는기법으로대형스크린에서도고속의감지속도를제공한다. 또한주파수영역에서노이즈필터링기법을제안하여터치감지신호는누적하고노이즈는상쇄하며, 터치스크린의주파수전달함수의역의특성을가지는 pre-distortion equalizer 를적용하여터치감도 SNR 을더욱개선한다. 23 대형터치스크린모델에실제의환경노이즈를적용하여실험한결과본제안기술이기존기법대비 frame scan rate 을 274%, SNR 을 43dB 증가시킴을보인다. ABSTRACT This paper presents a high-speed sensing and noise cancellation technique for large touch screens, which is called FDCS (Frequency Division Concurrent Sensing). Most conventional touch screen detection methods apply excitation pulses sequentially and analyze the sensing signals sequentially, and so are often unacceptably slow for large touch screens. The proposed technique applies sinusoidal signals of orthogonal frequencies simultaneously to all drive lines, and analyzes the signals from each sense line in frequency domain. Its parallel driving allows high speed detection even for a very large touch screens. It enhances the sensing SNR (Signal to Noise Ratio) by introducing a frequency domain noise filtering scheme. We also propose a pre-distortion equalizer, which compensates the drive signals using the inverse transfer function of touch screen panel to further enhance the sensing SNR. Experimental results with a 23 large touch screen show that the proposed technique enhances the frame scan rate by 273% and an SNR by 43dB compared with a conventional scheme. 키워드 : 대형터치스크린컨트롤러, 직교주파수분할, 노이즈제거 Key word : Large touch screen controller, Orthogonal frequency division, Noise Cancellation, Pre-distortion equalizer Received 17 February 2015, Revised 20 March 2015, Accepted 01 April 2015 * Corresponding Author HyungWon Kim(E-mail:hwkim@cbnu.ac.kr, Tel:+82-43-260-2399) School of Electrical Engineering and Computer Science, Chungbuk National University, Cheongju 362-763, Korea Open Access http://dx.doi.org/10.6109/jkiice.2015.19.4.895 print ISSN: 2234-4772 online ISSN: 2288-4165 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/li-censes/ by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright C The Korea Institute of Information and Communication Engineering.
Ⅰ. 서론 스마트폰, 태블릿 PC와같이터치스크린을포함하는휴대용기기의발달로정전용량방식의소형터치스크린을위한터치감지기술은높은성능수준을달성하고있다 [1,2]. 최근에는교육용전자칠판, 의료장비모니터, PC용모니터, 디지털사이니지등에도대형정전용량방식터치스크린의사용이점차증가되고있다. 그러나소형스크린용터치감지기술로는대형터치스크린에적용하기에터치속도및감지성능면에서많은문제가제기되고있다 [3,4]. 정전용량방식의터치스크린의구조는 LCD 패널위에얇은투명전극 (ITO) 또는메탈메쉬 (Metal mesh) 를이용하여다수의구동전극과다수의센싱전극의패턴의층을형성하는형태를가진다. 각구동전극에입력파형을구동하고각각의센싱전극의출력을순차적으로검사하여각전극간의교차점에서의터치여부를판단한다. 정전용량방식터치스크린은투명전극판에인체가근접하면전극간교차점의정전용량값이변화하는현상을보인다. 따라서터치감지방법은이정전용량값의변화를검출해서터치가된위치를계산해내는방식이다. 정전용량방식에는자기정전용량방식과상호정전용량방식으로나누어지며자기정전용량방식은터치발생시에각투명전극자체의정전용량이변하게되며이를감지하여터치위치를찾아내는방식이다. 상호정전용량방식은가로, 세로의두개의투명전극교차점의상호정전용량의변화량을감지하여접촉점의위치를찾아내는방식으로최근대부분의스마트폰및태블릿PC에적용되고있는방식이다 [5-7]. 이처럼소형터치디스플레이를구동하는터치스크린컨트롤러칩들에는많은성능및기능향상이있었다. 그러나대형디스플레이에서는일반적으로전원노이즈, 기생커패시턴스가터치스크린의크기에비례하여증가하며따라서기존의터치스크린컨트롤러기술로는점차증가하는대형터치스크린에서목표성능을달성하기매우어려운실정이다 [8,9]. 기존터치스크린컨트롤러기술은각각의드라이브라인에펄스신호들를구동시킨후각각의센스라인에서상호커패시턴스를측정하는방식이다. 따라서이방식의 frame scan rate 아래식 (1) 로나타내어진다. (1) 식 (1) 에서 N TX 는드라이브라인의수 (TX line의수 ) 이며, N RX 는센스라인의수 (RX line의수 ), T drive 는구동신호의주기이고, N integration 는센싱회로내의적분기의적분횟수이다. 따라서기존방식에서는터치스크린성능의주요지표인 frame scan rate가터치스크린의크기 N의증가에따라 1/N 2 으로급격히감소하는문제가있음을알수있다 [10,11]. 본논문에서는고속의 frame scan rate와높은감도의 SNR 이득을가지는 FDCS 기법을제안하여대형터치스크린컨트롤러를위한한가지해결책으로제시하고자한다. Ⅱ. FDCS 터치스크린감지기법 2.1. FDCS 터치스크린감지기법의기본구조그림 1은 FDCS 터치스크린컨트롤러의구조이다. 이터치스크린감지기법은식 (2) 와같이일정한간격의주파수차이를가지는신호를동시에드라이브라인 (TX line) 에입력한후센스라인 (RX line) 을측정하게된다. 측정된신호는식 (3) 와같은신호로출력되게되고이신호는 DFT(Discrete Fourier Transform) 인식 (4) 를이용하여주파수도메인의신호로분석한다. 여기서 N은 FFT size. 실제하드웨어설계에는 FFT(Fast Fourier Transform) 블록을통해서주파수도메인의신호로분석한다. 그림 1. FDCS 터치스크린감지기법구조 [12] Fig. 1 The Architecture of FDCS touch screen detection method 896
대형터치스크린의고속감지를위한주파수분할동시센싱기법 이분석은각드라이브라인에입력된주파수의스펙트럼밀도를확인하여한번에드라이브라인 N TX 만큼의터치위치를동시에판단할수있다. sin (2) sin (3) (4) 2.2. FDCS 터치스크린감지기법의기본동작터치스크린에입력되는신호는식 (2) 에의해서생성된다. 생성되는신호는주파수차이 를가지고드라이브라인의구동신호로사용된다. 입력된구동신호는터치스크린을통과하고각센스라인에서모든구동신호들이합쳐져식 (3) 과같이출력된다. 출력된신호를식 (4) 와같은 FFT를이용하여그림 2와같이주파수도메인으로전환하여스펙트럼밀도를측정한다. 이러한 FFT의변환식이며드라이브라인들의해당주파수스펙트럼밀도값이기준값대비감소하면이터치가발생한것으로판단할수있다. 그림2(a) 는터치가되지않은상태의센스라인의스펙트럼밀도이고, (b) 는터치가발생한경우이다. 터치가발생한드라이브라인에해당하는주파수의스펙트럼밀도수치가감소한것을볼수있다. 2.3. Frame scan rate 개선본논문에서제안한 FDCS 터치스크린감지기법은기존의터치스크린컨트롤러에비하여 frame scan rate 을크게개선할수있다. 기존의일반적인터치스크린감지기법은식 (5) 와같은구동횟수 를가진다. 또한터치발생시상호커패시턴스의변화가매우작기때문에대부분의방식에서는여러번의구동신호를가하고감지신호들을반복적으로적분하여 SNR을개선한다. 이경우총구동횟수는식 (6) 에표현된바와같이적분횟수 N integration 만큼증가하기때문에 frame scan rate이더욱더감소하게된다. (5) (6) (7) 제안된 FDCS 기법의경우에는모든구동신호를동시에인가한후각센스라인을측정하기때문에구동횟수는식 (7) 과같이센스라인수에만비례하며, 대형터치스크린에서도고속의 frame scan rate을얻을수있다. 그림 3은기존의터치스크린감지기술과제안된기법의 frame scan rate를비교한그림이다. 예로들면기존의터치스크린감지기법은드라이브라인과센스라인의개수가 44 x 78 channel인경우 36.42 frames/sec의 frame scan rate를보이며 100 x 100 channel 인경우 12.5 frames/sec으로감소한다. 반면에제안하는 FDCS 터치스크린감지기법은 44 x 77 channel의경우, 100 frames/sec 의 frame scan rate를제공하며 100 x 100의경우에도 78 frames/sec의높은 frame scan rate을유지한다. 그림 2. 터치와비터치의주파수도메인분석결과 ( 이상적인터치스크린경우 ): (a) 터치비발생의경우, (b) 터치발생한경우 Fig. 2 Frequency domain analysis of touched and untouched case (Ideal case): (a) Untouched case, (b) Touched case 그림 3. 드라이브라인과센스라인 Channel 수증가에따른 Frame Scan Rate 의비교 Fig. 3 Comparison of Frame Scan Rate for various TSP with different number of drive and sense channels 897
Ⅲ. FDCS 의추가성능향상기법 3.1. 노이즈적용시의성능분석터치스크린패널 (Touch screen panel (TSP)) 은전원장치및 LCD, 주위환경에서발생되는다양한노이즈의영향을많이받는다. 이러한노이즈는특히대형터치스크린에더욱큰영향을주며, 센스라인에서측정되는신호에불규칙적인변화를일으켜서높은터치감도를획득하기어렵게만든다. 이러한노이즈영향하에서터치스크린업계에서통용되는터치스크린의 SNR 측정방법은식 (8),(9),(10) 과같다. ms (8) (9) 식 (9) 는터치발생시의센싱신호평균값과터치비발생시의센싱신호평균값의차이로나타내는터치강도 (Touch strength) 이다. 식 (10) 의 NoiseTouched rms 는터치발생시 N개의센싱신호샘플들과센싱신호평균값의차의 RMS 평균값으로계산된다. 식 (9) 과식 (10) 을사용하여식 (8) 의 SNR을구할수있다 [13,14]. 본논문에서는 N=100 이사용되었다. 본논문의 FDCS 기법은높은터치감도를제공하기위해 Frequency division moving average (FDMA) Filtering과 pre-distortion equalizer를적용하여터치감지 SNR을향상시킨다. II 장에서는터치스크린의주파수응답이주파수에무관하게균일한이상적인터치스크린패널모델을가정하여 FDCS 방식의원리를설명하였다. ms (10) 그림 4. 터치스크린의모델등가회로 [15] Fig. 4 Equivalent model of touch screen panel 그림 6. 터치스크린 TX 에 44 개의사인파를가한경우 RX line 의주파수응답 Fig. 6 Frequency response of an RX line of TSP when 44 sine waves are applied to the TX lines. 그림 5. 터치스크린모델의보드선도 Fig. 5 Bode plot of touch screen panel model 그림 7. 노이즈소스적용시터치스크린모델의주파수응답 Fig. 7 Frequency response of TSP model with the noise source applied to the TSP 898
대형터치스크린의고속감지를위한주파수분할동시센싱기법 그러나실제터치스크린패널에적용하면다른결과를보인다. 본모의실험은국내최대 LCD 제조사의상용터치스크린패널의실제모델과노이즈를이용하여 MATLAB으로구현하고 FDCS의성능분석을한다. 그림 4에터치스크린의드라이브라인및센스라인의경로에해당하는터치스크린의등가회로모델을보인다. 그림 5는이모델의주파수응답특성을나타낸다. 그림 6은그림 5의주파수특성을가지는터치패널의모델에 39KHz~374.4KHz 구간에서 7.8KHz 간격의사인파를동시에구동했을때센스라인의신호를 FFT한결과이다. 터치스크린의주파수응답특성때문에낮은주파수의사인파가높은주파수사인파보다더많은감쇄가발생했음을알수있다. 그림 7은국내최대 LCD 제조사에서측정하여사용하는실제노이즈신호를터치스크린모델에적용하여측정한센싱신호의 FFT 결과이다. 높은노이즈신호가더해져서각주파수에서터치감지 SNR 성능이저하된다. 3.2. FDMA 노이즈필터링을이용한 SNR 향상본논문은추가로터치감지 SNR을향상시키기위해 Frequency division moving average (FDMA) 노이즈필터링기법을제안한다. FDMA 노이즈필터링은 W개의 Frame의 FFT 결과에서각주파수의스펙트럼밀도에대해 Moving Average 필터링을취하여노이즈를필터링하고 SNR을향상시킨다. 여기서 W는 Moving Average Window 크기이다. 그림 9. Pre-distortion equalizer 를추가한 FDCS 의구조 Fig. 9 Architecture of FDCS with a pre-distortion equalizer 그림 8에서 Window size 1은 FDMA 필터를적용하지않은경우의 SNR을나타낸다. Window size 2는 2개의 frame의각스펙트럼밀도수치들을 Moving Average하여 SNR을구한것으로약 의 SNR 향상을제공한다. Window size 10의경우 SNR이 만큼향상되었다. 3.3. Pre-distortion equalizer 를이용한 SNR향상그림 8을보면, 터치스크린의주파수응답특성때문에낮은주파수의드라이브신호가높은주파수신호보다 SNR이낮은경향을보인다. 이는낮은주파수신호가더많은감쇄를받으며따라서낮은주파수의 Touch strength 또한노이즈대비감소하기때문이다. 그림 8. FDMA 필터링을적용한경우각 TX 라인에서의 SNR 변화 Fig. 8 SNR improvement of TX lines when FDMA filtering is applied 그림 10. Pre-distortion equalizer 를통한후 FFT 결과 Fig. 10 FFT result of sensing signals with a pre-distortion equalizer applied 899
그림 11. 노이즈적용한 pre-distortion equalizer FDCS 의출력신호 FFT 결과 Fig. 11 FFT result of FDCS with a pre-distortion equalizer when noise source was applied 상기문제점을해결하기위해본논문에서는그림 9 와같이드라이브신호를미리보상해주는 equalizer를입력단에위치시키는 pre-distortion equalizer FDCS 구조를제안한다. Pre-distortion equalizer의기능은드라이브라인의입력신호들의진폭을주파수에반비례하는크기로미리왜곡시키는역할을한다. 이 pre-distortion equalizer는 TSP의전달함수의역함수를가지도록설계한다. 그림 10은 pre-distortion equalizer를사용한 FDCS 구조에서노이즈를인가하지않은경우의센스라인신호 FFT 결과이다. FFT 결과 input equalizer가모든주파수에서의신호의 Amplitude를균등하게만드는것을알수있다. 그림 11은 pre-distortion equalizer FDCS 구조에노이즈를인가한경우, 센스라인신호의 FFT 측정결과이다. 전체주파수대역에서신호의균등한진폭에노이즈가더해진결과를볼수있다. 그림 12는상기 FFT 결과에 FDMA filtering를수행한결과를보인다. FDMA 필터의 window size를 1~10으로증가시킬경우노이즈성분이더욱효율적으로제거되어 SNR이더욱빠르게상승함을볼수있다. Ⅳ. 실험결과의비교 그림 12. Pre-distortion equalizer 를적용한경우각 TX 라인에서의 SNR 변화 Fig. 12 SNR improvement of TX lines when a pre-distortion equalizer was applied 여러가지터치스크린감지기법을 44 x 78 channel의 23인치상용대형터치스크린에적용했을때의결과를표 1에비교한다. 기존의터치스크린감지기법에서는 표 1. 제안된 FDCS 기법과 Conventional 기법의성능비교 Table. 1 Performance comparison of the proposed FDCS scheme and a conventional scheme 터치스크린사양 : 23 인치, 44x78 Channels (Resolution: 3432 cross points), TSP 센스라인에서의 Base SNR: -11dB Conventional FDCS Only FDCS+FDMA Filter method [7] frame rate 36.42Hz 100Hz Sensing Circuit SNR 16dB 31dB SNR Gain 27dB 42dB FDCS+FDMA Filter + Pre-distortion equalizer Window size SNR Window size SNR 1 31dB 1 38dB 2 37dB 2 46dB 10 53dB 10 59dB Window size SNR Window size SNR 1 42dB 1 49dB 2 48dB 2 57dB 10 64dB 10 70dB 900
대형터치스크린의고속감지를위한주파수분할동시센싱기법 36.42Hz의낮은 frame scan rate이한계인반면 FDCS의경우에는 100Hz의높은 frame scan rate을얻었다. 본실험에서 FDCS의경우 100Hz로설정하여 SNR을측정하였으나더욱높은 frame scan rate으로도쉽게설정가능하다. 3.1장에서와같이터치스크린제조사의노이즈신호를적용하고식 (8)~(10) 에의해 SNR을측정하였다. 센싱기법을적용하기전에터치스크린의 base SNR은 -11dB로측정되었다. 기존기법 [7] 과유사한펄스신호순차적구동방식의경우, 센싱회로출력 SNR이 16dB 로측정되어, Base SNR (-11dB) 대비 SNR Gain은 27dB 이다. 반면에제안된 FDCS의기본구조의경우센싱회로출력이 31dB, SNR Gain은 42dB로측정되었다. FDCS에제안된 FDMA필터를추가로적용한구조에서는 Window size 2와 10인경우 SNR Gain이 48dB 와 64dB로각각향상되었다. 또한 FDMA필터와 predistortion equalizer를모두적용한구조에서는 Window size 2와 10인경우 SNR Gain이 57dB와 70dB로각각크게향상되었다. Ⅴ. 결론대부분기존터치스크린감지기법은순차적인구동과순차적센싱을사용하고있어서 frame scan rate가 1/N 2 의비율로크게저하되는문제가있으며, 따라서대형터치스크린에적용하기어렵다. 본논문은대형터치스크린을위한새로운고속터치감지방식인 FDCS (Frequency Division Concurrent sensing) 기법을제안하였다. 이는모든드라이브라인들을 orthogonal frequency의 sine wave로동시구동하고각센스라인신호의 FFT (Fast Fourier Transform) 결과를분석하여터치유무를판단하는기법이다. FDCS기법은터치스크린크기 N에따라 frame scan rate을 1/N 비율로유지하여높은 frame scan rate을제공할수있다. 또한본논문은터치스크린의환경노이즈를제거하여터치감도 SNR을크게개선하는 Frequency division Moving Average (FDMA) 필터링기법을제안하였다. 또한터치스크린에인가된구동신호들이주파수에따라다른왜곡을받는현상에착안하여구동신호를터 치스크린특성의역함수로미리왜곡하여 SNR 성능을한층더개선하는 pre-distortion equalizer를제안하였다. 상용 23인치터치스크린모델에실제의환경노이즈를적용하여실험한결과제안된 FDMA 필터와 pre-distortion equalizer를포함한 FDCS기법은 70dB의터치감지 SNR 성능이득을보였다. 감사의글이논문은 2013년도충북대학교학술연구지원사업의연구비지원에의하여연구되었음 (This work was supported by the research grant of Chungbuk National University in 2013) REFERENCES [ 1 ] H. R. Kim, Y. K. Choi, San-Ho Byun, Sang-Woo Kim, Kwang-Ho Choi, Hae-Yong Ahn, Jong-Kang Park, Dong-Yul Lee, Zhong-Yuan Wu, Hyung-Dal Kwon, Yong-Yeob Choi, Chang-Ju Lee, Hwa-Hyun Cho, Jae-Suk Yu, Myunghee Lee, A Mobile-Display-Driver IC Embedding a Capacitive-Touch-Screen Controller System, in Proc. of ISSCC 2010, pp.114-116, San Francisco, 8 Feb. 2010. [ 2 ] U. Y. Jang, H. W. Kim, T. W. Cho, H. G. Jang, S. W. Lee, Architecture of Multi Purpose Touch Screen Controller with Self Calibration Scheme, in Proc. of IEEK Fall Conference 2013, pp.162-166, Seoul, Korea, Nov. 2013. [ 3 ] H. C. Shin, S. H. Ko, H.J. Jang, I. H. Yun, and K. Y. Lee, "A 55dB SNR with 240Hz frame scan rate mutual capacitor 30 24 touch-screen panel read-out IC using code-division multiple sensing technique," in Proc. of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 388-389, San Francisco, USA, Feb. 2013. [ 4 ] Y. H. Tai, H. L. Chiu, and L. S. Chou, Large-Area Capacitive Active Touch Panel Using the Method of Pulse Overlapping Detection, Journal of Display Technology, Vol. 9, no. 3, pp. 170-175, March 2013. [ 5 ] J. S. Lee, D. H. Yeo, J. Y. Um, E. W. Song, J. Y. Sim, H. J. Park, S. M. Seo, M. H. Shin, D. H. Cha, H. S. Lee, A 10-Touch Capacitive-Touch Sensor Circuit with the 901
Time-Domain Input-Node Isolation, SID 2012 DIGEST, Vol.43, Issue 1, pp.493-496, June 2012. [ 6 ] I. S. Yang and O. K. Kwon, A Touch Controller Using Differential Sensing Method for On-Cell Capacitive Touch Screen Panel Systems, IEEE T-CE, Vol. 57, No.3, pp.1027-1032, Aug 2011. [ 7 ] T. H. Hwang, W. H. Cui, I. S. Yang, and O. K. Kwon, A Highly Area-Efficient Controller for Capacitive Touch Screen Panel Systems, IEEE T-CE, Vol. 56, No.2, pp.1115-1122, May 2010. [ 8 ] M.G.A. Mohamed. H. W. Kim, and T. W. Cho, Efficient Multi-Touch Detection Algorithm for Large Touch Screen Panels, IEIE Transactions on Smart Processing and Computing, Vol. 3, no. 4, pp. 246-250, August 2014. [ 9 ] M.G.A. Mohamed, U.Y Jang, I.C Seo, H. W. Kim, T. W. Cho, H. G. Jang, S. O. Lee, Efficient Algorithm for Accurate Touch Detection of Large Touch Screen Panels, in Proc. of ISCE 2014, pp.243-244, Jeju, Korea, 22-25 Jun.2014. [10] I. C. Seo, U. Y. Jang, M.G.A. Mohamed, T. W Cho, and H. W. Kim, H. K. Chang and S. O. Lee, Voltage shifting Double Integration Circuit for High Sensing Resolution of Large Capacitive Touch Screen Panels, in Proc. of ISCE 2014, pp.241-242, Jeju, Korea, 22-25 Jun.2014. [11] Chungbuk national university industry-academic cooperation foundation, Kortek corporation, Touch screen detection apparatus using voltage-shifting double-sided integrator with automatic level calibration, Korea, patent application number 10-2014-0080811, Jun.30.2014. [12] I. C. Seo, T. W. Cho, H. W. Kim, H. G. Jang, S. O. Lee, Frequency Domain Concurrent Sensing Technique for Large Touch Screen Panels", in Proc. of IEEK Fall CONFERENCE 2013, pp.55-58, Seoul Korea, 23 Nov. 2013. [13] ATMEL Corporation, Touch Sensors Design Guide, 10620 D-AT42 Sept. 2004. [14] S. H. Ko, H, C. Shin, J. M. Lee, H. J. Jang, K. Y. Lee, Low Noise Capacitive Sensor for Multi-touch Mobile handset s applications, in Proc. of ASSCC 2010, pp.247-250, Beijing China, 8-10 Nov. 2010. [15] K. S. Byun, B. W. Min, Circuit Modeling and Analysis of Touch Screen Panel, KIEES, Vol 25, Num1, pp.47-52, Jan. 2014. 장운용 (Un-yong Jang) 2012, B.S degree in Electrical Engineering, Chungbuk National University 2015, M.S degree in Electrical Engineering, Chungbuk National University 관심분야 : TSP controller, Digital circuit design, Mixed signal SoC 김형원 (HyungWon Kim) 1991, B.S degree in Electrical Engineering, KAIST 1993, M.S degree in Electrical Engineering, KAIST 1999, Ph.D degree in Electrical Engineering, University of Michigan, Ann Arbor 1998 ~ 1998, Intel, Hillsboro, Oregon, US 1999 ~ 2000, Synopsys, Mountain View, California, US 2001 ~ 2005, Broadcom, San Jose, California, US 2005 ~ 2013, Founder & CEO, Xronet, Korea 2013 ~ current, Assistant Professor, Chungbuk National University 관심분야 : Wireless sensor networks, Wireless vehicular communications, Mixed signal SoC designs for low power sensors and bio-medical sensors 902